Datasets:
Size:
10K<n<100K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from pathlib import Path | |
import pandas as pd | |
import datasets | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """ | |
@conference {bogdanov2019mtg, | |
author = "Bogdanov, Dmitry and Won, Minz and Tovstogan, Philip and Porter, Alastair and Serra, Xavier", | |
title = "The MTG-Jamendo Dataset for Automatic Music Tagging", | |
booktitle = "Machine Learning for Music Discovery Workshop, International Conference on Machine Learning (ICML 2019)", | |
year = "2019", | |
address = "Long Beach, CA, United States", | |
url = "http://hdl.handle.net/10230/42015" | |
} | |
""" | |
_DESCRIPTION = """ | |
Repackaging of the MTG Jamendo dataset. | |
We present the MTG-Jamendo Dataset, a new open dataset for music auto-tagging. | |
It is built using music available at Jamendo under Creative Commons licenses and tags provided by content creators. | |
The dataset contains over 55,000 full audio tracks with 195 tags from genre, instrument, and mood/theme categories. | |
""" | |
_HOMEPAGE = "https://github.com/MTG/mtg-jamendo-dataset" | |
_LICENSE = "Apache License 2.0" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
_URLS_DATA = { | |
"train": { | |
i: f"https://huggingface.co/datasets/rkstgr/mtg-jamendo/resolve/main/data/train/{i}.tar" for i in range(200) | |
}, | |
"val": { | |
i: f"https://huggingface.co/datasets/rkstgr/mtg-jamendo/resolve/main/data/val/{i}.tar" for i in range(22) | |
} | |
} | |
_URLS_TRACKS = { | |
"train": "https://huggingface.co/datasets/rkstgr/mtg-jamendo/raw/main/train.tsv", | |
"valid": "https://huggingface.co/datasets/rkstgr/mtg-jamendo/raw/main/valid.tsv" | |
} | |
class MtgJamendo(datasets.GeneratorBasedBuilder): | |
""" | |
Audio dataset containing over 55,000 full audio tracks with | |
195 tags from genre, instrument, and mood/theme categories | |
""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"artist_id": datasets.Value("int32"), | |
"album_id": datasets.Value("int32"), | |
"durationInSec": datasets.Value("float"), | |
"genres": datasets.Sequence(datasets.Value("string")), | |
"instruments": datasets.Sequence(datasets.Value("string")), | |
"moods": datasets.Sequence(datasets.Value("string")), | |
"audio": datasets.Audio(sampling_rate=22_050), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
archive_path = dl_manager.download(_URLS_DATA) | |
tracks_path = dl_manager.download(_URLS_TRACKS) | |
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files: | |
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} | |
def to_dict(xs: list) -> dict: | |
return {x["id"]: x for x in xs} | |
train_tracks = to_dict( | |
pd.read_csv(tracks_path["train"], sep="\t").to_dict("records") | |
) | |
valid_tracks = to_dict( | |
pd.read_csv(tracks_path["valid"], sep="\t").to_dict("records") | |
) | |
train_splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"local_extracted_archive": local_extracted_archive.get("train"), | |
"files": dl_manager.iter_archive(archive_path["train"]), | |
"tracks": train_tracks, | |
}, | |
) | |
] | |
val_splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"local_extracted_archive": local_extracted_archive.get("val"), | |
"files": dl_manager.iter_archive(archive_path["val"]), | |
"tracks": valid_tracks, | |
}, | |
) | |
] | |
return train_splits + val_splits | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, files, local_extracted_archive, tracks): | |
"""Generate examples from archive_path.""" | |
audio_paths = {} | |
for _, directory in local_extracted_archive.items(): | |
for f in Path(directory).iterdir(): | |
if f.suffix == ".opus": | |
_id = int(f.stem) | |
audio_paths[_id] = str(f) | |
for _id, audio_path in audio_paths.items(): | |
data = { | |
"id": _id, | |
"artist_id": tracks[_id]["artist_id"], | |
"album_id": tracks[_id]["album_id"], | |
"durationInSec": tracks[_id]["durationInSec"], | |
"genres": eval(tracks[_id]["genres"]), | |
"instruments": eval(tracks[_id]["instruments"]), | |
"moods": eval(tracks[_id]["moods"]), | |
"audio": audio_path | |
} | |
yield _id, data | |
if __name__ == '__main__': | |
mtg = MtgJamendo() | |
mtg.download_and_prepare() | |