Datasets:
Tasks:
Depth Estimation
Modalities:
Image
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
depth-estimation
License:
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""NYU-Depth V2.""" | |
import os | |
import datasets | |
import h5py | |
import numpy as np | |
_CITATION = """\ | |
@inproceedings{Silberman:ECCV12, | |
author = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus}, | |
title = {Indoor Segmentation and Support Inference from RGBD Images}, | |
booktitle = {ECCV}, | |
year = {2012} | |
} | |
@inproceedings{icra_2019_fastdepth, | |
author = {Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne}, | |
title = {FastDepth: Fast Monocular Depth Estimation on Embedded Systems}, | |
booktitle = {IEEE International Conference on Robotics and Automation (ICRA)}, | |
year = {2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect. | |
""" | |
_HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html" | |
_LICENSE = "Apace 2.0 License" | |
_URLS = { | |
"depth_estimation": { | |
"train/val": "http://datasets.lids.mit.edu/fastdepth/data/nyudepthv2.tar.gz", | |
} | |
} | |
_IMG_EXTENSIONS = [".h5"] | |
class NYUDepthV2(datasets.GeneratorBasedBuilder): | |
"""NYU-Depth V2 dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="depth_estimation", | |
version=VERSION, | |
description="The depth estimation variant.", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "depth_estimation" | |
def _info(self): | |
features = datasets.Features( | |
{"image": datasets.Image(), "depth_map": datasets.Image()} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _is_image_file(self, filename): | |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23 | |
return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS) | |
def _get_file_paths(self, dir): | |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44 | |
file_paths = [] | |
dir = os.path.expanduser(dir) | |
for target in sorted(os.listdir(dir)): | |
d = os.path.join(dir, target) | |
if not os.path.isdir(d): | |
continue | |
for root, _, fnames in sorted(os.walk(d)): | |
for fname in sorted(fnames): | |
if self._is_image_file(fname): | |
path = os.path.join(root, fname) | |
file_paths.append(path) | |
return file_paths | |
def _h5_loader(self, path): | |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13 | |
h5f = h5py.File(path, "r") | |
rgb = np.array(h5f["rgb"]) | |
rgb = np.transpose(rgb, (1, 2, 0)) | |
depth = np.array(h5f["depth"]) | |
return rgb, depth | |
def _split_generators(self, dl_manager): | |
urls = _URLS[self.config.name] | |
base_path = dl_manager.download_and_extract(urls) | |
train_data_files = self._get_file_paths( | |
os.path.join(base_path, "nyudepthv2", "train") | |
) | |
val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2" "val")) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data": train_data_files, "split": "training"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data": val_data_files, "split": "validation"}, | |
), | |
] | |
def _generate_examples(self, filepaths): | |
for idx, filepath in enumerate(filepaths): | |
image, depth = self._h5_loader(filepath) | |
yield idx, {"image": image, "depth_map": depth} | |