|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Natural Questions: A Benchmark for Question Answering Research.""" |
|
|
|
|
|
import html |
|
import json |
|
import re |
|
|
|
import apache_beam as beam |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{47761, |
|
title = {Natural Questions: a Benchmark for Question Answering Research}, |
|
author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov}, |
|
year = {2019}, |
|
journal = {Transactions of the Association of Computational Linguistics} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The NQ corpus contains questions from real users, and it requires QA systems to |
|
read and comprehend an entire Wikipedia article that may or may not contain the |
|
answer to the question. The inclusion of real user questions, and the |
|
requirement that solutions should read an entire page to find the answer, cause |
|
NQ to be a more realistic and challenging task than prior QA datasets. |
|
""" |
|
|
|
_URL = "https://ai.google.com/research/NaturalQuestions/dataset" |
|
|
|
_BASE_DOWNLOAD_URL = "https://storage.googleapis.com/natural_questions/v1.0" |
|
_DOWNLOAD_URLS = { |
|
"train": ["%s/train/nq-train-%02d.jsonl.gz" % (_BASE_DOWNLOAD_URL, i) for i in range(50)], |
|
"validation": ["%s/dev/nq-dev-%02d.jsonl.gz" % (_BASE_DOWNLOAD_URL, i) for i in range(5)], |
|
} |
|
|
|
_VERSION = datasets.Version("0.0.4") |
|
|
|
|
|
|
|
class NaturalQuestionsV2(datasets.BeamBasedBuilder): |
|
"""Natural Questions: A Benchmark for Question Answering Research.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=_VERSION), |
|
datasets.BuilderConfig(name="dev", version=_VERSION, description="Only dev split"), |
|
] |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document": { |
|
"title": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"html": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence( |
|
{"token": datasets.Value("string"), "is_html": datasets.Value("bool"), |
|
"start_byte": datasets.Value("int64"), "end_byte": datasets.Value("int64")} |
|
), |
|
}, |
|
"question": { |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence(datasets.Value("string")), |
|
}, |
|
"long_answer_candidates": datasets.features.Sequence( |
|
{ |
|
"start_token": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
"start_byte": datasets.Value("int64"), |
|
"end_byte": datasets.Value("int64"), |
|
"top_level": datasets.Value("bool"), |
|
} |
|
), |
|
"annotations": datasets.features.Sequence( |
|
{ |
|
"id": datasets.Value("string"), |
|
"long_answer": { |
|
"start_token": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
"start_byte": datasets.Value("int64"), |
|
"end_byte": datasets.Value("int64"), |
|
"candidate_index": datasets.Value("int64") |
|
}, |
|
"short_answers": datasets.features.Sequence( |
|
{ |
|
"start_token": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
"start_byte": datasets.Value("int64"), |
|
"end_byte": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
"yes_no_answer": datasets.features.ClassLabel( |
|
names=["NO", "YES"] |
|
), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager, pipeline): |
|
"""Returns SplitGenerators.""" |
|
urls = _DOWNLOAD_URLS |
|
if self.config.name == "dev": |
|
urls = {"validation": urls["validation"]} |
|
files = dl_manager.download(urls) |
|
if not pipeline.is_local(): |
|
files = dl_manager.ship_files_with_pipeline(files, pipeline) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={"filepaths": files[split]}, |
|
) |
|
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION] |
|
if split in files |
|
] |
|
|
|
def _build_pcollection(self, pipeline, filepaths): |
|
"""Build PCollection of examples.""" |
|
|
|
def _parse_example(line): |
|
"""Parse a single json line and emit an example dict.""" |
|
ex_json = json.loads(line) |
|
html_bytes = ex_json["document_html"].encode("utf-8") |
|
|
|
def _parse_short_answer(short_ans): |
|
"""Extract text of short answer.""" |
|
ans_bytes = html_bytes[short_ans["start_byte"] : short_ans["end_byte"]] |
|
|
|
ans_bytes = ans_bytes.replace(b"\xc2\xa0", b" ") |
|
text = ans_bytes.decode("utf-8") |
|
|
|
text = re.sub("<([^>]*)>", "", html.unescape(text)) |
|
|
|
return { |
|
"start_token": short_ans["start_token"], |
|
"end_token": short_ans["end_token"], |
|
"start_byte": short_ans["start_byte"], |
|
"end_byte": short_ans["end_byte"], |
|
"text": text, |
|
} |
|
|
|
def _parse_annotation(an_json): |
|
return { |
|
|
|
"id": str(an_json["annotation_id"]), |
|
"long_answer": { |
|
"start_token": an_json["long_answer"]["start_token"], |
|
"end_token": an_json["long_answer"]["end_token"], |
|
"start_byte": an_json["long_answer"]["start_byte"], |
|
"end_byte": an_json["long_answer"]["end_byte"], |
|
"candidate_index": an_json["long_answer"]["candidate_index"] |
|
}, |
|
"short_answers": [_parse_short_answer(ans) for ans in an_json["short_answers"]], |
|
"yes_no_answer": (-1 if an_json["yes_no_answer"] == "NONE" else an_json["yes_no_answer"]), |
|
} |
|
|
|
beam.metrics.Metrics.counter("nq", "examples").inc() |
|
|
|
id_ = str(ex_json["example_id"]) |
|
return ( |
|
id_, |
|
{ |
|
"id": id_, |
|
"document": { |
|
"title": ex_json["document_title"], |
|
"url": ex_json["document_url"], |
|
"html": ex_json["document_html"], |
|
"tokens": [ |
|
{"token": t["token"], "is_html": t["html_token"], "start_byte": t["start_byte"], "end_byte": t["end_byte"]} for t in ex_json["document_tokens"] |
|
], |
|
}, |
|
"question": {"text": ex_json["question_text"], "tokens": ex_json["question_tokens"]}, |
|
"long_answer_candidates": [lac_json for lac_json in ex_json["long_answer_candidates"]], |
|
"annotations": [_parse_annotation(an_json) for an_json in ex_json["annotations"]], |
|
}, |
|
) |
|
|
|
return ( |
|
pipeline |
|
| beam.Create(filepaths) |
|
| beam.io.ReadAllFromText(compression_type=beam.io.textio.CompressionTypes.GZIP) |
|
| beam.Map(_parse_example) |
|
) |
|
|