ratama98 commited on
Commit
26ce9e4
·
verified ·
1 Parent(s): fba702e

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +9 -0
  2. __init__.py +0 -0
  3. asr_sundanese_4_pbl.py +152 -0
  4. requirements.txt +1 -0
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - sun
4
+ pretty_name: Su Id Asr
5
+ task_categories:
6
+ - speech-recognition
7
+ tags:
8
+ - speech-recognition
9
+ ---
__init__.py ADDED
File without changes
asr_sundanese_4_pbl.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ from typing import Dict, List
4
+
5
+ import datasets
6
+
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
10
+ DEFAULT_SOURCE_VIEW_NAME, Tasks)
11
+
12
+ _DATASETNAME = "su_id_asr"
13
+ _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
14
+ _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
15
+
16
+ _LANGUAGES = ["sun"]
17
+ _LOCAL = False
18
+ _CITATION = """\
19
+ @inproceedings{sodimana18_sltu,
20
+ author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
21
+ title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
22
+ year=2018,
23
+ booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
24
+ pages={66--70},
25
+ doi={10.21437/SLTU.2018-14}
26
+ }
27
+ """
28
+
29
+ _DESCRIPTION = """\
30
+ Sundanese ASR training data set containing ~220K utterances.
31
+ This dataset was collected by Google in Indonesia.
32
+
33
+
34
+ """
35
+
36
+ _HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"
37
+
38
+ _LICENSE = "Attribution-ShareAlike 4.0 International."
39
+
40
+ _URLs = {
41
+ "su_id_asr_train": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/EYWcDjCaympMhkU06LUpZiUBePQfzwXuj7dkQXvKbO6fwA?e=rPTjS5&download=1",
42
+ "su_id_asr_dev": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/EeyuO-hrrmdJtru6BK9FX-EBbFFGxziZSmZrqG3cr9bvJA?e=EcpFAz&download=1",
43
+ "su_id_asr_test": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/Ea2HSFeafYFLtAH3Z6cLt9kBp6l-IkcRonRaV5b9yvjE6g?e=IhaOiv&download=1",
44
+ }
45
+
46
+ _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
47
+
48
+ _SOURCE_VERSION = "1.0.0"
49
+ _SEACROWD_VERSION = "2024.06.20"
50
+
51
+
52
+ class SuIdASR(datasets.GeneratorBasedBuilder):
53
+ """su_id contains ~220K utterances for Sundanese ASR training data."""
54
+
55
+ BUILDER_CONFIGS = [
56
+ SEACrowdConfig(
57
+ name="su_id_asr_source",
58
+ version=datasets.Version(_SOURCE_VERSION),
59
+ description="SU_ID_ASR source schema",
60
+ schema="source",
61
+ subset_id="su_id_asr",
62
+ ),
63
+ SEACrowdConfig(
64
+ name="su_id_asr_seacrowd_sptext",
65
+ version=datasets.Version(_SEACROWD_VERSION),
66
+ description="SU_ID_ASR Nusantara schema",
67
+ schema="seacrowd_sptext",
68
+ subset_id="su_id_asr",
69
+ ),
70
+ ]
71
+
72
+ DEFAULT_CONFIG_NAME = "su_id_asr_source"
73
+
74
+ def _info(self):
75
+ if self.config.schema == "source":
76
+ features = datasets.Features(
77
+ {
78
+ "id": datasets.Value("string"),
79
+ "speaker_id": datasets.Value("string"),
80
+ "path": datasets.Value("string"),
81
+ "audio": datasets.Audio(sampling_rate=16_000),
82
+ "text": datasets.Value("string"),
83
+ }
84
+ )
85
+ elif self.config.schema == "seacrowd_sptext":
86
+ features = schemas.speech_text_features
87
+
88
+ return datasets.DatasetInfo(
89
+ description=_DESCRIPTION,
90
+ features=features,
91
+ homepage=_HOMEPAGE,
92
+ license=_LICENSE,
93
+ citation=_CITATION,
94
+ task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
95
+ )
96
+
97
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
98
+ return [
99
+ datasets.SplitGenerator(
100
+ name=datasets.Split.TRAIN,
101
+ gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_train"])},
102
+ ),
103
+ datasets.SplitGenerator(
104
+ name=datasets.Split.VALIDATION,
105
+ gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_dev"])},
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_test"])},
110
+ )
111
+ ]
112
+
113
+ def _generate_examples(self, filepath: str):
114
+
115
+ if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
116
+
117
+ tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv")
118
+
119
+ with open(tsv_file, "r") as file:
120
+ tsv_file = csv.reader(file, delimiter="\t")
121
+
122
+ for line in tsv_file:
123
+ audio_id, speaker_id, transcription_text = line[0], line[1], line[2]
124
+
125
+ wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
126
+
127
+ if os.path.exists(wav_path):
128
+ if self.config.schema == "source":
129
+ ex = {
130
+ "id": audio_id,
131
+ "speaker_id": speaker_id,
132
+ "path": wav_path,
133
+ "audio": wav_path,
134
+ "text": transcription_text,
135
+ }
136
+ yield audio_id, ex
137
+ elif self.config.schema == "seacrowd_sptext":
138
+ ex = {
139
+ "id": audio_id,
140
+ "speaker_id": speaker_id,
141
+ "path": wav_path,
142
+ "audio": wav_path,
143
+ "text": transcription_text,
144
+ "metadata": {
145
+ "speaker_age": None,
146
+ "speaker_gender": None,
147
+ },
148
+ }
149
+ yield audio_id, ex
150
+
151
+ else:
152
+ raise ValueError(f"Invalid config: {self.config.name}")
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ seacrowd>=0.2.0