Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,092 Bytes
314bfe0
47aa6b3
 
 
 
 
 
 
e8ffea5
de71ca0
 
 
 
 
 
 
 
 
 
e8ffea5
 
 
47aa6b3
e8ffea5
47aa6b3
e8ffea5
47aa6b3
 
 
e8ffea5
 
 
cd689c6
e8ffea5
cd689c6
e8ffea5
cd689c6
 
 
e8ffea5
 
 
040c972
e8ffea5
040c972
e8ffea5
040c972
 
 
e8ffea5
 
47aa6b3
de71ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f00fad
 
de71ca0
 
4f00fad
de71ca0
 
4f00fad
de71ca0
 
4f00fad
de71ca0
 
4f00fad
de71ca0
4f00fad
 
cd689c6
47aa6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4384aa0
 
47aa6b3
 
4384aa0
47aa6b3
 
4384aa0
47aa6b3
 
4384aa0
47aa6b3
 
4384aa0
47aa6b3
4384aa0
 
cd689c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7c5c0f
 
cd689c6
 
f7c5c0f
cd689c6
 
f7c5c0f
cd689c6
 
f7c5c0f
cd689c6
 
f7c5c0f
cd689c6
f7c5c0f
 
040c972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7727d93
 
040c972
 
7727d93
040c972
 
7727d93
040c972
 
7727d93
040c972
 
7727d93
040c972
7727d93
 
0c972c9
 
 
 
f351d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c972c9
 
 
aaff3b5
 
f351d7e
aaff3b5
 
 
79efd6f
 
aaff3b5
 
0c972c9
 
 
 
 
 
 
 
 
 
 
 
 
aaff3b5
0c972c9
 
 
 
 
 
aaff3b5
 
 
 
0c972c9
 
 
 
 
 
 
 
 
 
 
 
 
 
79efd6f
0c972c9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
language:
- ko
license: cc-by-nc-2.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
configs:
- config_name: dentist
  data_files:
  - split: train
    path: dentist/train-*
  - split: dev
    path: dentist/dev-*
  - split: test
    path: dentist/test-*
  - split: fewshot
    path: dentist/fewshot-*
- config_name: doctor
  data_files:
  - split: train
    path: doctor/train-*
  - split: dev
    path: doctor/dev-*
  - split: test
    path: doctor/test-*
  - split: fewshot
    path: doctor/fewshot-*
- config_name: nurse
  data_files:
  - split: train
    path: nurse/train-*
  - split: dev
    path: nurse/dev-*
  - split: test
    path: nurse/test-*
  - split: fewshot
    path: nurse/fewshot-*
- config_name: pharm
  data_files:
  - split: train
    path: pharm/train-*
  - split: dev
    path: pharm/dev-*
  - split: test
    path: pharm/test-*
  - split: fewshot
    path: pharm/fewshot-*
tags:
- medical
dataset_info:
- config_name: dentist
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  - name: cot
    dtype: string
  splits:
  - name: train
    num_bytes: 116376
    num_examples: 297
  - name: dev
    num_bytes: 119727
    num_examples: 304
  - name: test
    num_bytes: 330325
    num_examples: 811
  - name: fewshot
    num_bytes: 4810
    num_examples: 5
  download_size: 374097
  dataset_size: 571238
- config_name: doctor
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  - name: cot
    dtype: string
  splits:
  - name: train
    num_bytes: 1137189
    num_examples: 1890
  - name: dev
    num_bytes: 111294
    num_examples: 164
  - name: test
    num_bytes: 315104
    num_examples: 435
  - name: fewshot
    num_bytes: 8566
    num_examples: 5
  download_size: 871530
  dataset_size: 1572153
- config_name: nurse
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  - name: cot
    dtype: string
  splits:
  - name: train
    num_bytes: 219983
    num_examples: 582
  - name: dev
    num_bytes: 110210
    num_examples: 291
  - name: test
    num_bytes: 327186
    num_examples: 878
  - name: fewshot
    num_bytes: 6324
    num_examples: 5
  download_size: 419872
  dataset_size: 663703
- config_name: pharm
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  - name: cot
    dtype: string
  splits:
  - name: train
    num_bytes: 272256
    num_examples: 632
  - name: dev
    num_bytes: 139900
    num_examples: 300
  - name: test
    num_bytes: 412847
    num_examples: 885
  - name: fewshot
    num_bytes: 6324
    num_examples: 5
  download_size: 504010
  dataset_size: 831327
---

# KorMedMCQA : Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations

We present KorMedMCQA, the first Korean Medical Multiple-Choice Question
Answering benchmark, derived from professional healthcare licensing
examinations conducted in Korea between 2012 and 2024. The dataset contains
7,469 questions from examinations for doctor, nurse, pharmacist, and dentist,
covering a wide range of medical disciplines. We evaluate the performance of 59
large language models, spanning proprietary and open-source models,
multilingual and Korean-specialized models, and those fine-tuned for clinical
applications. Our results show that applying Chain of Thought (CoT) reasoning
can enhance the model performance by up to 4.5% compared to direct answering
approaches. We also investigate whether MedQA, one of the most widely used
medical benchmarks derived from the U.S. Medical Licensing Examination, can
serve as a reliable proxy for evaluating model performance in other regions-in
this case, Korea. Our correlation analysis between model scores on KorMedMCQA
and MedQA reveals that these two benchmarks align no better than benchmarks
from entirely different domains (e.g., MedQA and MMLU-Pro). This finding
underscores the substantial linguistic and clinical differences between Korean
and U.S. medical contexts, reinforcing the need for region-specific medical QA
benchmarks. 

Paper : https://arxiv.org/abs/2403.01469

## Notice

We have made the following updates to the KorMedMCQA dataset:

1. **Dentist Exam**: Incorporated exam questions from 2021 to 2024.
2. **Updated Test Sets**: Added the 2024 exam questions for the doctor, nurse, and pharmacist test sets.
3. **Few-Shot Split**: Introduced a `fewshot` split, containing 5 shots from each validation set.
4. **Chain-of-Thought(CoT)**: In each exam's few-shot split (`cot` column), there is an answer with reasoning annotated by professionals


## Dataset Details

### Languages

Korean

### Subtask

```
from datasets import load_dataset
doctor = load_dataset(path = "sean0042/KorMedMCQA",name = "doctor")
nurse = load_dataset(path = "sean0042/KorMedMCQA",name = "nurse")
pharmacist = load_dataset(path = "sean0042/KorMedMCQA",name = "pharm")
dentist = load_dataset(path = "sean0042/KorMedMCQA",name = "dentist")
```

### Statistics

| Category                     | # Questions (Train/Dev/Test) |
|------------------------------|------------------------------|
| Doctor                       | 2,489 (1,890/164/435)        |
| Nurse                        | 1,751 (582/291/878)          |
| Pharmacist                   | 1,817 (632/300/885)          |
| Dentist                      | 1,412 (297/304/811)          |

### Data Fields


- `subject`: doctor, nurse, or pharm
- `year`: year of the examination
- `period`: period of the examination
- `q_number`: question number of the examination
- `question`: question
- `A`: First answer choice
- `B`: Second answer choice
- `C`: Third answer choice
- `D`: Fourth answer choice
- `E`: Fifth answer choice
- `cot` : Answer with reasoning annotated by professionals (only available in fewshot split)
- `answer` : Answer (1 to 5). 1 denotes answer A, and 5 denotes answer E


## Contact

```
[email protected]
```