File size: 4,474 Bytes
7db2883
ae088a5
7db2883
01fea5b
0b33a10
01fea5b
7577644
01fea5b
 
 
 
 
 
 
 
 
 
 
 
 
7db2883
 
 
 
 
 
 
 
 
 
 
 
 
 
fd43728
 
 
 
7db2883
 
 
 
 
 
 
 
fd43728
 
 
7db2883
 
fd43728
7db2883
fd43728
 
7db2883
fd43728
 
 
 
 
7db2883
 
 
 
 
 
 
 
 
 
fd43728
7db2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd43728
7db2883
 
 
 
fd43728
7db2883
 
 
fd43728
 
4f290ba
fd43728
 
 
 
 
 
 
 
 
 
 
 
7db2883
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import json
from typing import List
import datasets
import re

ENTITY = 'entity'
ENTITY_PATTERN = r'<entity>{}</entity>'


def markup_entity(utt: str, entities: List[str]):
    # If entities like "action movie" and "action" appear at the same time, we only mark the longer one
    entities = sorted(list(set(entities)), key=lambda x: len(x), reverse=True)
    for i, entity in enumerate(entities):
        valid = entity not in ENTITY
        for prev in entities[:i]:
            if entity in prev:
                valid = False
        if valid:
            utt = re.sub(entity, ENTITY_PATTERN.format(entity), utt)
    return utt

logger = datasets.logging.get_logger(__name__)


_URL = "./"
_URLS = {
    "train": _URL + "train_data_dbpedia.jsonl",
    "valid": _URL + "valid_data_dbpedia.jsonl",
    "test": _URL + "test_data_dbpedia.jsonl",
    "entity2id": _URL + "entity2id.json"
}


class InspiredConfig(datasets.BuilderConfig):
    def __init__(self, features,
                 initiator_prefix='User: ',
                 respondent_prefix='System: ',
                 **kwargs):
        """BuilderConfig for Inspired (used in UniCRS).

        Args:
        features: *list[string]*, list of the features that will appear in the
            feature dict. Should not include "label".
        **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(version=datasets.Version("0.0.1"), **kwargs)
        self.features = features
        self.initiator_prefix = initiator_prefix
        self.respondent_prefix = respondent_prefix

class Inspired(datasets.GeneratorBasedBuilder):
    DEFAULT_CONFIG_NAME = "unrolled"
    BUILDER_CONFIGS = [
        InspiredConfig(
            name="unrolled",
            description="The processed Inspired dataset in UniCRS. Each conversation yields multiple samples",
            features={
                "messages": datasets.Sequence(datasets.Value("string")),
                "rec": datasets.Sequence(datasets.Value("int32")),
                "recNames": datasets.Sequence(datasets.Value("string")),
            }
        )
    ]


    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def _info(self):
        return datasets.DatasetInfo(
            description=self.config.description,
            features=datasets.Features(self.config.features),
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        entity2id_file = downloaded_files["entity2id"]
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={"filepath": downloaded_files["train"], "entity2id": entity2id_file}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION,
                                    gen_kwargs={"filepath": downloaded_files["valid"], "entity2id": entity2id_file}),
            datasets.SplitGenerator(name=datasets.Split.TEST,
                                    gen_kwargs={"filepath": downloaded_files["test"], "entity2id": entity2id_file}),
        ]



    def _generate_examples(self, filepath, entity2id):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)

        with open(entity2id, 'r', encoding='utf-8') as f:
            entity2id = json.load(f)
        if "unrolled" in self.config.name:
            Idx = 0
            with open(filepath, encoding="utf-8") as f:
                for line in f:
                    dialog = json.loads(line)
                    context = []

                    for turn in dialog:
                        resp = turn['text']
                        movie_turn = [entity2id[movie] for movie in turn['movie_link'] if movie in entity2id]

                        resp = markup_entity(resp, turn['entity_name']+turn['movie_name'])
                        prefix = self.config.initiator_prefix if turn['role'] == 'SEEKER' else self.config.respondent_prefix
                        resp = prefix + resp
                        context.append(resp)

                        yield Idx, {
                            'messages': context,
                            'rec': movie_turn,
                            'recNames': turn['movie_name']
                        }

                        Idx += 1