Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,560 Bytes
fb20c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9913a
fb20c38
 
 
 
0c9913a
fb20c38
 
 
 
0c9913a
fb20c38
 
 
0c9913a
fb20c38
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NYU-Depth V2."""


import os

import datasets
import h5py
import numpy as np

_CITATION = """\
@inproceedings{Silberman:ECCV12,
  author    = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
  title     = {Indoor Segmentation and Support Inference from RGBD Images},
  booktitle = {ECCV},
  year      = {2012}
}
@inproceedings{icra_2019_fastdepth,
  author    = {Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne},
  title     = {FastDepth: Fast Monocular Depth Estimation on Embedded Systems},
  booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
  year      = {2019}
}
"""

_DESCRIPTION = """\
The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
"""

_HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html"

_LICENSE = "Apace 2.0 License"

_URLS = {
    "depth_estimation": {
        "train/val": "http://datasets.lids.mit.edu/fastdepth/data/nyudepthv2.tar.gz",
    }
}

_IMG_EXTENSIONS = [".h5"]


class NYUDepthV2(datasets.GeneratorBasedBuilder):
    """NYU-Depth V2 dataset."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="depth_estimation",
            version=VERSION,
            description="The depth estimation variant.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "depth_estimation"

    def _info(self):
        features = datasets.Features(
            {"image": datasets.Image(), "depth_map": datasets.Image()}
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _is_image_file(self, filename):
        # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
        return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)

    def _get_file_paths(self, dir):
        # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44
        file_paths = []
        dir = os.path.expanduser(dir)

        for target in sorted(os.listdir(dir)):
            d = os.path.join(dir, target)
            if not os.path.isdir(d):
                continue
            for root, _, fnames in sorted(os.walk(d)):
                for fname in sorted(fnames):
                    if self._is_image_file(fname):
                        path = os.path.join(root, fname)
                        file_paths.append(path)

        return file_paths

    def _h5_loader(self, path):
        # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
        h5f = h5py.File(path, "r")
        rgb = np.array(h5f["rgb"])
        rgb = np.transpose(rgb, (1, 2, 0))
        depth = np.array(h5f["depth"])
        return rgb, depth

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        base_path = dl_manager.download_and_extract(urls)["train/val"]

        train_data_files = self._get_file_paths(
            os.path.join(base_path, "nyudepthv2", "train")
        )
        val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2", "val"))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": train_data_files},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepaths": val_data_files},
            ),
        ]

    def _generate_examples(self, filepaths):
        for idx, filepath in enumerate(filepaths):
            image, depth = self._h5_loader(filepath)
            yield idx, {"image": image, "depth_map": depth}