scaomath commited on
Commit
7f22a7b
1 Parent(s): 183d9d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-to-3d
5
+ tags:
6
+ - mathematics
7
+ - partial-differential-equations
8
+ - computational fluid dynamics
9
+ - physics
10
+ - neural operator
11
+ size_categories:
12
+ - 1K<n<10K
13
+ ---
14
+ # Navier Stokes Dataset of Isotropic Turbulence in a periodic box
15
+
16
+ <!-- Provide a quick summary of the dataset. -->
17
+
18
+ The dataset for tensor-to-tensor or trajectory-to-trajectory neural operators, generated from Navier-Stokes equations
19
+ to model the isotropic turbulence [1] such that the spectra satisfy the inverse cascade discovered by A.N. Kolmogorov [2].
20
+
21
+ [1]: McWilliams, J. C. (1984). The emergence of isolated coherent vortices in turbulent flow. *Journal of Fluid Mechanics*, 146, 21-43.
22
+ [2]: Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds Numbers. *Dokl. Akad. Nauk SSSR*, 30, 301.
23
+
24
+ ## Dataset Details
25
+
26
+ ### Dataset Description
27
+
28
+ <!-- Provide a longer summary of what this dataset is. -->
29
+
30
+ The dataset contains several cases of isotropic turbulence modeled by Navier-Stokes equations. The data are generated either
31
+ by a pseudo-spectral solver with 4th-order Runge-Kutta for the convection term, or a higher order Finite Volume IMEX methods.
32
+ The different initial conditions have different peak wavenumbers of O(1), and eventually their spectra all converge to the Kolmogorov
33
+ inverse cascade.
34
+
35
+ - **Curated by:** S. Cao
36
+ - **Funded by National Science Foundation:** NSF award DMS-2309778
37
+ - **License:** MIT license
38
+
39
+ ### Dataset Sources [optional]
40
+
41
+ <!-- Provide the basic links for the dataset. -->
42
+
43
+ - **Repository:** [https://github.com/scaomath/torch-cfd](https://github.com/scaomath/torch-cfd)
44
+ - **Paper:** [More Information Needed]
45
+ - **Demo:**
46
+ - [The classical Kolmogorov inverse cascade with a solenoidal forcing and small drag.](https://github.com/scaomath/torch-cfd/blob/main/examples/Kolmogrov2d_rk4_cn_forced_turbulence.ipynb)
47
+ - [The fast training using the data with a small number of vortices.](https://github.com/scaomath/torch-cfd/blob/main/examples/ex2_SFNO_train_fnodata.ipynb)
48
+ - [The fast converging to the inverse cascade.](https://github.com/scaomath/torch-cfd/blob/main/examples/ex2_SFNO_5ep_spectra.ipynb)
49
+
50
+ ## Dataset Structure
51
+
52
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
53
+
54
+ Each individual chunk of data is pickled in single-file format.
55
+
56
+ ## Dataset Creation
57
+
58
+ ### TO-DO
59
+
60
+ ## Citation
61
+
62
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
63
+
64
+ ```bibtex
65
+ @article{2024SpectralRefiner,
66
+ title={Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows},
67
+ author={Shuhao Cao and Francesco Brarda and Ruipeng Li and Yuanzhe Xi},
68
+ journal={arXiv preprint arXiv:2405.17211},
69
+ year={2024},
70
+ primaryClass={cs.LG}
71
+ }
72
+ ```
73
+
74
+
75
+