imports
stringclasses
16 values
function1_signature
stringlengths
129
1.27k
function1_human
stringlengths
152
1.91k
function1_name
stringlengths
1
30
function2_signature
stringlengths
143
1.53k
function2_human
stringlengths
169
1.59k
function2_name
stringlengths
3
62
tests
stringlengths
164
1.07k
stop_tokens
sequencelengths
4
4
function1_docstring
stringlengths
66
1.13k
function2_docstring
stringlengths
82
1.36k
function1_implementation
stringlengths
17
858
function2_implementation
stringlengths
25
397
function1_declaration
stringlengths
18
97
function2_declaration
stringlengths
15
89
from typing import List
def exchange(lst1: List[int], lst2: List[int]) -> str: """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: >>> exchange([1, 2, 3, 4], [1, 2, 3, 4]) 'YES' >>> exchange([1, 2, 3, 4], [1, 5, 3, 4]) 'NO' It is assumed that the input lists will be non-empty. """
def exchange(lst1: List[int], lst2: List[int]) -> str: """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: >>> exchange([1, 2, 3, 4], [1, 2, 3, 4]) 'YES' >>> exchange([1, 2, 3, 4], [1, 5, 3, 4]) 'NO' It is assumed that the input lists will be non-empty. """ odd = 0 even = 0 for i in lst1: if i % 2 == 1: odd += 1 for i in lst2: if i % 2 == 0: even += 1 if even >= odd: return 'YES' return 'NO'
exchange
def exchange_from_repetition(lst1: List[int], lst2: List[int], n: int) -> List[str]: """In this problem, you will implement a function that takes two lists of numbers (lst1 and lst2) and a number (n), and determines whether it is possible to perform an exchange of elements between "lst1" and "k-times repeated lst2" (k <= n) to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between "lst1" and "k-times repeated lst2". Return the array of length n whose k-th element is "YES" if it is possible to exchange elements between the "lst1" and "k-times repeated lst2" to make all the elements of lst1 to be even. Otherwise, k-th element is "NO". For example: >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 1) ['NO'] >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 3) ['NO', 'YES', 'YES'] It is assumed that the input lists will be non-empty. """
def exchange_from_repetition(lst1: List[int], lst2: List[int], n: int) -> List[str]: """In this problem, you will implement a function that takes two lists of numbers (lst1 and lst2) and a number (n), and determines whether it is possible to perform an exchange of elements between "lst1" and "k-times repeated lst2" (k <= n) to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between "lst1" and "k-times repeated lst2". Return the array of length n whose k-th element is "YES" if it is possible to exchange elements between the "lst1" and "k-times repeated lst2" to make all the elements of lst1 to be even. Otherwise, k-th element is "NO". For example: >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 1) ['NO'] >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 3) ['NO', 'YES', 'YES'] It is assumed that the input lists will be non-empty. """ return [exchange(lst1, lst2 * k) for k in range(1, n + 1)]
exchange_from_repetition
def check(candidate): assert candidate([1, 2, 3, 4], [1, 2, 3, 4], 1) == ['YES'] assert candidate([1, 2, 3, 4], [1, 2, 3, 4], 2) == ['YES', 'YES'] assert candidate([1, 2, 3, 4], [1, 2, 3, 4], 3) == ['YES', 'YES', 'YES'] assert candidate([1, 2, 3, 4], [1, 5, 3, 4], 1) == ['NO'] assert candidate([1, 2, 3, 4], [1, 5, 3, 4], 2) == ['NO', 'YES'] assert candidate([1, 2, 3, 4], [1, 5, 3, 4], 3) == ['NO', 'YES', 'YES'] def test_check(): check(exchange_from_repetition) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: >>> exchange([1, 2, 3, 4], [1, 2, 3, 4]) 'YES' >>> exchange([1, 2, 3, 4], [1, 5, 3, 4]) 'NO' It is assumed that the input lists will be non-empty.
In this problem, you will implement a function that takes two lists of numbers (lst1 and lst2) and a number (n), and determines whether it is possible to perform an exchange of elements between "lst1" and "k-times repeated lst2" (k <= n) to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between "lst1" and "k-times repeated lst2". Return the array of length n whose k-th element is "YES" if it is possible to exchange elements between the "lst1" and "k-times repeated lst2" to make all the elements of lst1 to be even. Otherwise, k-th element is "NO". For example: >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 1) ['NO'] >>> exchange_from_repetition([1, 2, 3, 4], [1, 5, 3, 4], 3) ['NO', 'YES', 'YES'] It is assumed that the input lists will be non-empty.
odd = 0 even = 0 for i in lst1: if i % 2 == 1: odd += 1 for i in lst2: if i % 2 == 0: even += 1 if even >= odd: return 'YES' return 'NO'
return [exchange(lst1, lst2 * k) for k in range(1, n + 1)]
exchange(lst1: List[int], lst2: List[int]) -> str
exchange_from_repetition(lst1: List[int], lst2: List[int], n: int) -> List[str]
from typing import Dict, Tuple
def histogram(test: str) -> Dict[str, int]: """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: >>> histogram('a b c') { 'a': 1, 'b': 1, 'c': 1 } >>> histogram('a b b a') { 'a': 2, 'b': 2 } >>> histogram('a b c a b') { 'a': 2, 'b': 2 } >>> histogram('b b b b a') { 'b': 4 } >>> histogram('') { } """
def histogram(test: str) -> Dict[str, int]: """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: >>> histogram('a b c') { 'a': 1, 'b': 1, 'c': 1 } >>> histogram('a b b a') { 'a': 2, 'b': 2 } >>> histogram('a b c a b') { 'a': 2, 'b': 2 } >>> histogram('b b b b a') { 'b': 4 } >>> histogram('') { } """ dict1 = {} list1 = test.split(' ') t = 0 for i in list1: if list1.count(i) > t and i != '': t = list1.count(i) if t > 0: for i in list1: if list1.count(i) == t: dict1[i] = t return dict1
histogram
def most_frequent_letter(test: str) -> Tuple[str, int]: """Given a string representing a space separated lowercase letters, return a tuple of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return the largest one in an alphabetical order. Example: >>> most_frequent_letter('a b c') ('c', 1) >>> most_frequent_letter('a b b a') ('b', 2) >>> most_frequent_letter('a b c a b') ('b', 2) """
def most_frequent_letter(test: str) -> Tuple[str, int]: """Given a string representing a space separated lowercase letters, return a tuple of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return the largest one in an alphabetical order. Example: >>> most_frequent_letter('a b c') ('c', 1) >>> most_frequent_letter('a b b a') ('b', 2) >>> most_frequent_letter('a b c a b') ('b', 2) """ return max([e for e in histogram(test).items()], key=lambda x: x[0])
most_frequent_letter
def check(candidate): assert candidate('a b c') == ('c', 1) assert candidate('a b b a') == ('b', 2) assert candidate('a b c a b') == ('b', 2) assert candidate('a b a a b') == ('a', 3) assert candidate('b b b b a') == ('b', 4) assert candidate('a b c d e e e f f f') == ('f', 3) def test_check(): check(most_frequent_letter) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: >>> histogram('a b c') { 'a': 1, 'b': 1, 'c': 1 } >>> histogram('a b b a') { 'a': 2, 'b': 2 } >>> histogram('a b c a b') { 'a': 2, 'b': 2 } >>> histogram('b b b b a') { 'b': 4 } >>> histogram('') { }
Given a string representing a space separated lowercase letters, return a tuple of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return the largest one in an alphabetical order. Example: >>> most_frequent_letter('a b c') ('c', 1) >>> most_frequent_letter('a b b a') ('b', 2) >>> most_frequent_letter('a b c a b') ('b', 2)
dict1 = {} list1 = test.split(' ') t = 0 for i in list1: if list1.count(i) > t and i != '': t = list1.count(i) if t > 0: for i in list1: if list1.count(i) == t: dict1[i] = t return dict1
return max([e for e in histogram(test).items()], key=lambda x: x[0])
histogram(test: str) -> Dict[str, int]
most_frequent_letter(test: str) -> Tuple[str, int]
from typing import List, Tuple
def reverse_delete(s: str, c: str) -> Tuple[str, bool]: """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example >>> reverse_delete('abcde', 'ae') ('bcd', False) >>> reverse_delete('abcdef', 'b') ('acdef', False) >>> reverse_delete('abcdedcba', 'ab') ('cdedc', True) """
def reverse_delete(s: str, c: str) -> Tuple[str, bool]: """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example >>> reverse_delete('abcde', 'ae') ('bcd', False) >>> reverse_delete('abcdef', 'b') ('acdef', False) >>> reverse_delete('abcdedcba', 'ab') ('cdedc', True) """ s = ''.join([char for char in s if char not in c]) return (s, s[::-1] == s)
reverse_delete
def reverse_delete_list(s: str, c: str) -> List[Tuple[str, bool]]: """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to each of the characters in c then check if each result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a list of the tuples containing result string and True/False for the check. Example >>> reverse_delete_list('abcde', 'ae') [('bcde', False), ('abcd', 'False')] >>> reverse_delete_list('abcdef', 'b') [('acdef', False)] >>> reverse_delete_list('abcdedcba', 'ab') [('bcdedcb', True), ('acdedca', True)] """
def reverse_delete_list(s: str, c: str) -> List[Tuple[str, bool]]: """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to each of the characters in c then check if each result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a list of the tuples containing result string and True/False for the check. Example >>> reverse_delete_list('abcde', 'ae') [('bcde', False), ('abcd', 'False')] >>> reverse_delete_list('abcdef', 'b') [('acdef', False)] >>> reverse_delete_list('abcdedcba', 'ab') [('bcdedcb', True), ('acdedca', True)] """ return [reverse_delete(s, e) for e in c]
reverse_delete_list
def check(candidate): assert candidate('abcde', 'ae') == [('bcde', False), ('abcd', False)] assert candidate('abcdef', 'b') == [('acdef', False)] assert candidate('aabaa', 'b') == [('aaaa', True)] assert candidate('abcdedcba', 'ab') == [('bcdedcb', True), ('acdedca', True)] assert candidate('abcdedcba', 'abc') == [('bcdedcb', True), ('acdedca', True), ('abdedba', True)] assert candidate('eabcdefdcba', 'ef') == [('abcdfdcba', True), ('eabcdedcba', False)] def test_check(): check(reverse_delete_list) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example >>> reverse_delete('abcde', 'ae') ('bcd', False) >>> reverse_delete('abcdef', 'b') ('acdef', False) >>> reverse_delete('abcdedcba', 'ab') ('cdedc', True)
Task We are given two strings s and c, you have to deleted all the characters in s that are equal to each of the characters in c then check if each result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a list of the tuples containing result string and True/False for the check. Example >>> reverse_delete_list('abcde', 'ae') [('bcde', False), ('abcd', 'False')] >>> reverse_delete_list('abcdef', 'b') [('acdef', False)] >>> reverse_delete_list('abcdedcba', 'ab') [('bcdedcb', True), ('acdedca', True)]
s = ''.join([char for char in s if char not in c]) return (s, s[::-1] == s)
return [reverse_delete(s, e) for e in c]
reverse_delete(s: str, c: str) -> Tuple[str, bool]
reverse_delete_list(s: str, c: str) -> List[Tuple[str, bool]]
from typing import List
def odd_count(lst: List[str]) -> List[str]: """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> odd_count(['3', '11111111']) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.'] """
def odd_count(lst: List[str]) -> List[str]: """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> odd_count(['3', '11111111']) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.'] """ res = [] for arr in lst: n = sum((int(d) % 2 == 1 for d in arr)) res.append('the number of odd elements ' + str(n) + 'n the str' + str(n) + 'ng ' + str(n) + ' of the ' + str(n) + 'nput.') return res
odd_count
def split_odd_count(lst: List[str], strsize: int) -> List[str]: """Given a list of strings, where each string consists of only digits, first split each string into shorter ones with the length strsize and return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> split_odd_count(['1234567'], 7) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> split_odd_count(['3', '11111111'], 4) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.'] """
def split_odd_count(lst: List[str], strsize: int) -> List[str]: """Given a list of strings, where each string consists of only digits, first split each string into shorter ones with the length strsize and return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> split_odd_count(['1234567'], 7) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> split_odd_count(['3', '11111111'], 4) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.'] """ split_lst = [s[i:i + strsize] for s in lst for i in range(0, len(s), strsize)] return odd_count(split_lst)
split_odd_count
def check(candidate): assert candidate(['1234567'], 7) == ['the number of odd elements 4n the str4ng 4 of the 4nput.'] assert candidate(['3', '11111111'], 4) == ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.'] assert candidate(['1', '2'], 2) == ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 0n the str0ng 0 of the 0nput.'] assert candidate(['987234826349'], 6) == ['the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.'] assert candidate(['987234826349'], 8) == ['the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.'] assert candidate(['987234826349'], 10) == ['the number of odd elements 4n the str4ng 4 of the 4nput.', 'the number of odd elements 1n the str1ng 1 of the 1nput.'] def test_check(): check(split_odd_count) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> odd_count(['3', '11111111']) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.']
Given a list of strings, where each string consists of only digits, first split each string into shorter ones with the length strsize and return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> split_odd_count(['1234567'], 7) ['the number of odd elements 4n the str4ng 4 of the 4nput.'] >>> split_odd_count(['3', '11111111'], 4) ['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.', 'the number of odd elements 4n the str4ng 4 of the 4nput.']
res = [] for arr in lst: n = sum((int(d) % 2 == 1 for d in arr)) res.append('the number of odd elements ' + str(n) + 'n the str' + str(n) + 'ng ' + str(n) + ' of the ' + str(n) + 'nput.') return res
split_lst = [s[i:i + strsize] for s in lst for i in range(0, len(s), strsize)] return odd_count(split_lst)
odd_count(lst: List[str]) -> List[str]
split_odd_count(lst: List[str], strsize: int) -> List[str]
from typing import List
def minSubArraySum(nums: List[int]) -> int: """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example >>> minSubArraySum([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySum([-1, -2, -3]) -6 """
def minSubArraySum(nums: List[int]) -> int: """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example >>> minSubArraySum([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySum([-1, -2, -3]) -6 """ max_sum = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max((-i for i in nums)) min_sum = -max_sum return min_sum
minSubArraySum
def minSubArraySumNonNegative(nums: List[int]) -> int: """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Consider all negative integers as 0. Example >>> minSubArraySumNonNegative([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySumNonNegative([-1, -2, -3]) 0 """
def minSubArraySumNonNegative(nums: List[int]) -> int: """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Consider all negative integers as 0. Example >>> minSubArraySumNonNegative([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySumNonNegative([-1, -2, -3]) 0 """ return minSubArraySum([max(e, 0) for e in nums])
minSubArraySumNonNegative
def check(candidate): assert candidate([2, 3, 4, 1, 2, 4]) == 1 assert candidate([-1, -2, -3]) == 0 assert candidate([1, 2, 3, 4, 1, 2, 3, 4]) == 1 assert candidate([1, 2, -1, -3, -4, -5, 6, 1]) == 0 assert candidate([0, 0, 0]) == 0 assert candidate([1, 0, -1]) == 0 def test_check(): check(minSubArraySumNonNegative) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example >>> minSubArraySum([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySum([-1, -2, -3]) -6
Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Consider all negative integers as 0. Example >>> minSubArraySumNonNegative([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySumNonNegative([-1, -2, -3]) 0
max_sum = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max((-i for i in nums)) min_sum = -max_sum return min_sum
return minSubArraySum([max(e, 0) for e in nums])
minSubArraySum(nums: List[int]) -> int
minSubArraySumNonNegative(nums: List[int]) -> int
import math from typing import List
def max_fill(grid: List[List[int]], capacity: int) -> int: """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: >>> max_fill([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) 6 Example 2: >>> max_fill([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) 5 Example 3: >>> max_fill([[0, 0, 0], [0, 0, 0]], 5) 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """
def max_fill(grid: List[List[int]], capacity: int) -> int: """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: >>> max_fill([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) 6 Example 2: >>> max_fill([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) 5 Example 3: >>> max_fill([[0, 0, 0], [0, 0, 0]], 5) 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """ return sum([math.ceil(sum(arr) / capacity) for arr in grid])
max_fill
def max_fill_buckets(grid: List[List[int]], capacities: List[int]) -> List[int]: """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has corresponding buckets that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets with different capacities to empty the wells. Output the list of the number of times you need to lower the buckets for each capacity. Example 1: >>> max_fill_buckets([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], [1, 2]) [6, 4] Example 2: >>> max_fill_buckets([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], [1, 2]) [9, 5] Example 3: >>> max_fill_buckets([[0, 0, 0], [0, 0, 0]], [5]) [0] Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """
def max_fill_buckets(grid: List[List[int]], capacities: List[int]) -> List[int]: """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has corresponding buckets that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets with different capacities to empty the wells. Output the list of the number of times you need to lower the buckets for each capacity. Example 1: >>> max_fill_buckets([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], [1, 2]) [6, 4] Example 2: >>> max_fill_buckets([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], [1, 2]) [9, 5] Example 3: >>> max_fill_buckets([[0, 0, 0], [0, 0, 0]], [5]) [0] Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """ return [max_fill(grid, capacity) for capacity in capacities]
max_fill_buckets
def check(candidate): assert candidate([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], [1, 2]) == [6, 4] assert candidate([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], [3, 4]) == [4, 3] assert candidate([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], [1, 2]) == [9, 5] assert candidate([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], [3, 4]) == [4, 3] assert candidate([[0, 0, 0], [0, 0, 0]], [5]) == [0] assert candidate([[0, 0, 0], [0, 0, 0]], [1, 2, 3, 4, 5]) == [0, 0, 0, 0, 0] def test_check(): check(max_fill_buckets) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: >>> max_fill([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) 6 Example 2: >>> max_fill([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) 5 Example 3: >>> max_fill([[0, 0, 0], [0, 0, 0]], 5) 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10
You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has corresponding buckets that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets with different capacities to empty the wells. Output the list of the number of times you need to lower the buckets for each capacity. Example 1: >>> max_fill_buckets([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], [1, 2]) [6, 4] Example 2: >>> max_fill_buckets([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], [1, 2]) [9, 5] Example 3: >>> max_fill_buckets([[0, 0, 0], [0, 0, 0]], [5]) [0] Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10
return sum([math.ceil(sum(arr) / capacity) for arr in grid])
return [max_fill(grid, capacity) for capacity in capacities]
max_fill(grid: List[List[int]], capacity: int) -> int
max_fill_buckets(grid: List[List[int]], capacities: List[int]) -> List[int]
from typing import List
def sort_array(arr: List[int]) -> List[int]: """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) [1, 2, 4, 3, 5] >>> sort_array([-2, -3, -4, -5, -6]) [-4, -2, -6, -5, -3] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 4, 3] """
def sort_array(arr: List[int]) -> List[int]: """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) [1, 2, 4, 3, 5] >>> sort_array([-2, -3, -4, -5, -6]) [-4, -2, -6, -5, -3] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 4, 3] """ return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
sort_array
def check_moving_sort_array(arr: List[int]) -> List[bool]: """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. Compare the original array and its sorted array, and then return the list of whether each element is moved or not from its original position. (True if it is moved, False otherwise.) It must be implemented like this: >>> check_moving_sort_array([1, 5, 2, 3, 4]) [False, True, True, False, True] >>> check_moving_sort_array([-2, -3, -4, -5, -6]) [True, True, True, False, True] >>> check_moving_sort_array([1, 0, 2, 3, 4]) [True, True, False, True, True] """
def check_moving_sort_array(arr: List[int]) -> List[bool]: """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. Compare the original array and its sorted array, and then return the list of whether each element is moved or not from its original position. (True if it is moved, False otherwise.) It must be implemented like this: >>> check_moving_sort_array([1, 5, 2, 3, 4]) [False, True, True, False, True] >>> check_moving_sort_array([-2, -3, -4, -5, -6]) [True, True, True, False, True] >>> check_moving_sort_array([1, 0, 2, 3, 4]) [True, True, False, True, True] """ sorted_arr = sort_array(arr) return [True if a != b else False for (a, b) in zip(arr, sorted_arr)]
check_moving_sort_array
def check(candidate): assert candidate([1, 5, 2, 3, 4]) == [False, True, True, False, True] assert candidate([-2, -3, -4, -5, -6]) == [True, True, True, False, True] assert candidate([1, 0, 2, 3, 4]) == [True, True, False, True, True] assert candidate([1, 2, 3, 4, 5, 6, 7, 8]) == [False, False, True, True, True, True, True, True] assert candidate([-4, -1, 9, 0, -9, 1, 4]) == [True, True, True, True, True, True, True] assert candidate([11, 14]) == [False, False] def test_check(): check(check_moving_sort_array) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) [1, 2, 4, 3, 5] >>> sort_array([-2, -3, -4, -5, -6]) [-4, -2, -6, -5, -3] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 4, 3]
In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. Compare the original array and its sorted array, and then return the list of whether each element is moved or not from its original position. (True if it is moved, False otherwise.) It must be implemented like this: >>> check_moving_sort_array([1, 5, 2, 3, 4]) [False, True, True, False, True] >>> check_moving_sort_array([-2, -3, -4, -5, -6]) [True, True, True, False, True] >>> check_moving_sort_array([1, 0, 2, 3, 4]) [True, True, False, True, True]
return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
sorted_arr = sort_array(arr) return [True if a != b else False for (a, b) in zip(arr, sorted_arr)]
sort_array(arr: List[int]) -> List[int]
check_moving_sort_array(arr: List[int]) -> List[bool]
from typing import List
def select_words(s: str, n: int) -> List[str]: """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_words('Mary had a little lamb', 4) ['little'] >>> select_words('Mary had a little lamb', 3) ['Mary', 'lamb'] >>> select_words('simple white space', 2) [] >>> select_words('Hello world', 4) ['world'] >>> select_words('Uncle sam', 3) ['Uncle'] """
def select_words(s: str, n: int) -> List[str]: """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_words('Mary had a little lamb', 4) ['little'] >>> select_words('Mary had a little lamb', 3) ['Mary', 'lamb'] >>> select_words('simple white space', 2) [] >>> select_words('Hello world', 4) ['world'] >>> select_words('Uncle sam', 3) ['Uncle'] """ result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ['a', 'e', 'i', 'o', 'u']: n_consonants += 1 if n_consonants == n: result.append(word) return result
select_words
def select_largest_word(s: str, n: int) -> str: """Given a string s and a natural number n, you have been tasked to implement a function that returns the word from string s that contain exactly n consonants. If there exist multiple words satisfying the condition, return the largest one in an alphabetical order. If the string s is empty then the function should return an empty string. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_largest_word('Mary had a little lamb', 4) 'little' >>> select_largest_word('Mary had a little lamb', 3) 'lamb' >>> select_largest_word('simple white space', 2) '' >>> select_largest_word('Hello world', 4) 'world' >>> select_largest_word('Uncle sam', 3) 'Uncle' """
def select_largest_word(s: str, n: int) -> str: """Given a string s and a natural number n, you have been tasked to implement a function that returns the word from string s that contain exactly n consonants. If there exist multiple words satisfying the condition, return the largest one in an alphabetical order. If the string s is empty then the function should return an empty string. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_largest_word('Mary had a little lamb', 4) 'little' >>> select_largest_word('Mary had a little lamb', 3) 'lamb' >>> select_largest_word('simple white space', 2) '' >>> select_largest_word('Hello world', 4) 'world' >>> select_largest_word('Uncle sam', 3) 'Uncle' """ return max(select_words(s, n) + [''])
select_largest_word
def check(candidate): assert candidate('Mary had a little lamb', 4) == 'little' assert candidate('Mary had a little lamb', 3) == 'lamb' assert candidate('simple white space', 2) == '' assert candidate('Hello world', 4) == 'world' assert candidate('Uncle sam', 3) == 'Uncle' assert candidate('baeiou aeiouz', 1) == 'baeiou' def test_check(): check(select_largest_word) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_words('Mary had a little lamb', 4) ['little'] >>> select_words('Mary had a little lamb', 3) ['Mary', 'lamb'] >>> select_words('simple white space', 2) [] >>> select_words('Hello world', 4) ['world'] >>> select_words('Uncle sam', 3) ['Uncle']
Given a string s and a natural number n, you have been tasked to implement a function that returns the word from string s that contain exactly n consonants. If there exist multiple words satisfying the condition, return the largest one in an alphabetical order. If the string s is empty then the function should return an empty string. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_largest_word('Mary had a little lamb', 4) 'little' >>> select_largest_word('Mary had a little lamb', 3) 'lamb' >>> select_largest_word('simple white space', 2) '' >>> select_largest_word('Hello world', 4) 'world' >>> select_largest_word('Uncle sam', 3) 'Uncle'
result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ['a', 'e', 'i', 'o', 'u']: n_consonants += 1 if n_consonants == n: result.append(word) return result
return max(select_words(s, n) + [''])
select_words(s: str, n: int) -> List[str]
select_largest_word(s: str, n: int) -> str
def get_closest_vowel(word: str) -> str: """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> get_closest_vowel('yogurt') 'u' >>> get_closest_vowel('FULL') 'U' >>> get_closest_vowel('quick') '' >>> get_closest_vowel('ab') '' """
def get_closest_vowel(word: str) -> str: """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> get_closest_vowel('yogurt') 'u' >>> get_closest_vowel('FULL') 'U' >>> get_closest_vowel('quick') '' >>> get_closest_vowel('ab') '' """ if len(word) < 3: return '' vowels = {'a', 'e', 'i', 'o', 'u', 'A', 'E', 'O', 'U', 'I'} for i in range(len(word) - 2, 0, -1): if word[i] in vowels: if word[i + 1] not in vowels and word[i - 1] not in vowels: return word[i] return ''
get_closest_vowel
def transform_closest_vowel(s: str) -> str: """You are given a string containing multiple words. Your task is to make a new string by changing each word to its closest vowel that stands between two consonants from the right side of the word (case sensitive). You need to concatenate all the closest vowels that are obtained from each word. Vowels in the beginning and ending doesn't count. Ignore the word if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> transform_closest_vowel('yogurt FULL') 'uU' >>> transform_closest_vowel('quick ab') '' """
def transform_closest_vowel(s: str) -> str: """You are given a string containing multiple words. Your task is to make a new string by changing each word to its closest vowel that stands between two consonants from the right side of the word (case sensitive). You need to concatenate all the closest vowels that are obtained from each word. Vowels in the beginning and ending doesn't count. Ignore the word if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> transform_closest_vowel('yogurt FULL') 'uU' >>> transform_closest_vowel('quick ab') '' """ return ''.join([get_closest_vowel(word) for word in s.split()])
transform_closest_vowel
def check(candidate): assert candidate('yogurt FULL') == 'uU' assert candidate('quick ab') == '' assert candidate('Alice loves Bob') == 'ieo' assert candidate('happy sunny day ever') == 'auae' assert candidate('aaa bbb ccc ddd') == '' assert candidate('fox and dog') == 'oo' def test_check(): check(transform_closest_vowel) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> get_closest_vowel('yogurt') 'u' >>> get_closest_vowel('FULL') 'U' >>> get_closest_vowel('quick') '' >>> get_closest_vowel('ab') ''
You are given a string containing multiple words. Your task is to make a new string by changing each word to its closest vowel that stands between two consonants from the right side of the word (case sensitive). You need to concatenate all the closest vowels that are obtained from each word. Vowels in the beginning and ending doesn't count. Ignore the word if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> transform_closest_vowel('yogurt FULL') 'uU' >>> transform_closest_vowel('quick ab') ''
if len(word) < 3: return '' vowels = {'a', 'e', 'i', 'o', 'u', 'A', 'E', 'O', 'U', 'I'} for i in range(len(word) - 2, 0, -1): if word[i] in vowels: if word[i + 1] not in vowels and word[i - 1] not in vowels: return word[i] return ''
return ''.join([get_closest_vowel(word) for word in s.split()])
get_closest_vowel(word: str) -> str
transform_closest_vowel(s: str) -> str
from typing import List
def match_parens(lst: List[str]) -> str: """ You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens(['()(', ')']) 'Yes' >>> match_parens([')', ')']) 'No' """
def match_parens(lst: List[str]) -> str: """ You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens(['()(', ')']) 'Yes' >>> match_parens([')', ')']) 'No' """ def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1 if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
match_parens
def match_parens_from_list(str1: str, lst2: List[str]) -> str: """ You are given a string (str1) and a list of strings (lst2), where every string consists of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate a string (selected from the list lst2) and the first string str1 in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens_from_list('()(' [')', '(((())(()())))']) 'Yes' >>> match_parens_from_list(')', [')']) 'No' """
def match_parens_from_list(str1: str, lst2: List[str]) -> str: """ You are given a string (str1) and a list of strings (lst2), where every string consists of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate a string (selected from the list lst2) and the first string str1 in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens_from_list('()(' [')', '(((())(()())))']) 'Yes' >>> match_parens_from_list(')', [')']) 'No' """ for str2 in lst2: if match_parens([str1, str2]) == 'Yes': return 'Yes' return 'No'
match_parens_from_list
def check(candidate): assert candidate('()(', [')', '(((())(()())))']) == 'Yes' assert candidate(')', [')']) == 'No' assert candidate('()((', ['))', '((()())']) == 'Yes' assert candidate('()((', ['(((()()))', ')']) == 'No' assert candidate('()((', ['(((()()))', ')', ')))', '))))']) == 'No' assert candidate('()((', ['(((()()))', ')', '))']) == 'Yes' def test_check(): check(match_parens_from_list) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens(['()(', ')']) 'Yes' >>> match_parens([')', ')']) 'No'
You are given a string (str1) and a list of strings (lst2), where every string consists of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate a string (selected from the list lst2) and the first string str1 in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens_from_list('()(' [')', '(((())(()())))']) 'Yes' >>> match_parens_from_list(')', [')']) 'No'
def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1 if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
for str2 in lst2: if match_parens([str1, str2]) == 'Yes': return 'Yes' return 'No'
match_parens(lst: List[str]) -> str
match_parens_from_list(str1: str, lst2: List[str]) -> str
from typing import List
def maximum(arr: List[int], k: int) -> List[int]: """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: >>> maximum([-3, -4, 5], 3) [-4, -3, 5] Example 2: >>> maximum([4, -4, 4], 2) [4, 4] Example 3: >>> maximum([-3, 2, 1, 2, -1, -2, 1], 1) [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """
def maximum(arr: List[int], k: int) -> List[int]: """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: >>> maximum([-3, -4, 5], 3) [-4, -3, 5] Example 2: >>> maximum([4, -4, 4], 2) [4, 4] Example 3: >>> maximum([-3, 2, 1, 2, -1, -2, 1], 1) [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """ if k == 0: return [] arr.sort() ans = arr[-k:] return ans
maximum
def minimum_of_maximum_subarrays(arrays: List[List[int]], k: int) -> int: """ Given a list of arrays and a positive integer k, return the minimal integer among the arrays. Example 1: >>> minimum_of_maximum_subarrays([[-3, -4, 5], [4, -4, 4], [-3, 2, 1, 2, -1, -2, 1]], 2) -3 Example 2: >>> minimum_of_maximum_subarrays([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 1) 3 Note: 1. Each array in the list will have length in the range of [1, 1000]. 2. The elements in each array will be in the range of [-1000, 1000]. 3. 1 <= k <= min([len(arr) for arr in arrays]) """
def minimum_of_maximum_subarrays(arrays: List[List[int]], k: int) -> int: """ Given a list of arrays and a positive integer k, return the minimal integer among the arrays. Example 1: >>> minimum_of_maximum_subarrays([[-3, -4, 5], [4, -4, 4], [-3, 2, 1, 2, -1, -2, 1]], 2) -3 Example 2: >>> minimum_of_maximum_subarrays([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 1) 3 Note: 1. Each array in the list will have length in the range of [1, 1000]. 2. The elements in each array will be in the range of [-1000, 1000]. 3. 1 <= k <= min([len(arr) for arr in arrays]) """ mins = [maximum(arr, k)[0] for arr in arrays] return min(mins)
minimum_of_maximum_subarrays
def check(candidate): assert candidate([[9, 3, 7], [5, 6]], 2) == 5 assert candidate([[37, 51, 22], [99, 13, 45], [43, 36, 28], [28, 39, 22]], 1) == 39 assert candidate([[50, 40, 20, 10], [22, 62, 78, 90]], 4) == 10 def test_check(): check(minimum_of_maximum_subarrays) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: >>> maximum([-3, -4, 5], 3) [-4, -3, 5] Example 2: >>> maximum([4, -4, 4], 2) [4, 4] Example 3: >>> maximum([-3, 2, 1, 2, -1, -2, 1], 1) [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr)
Given a list of arrays and a positive integer k, return the minimal integer among the arrays. Example 1: >>> minimum_of_maximum_subarrays([[-3, -4, 5], [4, -4, 4], [-3, 2, 1, 2, -1, -2, 1]], 2) -3 Example 2: >>> minimum_of_maximum_subarrays([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 1) 3 Note: 1. Each array in the list will have length in the range of [1, 1000]. 2. The elements in each array will be in the range of [-1000, 1000]. 3. 1 <= k <= min([len(arr) for arr in arrays])
if k == 0: return [] arr.sort() ans = arr[-k:] return ans
mins = [maximum(arr, k)[0] for arr in arrays] return min(mins)
maximum(arr: List[int], k: int) -> List[int]
minimum_of_maximum_subarrays(arrays: List[List[int]], k: int) -> int
from typing import List
def solution(lst: List[int]) -> int: """Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples >>> solution([5, 8, 7, 1]) 12 >>> solution([3, 3, 3, 3, 3]) 9 >>> solution([30, 13, 24, 321]) 0 """
def solution(lst: List[int]) -> int: """Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples >>> solution([5, 8, 7, 1]) 12 >>> solution([3, 3, 3, 3, 3]) 9 >>> solution([30, 13, 24, 321]) 0 """ return sum([x for (idx, x) in enumerate(lst) if idx % 2 == 0 and x % 2 == 1])
solution
def alternate_sum(arrays: List[List[int]]) -> int: """Given a list of arrays, return the sum of all of the odd elements that are in even positions of all arrays in even positions minus the sum of all of the odd elements that are in odd positions. Examples >>> alternate_sum([[5, 8, 7, 1], [3, 3, 3, 3, 3]]) 3 >>> alternate_sum([[30, 13, 24, 321], [3, 3, 3, 3, 3]]) -9 """
def alternate_sum(arrays: List[List[int]]) -> int: """Given a list of arrays, return the sum of all of the odd elements that are in even positions of all arrays in even positions minus the sum of all of the odd elements that are in odd positions. Examples >>> alternate_sum([[5, 8, 7, 1], [3, 3, 3, 3, 3]]) 3 >>> alternate_sum([[30, 13, 24, 321], [3, 3, 3, 3, 3]]) -9 """ return sum([solution(x) for (idx, x) in enumerate(arrays) if idx % 2 == 0]) - sum([solution(x) for (idx, x) in enumerate(arrays) if idx % 2 == 1])
alternate_sum
def check(candidate): assert candidate([[1, 2, 3, 4], [5, 6, 7, 8, 9]]) == -17 assert candidate([[10, 11], [-4, -5, -6, -7], [1, 3, 5, 7, 9]]) == 15 assert candidate([[6, 4, 3, -1, -2], [8, 9, 10, 11]]) == 3 def test_check(): check(alternate_sum) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples >>> solution([5, 8, 7, 1]) 12 >>> solution([3, 3, 3, 3, 3]) 9 >>> solution([30, 13, 24, 321]) 0
Given a list of arrays, return the sum of all of the odd elements that are in even positions of all arrays in even positions minus the sum of all of the odd elements that are in odd positions. Examples >>> alternate_sum([[5, 8, 7, 1], [3, 3, 3, 3, 3]]) 3 >>> alternate_sum([[30, 13, 24, 321], [3, 3, 3, 3, 3]]) -9
return sum([x for (idx, x) in enumerate(lst) if idx % 2 == 0 and x % 2 == 1])
return sum([solution(x) for (idx, x) in enumerate(arrays) if idx % 2 == 0]) - sum([solution(x) for (idx, x) in enumerate(arrays) if idx % 2 == 1])
solution(lst: List[int]) -> int
alternate_sum(arrays: List[List[int]]) -> int
from typing import List
def add_elements(arr: List[int], k: int) -> int: """ Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: >>> add_elements([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) 24 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """
def add_elements(arr: List[int], k: int) -> int: """ Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: >>> add_elements([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) 24 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """ return sum((elem for elem in arr[:k] if len(str(elem)) <= 2))
add_elements
def max_num_passengers(arr: List[int]) -> int: """ Given an array of integers arr where each element represents the weight of passengers, return the maximum number of passengers that can be carried on a single elevator given that the sum of all the weights must be less than 100. Examples: >>> max_num_passengers([111, 21, 3, 4000, 5, 6, 7, 8, 9]) 7 >>> max_num_passengers([215, 327, 102]) 0 Constraints: 1. 1 <= len(arr) <= 100 2. arr[i] > 0 """
def max_num_passengers(arr: List[int]) -> int: """ Given an array of integers arr where each element represents the weight of passengers, return the maximum number of passengers that can be carried on a single elevator given that the sum of all the weights must be less than 100. Examples: >>> max_num_passengers([111, 21, 3, 4000, 5, 6, 7, 8, 9]) 7 >>> max_num_passengers([215, 327, 102]) 0 Constraints: 1. 1 <= len(arr) <= 100 2. arr[i] > 0 """ arr.sort() for k in range(1, len(arr) + 1): if add_elements(arr, k) >= 100: return k - 1 return len(arr)
max_num_passengers
def check(candidate): assert candidate([70, 13, 25, 10, 10, 45]) == 4 assert candidate([60, 55, 42, 37, 97]) == 2 assert candidate([1, 2, 3, 4, 5, 6, 7, 8, 9]) == 9 def test_check(): check(max_num_passengers) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: >>> add_elements([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) 24 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr)
Given an array of integers arr where each element represents the weight of passengers, return the maximum number of passengers that can be carried on a single elevator given that the sum of all the weights must be less than 100. Examples: >>> max_num_passengers([111, 21, 3, 4000, 5, 6, 7, 8, 9]) 7 >>> max_num_passengers([215, 327, 102]) 0 Constraints: 1. 1 <= len(arr) <= 100 2. arr[i] > 0
return sum((elem for elem in arr[:k] if len(str(elem)) <= 2))
arr.sort() for k in range(1, len(arr) + 1): if add_elements(arr, k) >= 100: return k - 1 return len(arr)
add_elements(arr: List[int], k: int) -> int
max_num_passengers(arr: List[int]) -> int
from typing import List
def get_odd_collatz(n: int) -> List[int]: """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. >>> get_odd_collatz(5) [1, 5] """
def get_odd_collatz(n: int) -> List[int]: """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. >>> get_odd_collatz(5) [1, 5] """ if n % 2 == 0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n / 2 else: n = n * 3 + 1 if n % 2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
get_odd_collatz
def sum_odd_collatz(n: int) -> int: """ Given a positive integer n, return the sum of odd numbers in collatz sequence. Examples: >>> sum_odd_collatz(5) 6 >>> sum_odd_collatz(10) 6 """
def sum_odd_collatz(n: int) -> int: """ Given a positive integer n, return the sum of odd numbers in collatz sequence. Examples: >>> sum_odd_collatz(5) 6 >>> sum_odd_collatz(10) 6 """ return sum(get_odd_collatz(n))
sum_odd_collatz
def check(candidate): assert candidate(11) == 47 assert candidate(7) == 54 assert candidate(100) == 19 def test_check(): check(sum_odd_collatz) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. >>> get_odd_collatz(5) [1, 5]
Given a positive integer n, return the sum of odd numbers in collatz sequence. Examples: >>> sum_odd_collatz(5) 6 >>> sum_odd_collatz(10) 6
if n % 2 == 0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n / 2 else: n = n * 3 + 1 if n % 2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
return sum(get_odd_collatz(n))
get_odd_collatz(n: int) -> List[int]
sum_odd_collatz(n: int) -> int
from typing import List
def valid_date(date: str) -> bool: """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy >>> valid_date('03-11-2000') True >>> valid_date('15-01-2012') False >>> valid_date('04-0-2040') False >>> valid_date('06-04-2020') True >>> valid_date('06/04/2020') False """
def valid_date(date: str) -> bool: """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy >>> valid_date('03-11-2000') True >>> valid_date('15-01-2012') False >>> valid_date('04-0-2040') False >>> valid_date('06-04-2020') True >>> valid_date('06/04/2020') False """ try: date = date.strip() (month, day, year) = date.split('-') (month, day, year) = (int(month), int(day), int(year)) if month < 1 or month > 12: return False if month in [1, 3, 5, 7, 8, 10, 12] and day < 1 or day > 31: return False if month in [4, 6, 9, 11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
valid_date
def num_valid_birthdays(dates: List[str]) -> int: """Given a list of birthdays with valid dates, return the number of people who can be given some birthday gifts. >>> num_valid_birthdays(['03-11-2000', '15-01-2012', '04-0-2040', '06-04-2020']) 2 """
def num_valid_birthdays(dates: List[str]) -> int: """Given a list of birthdays with valid dates, return the number of people who can be given some birthday gifts. >>> num_valid_birthdays(['03-11-2000', '15-01-2012', '04-0-2040', '06-04-2020']) 2 """ return sum([valid_date(date) for date in dates])
num_valid_birthdays
def check(candidate): assert candidate(['06/04/2020', '12-11-1987', '04-00-1999', '08-15-1992']) == 3 assert candidate(['00-01-1951', '19-02-1994', '10-24-1992']) == 1 assert candidate(['12-05-1976', '01-01-2010', '01/01/2010']) == 2 def test_check(): check(num_valid_birthdays) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy >>> valid_date('03-11-2000') True >>> valid_date('15-01-2012') False >>> valid_date('04-0-2040') False >>> valid_date('06-04-2020') True >>> valid_date('06/04/2020') False
Given a list of birthdays with valid dates, return the number of people who can be given some birthday gifts. >>> num_valid_birthdays(['03-11-2000', '15-01-2012', '04-0-2040', '06-04-2020']) 2
try: date = date.strip() (month, day, year) = date.split('-') (month, day, year) = (int(month), int(day), int(year)) if month < 1 or month > 12: return False if month in [1, 3, 5, 7, 8, 10, 12] and day < 1 or day > 31: return False if month in [4, 6, 9, 11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
return sum([valid_date(date) for date in dates])
valid_date(date: str) -> bool
num_valid_birthdays(dates: List[str]) -> int
from typing import List, Union
def split_words(txt: str) -> Union[List[str], int]: """ Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples >>> split_words('Hello world!') ['Hello', 'world!'] >>> split_words('Hello,world!') ['Hello', 'world!'] >>> split_words('abcdef') 3 """
def split_words(txt: str) -> Union[List[str], int]: """ Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples >>> split_words('Hello world!') ['Hello', 'world!'] >>> split_words('Hello,world!') ['Hello', 'world!'] >>> split_words('abcdef') 3 """ if ' ' in txt: return txt.split() elif ',' in txt: return txt.replace(',', ' ').split() else: return len([i for i in txt if i.islower() and ord(i) % 2 == 0])
split_words
def num_words(txt: str) -> int: """ Given one sentence of words, return the number of words in it. >>> num_words('Hello world!') 2 >>> num_words('Hello,world!') 2 >>> num_words('abcdef') 1 """
def num_words(txt: str) -> int: """ Given one sentence of words, return the number of words in it. >>> num_words('Hello world!') 2 >>> num_words('Hello,world!') 2 >>> num_words('abcdef') 1 """ result = split_words(txt) if isinstance(result, list): return len(result) else: return 1
num_words
def check(candidate): assert candidate('The fox jumped over the fence.') == 6 assert candidate('The,fox,jumped,over,the,fence.') == 6 assert candidate('I, as a human, love to sleep.') == 7 def test_check(): check(num_words) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples >>> split_words('Hello world!') ['Hello', 'world!'] >>> split_words('Hello,world!') ['Hello', 'world!'] >>> split_words('abcdef') 3
Given one sentence of words, return the number of words in it. >>> num_words('Hello world!') 2 >>> num_words('Hello,world!') 2 >>> num_words('abcdef') 1
if ' ' in txt: return txt.split() elif ',' in txt: return txt.replace(',', ' ').split() else: return len([i for i in txt if i.islower() and ord(i) % 2 == 0])
result = split_words(txt) if isinstance(result, list): return len(result) else: return 1
split_words(txt: str) -> Union[List[str], int]
num_words(txt: str) -> int
from typing import List
def is_sorted(lst: List[int]) -> bool: """ Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples >>> is_sorted([5]) True >>> is_sorted([1, 2, 3, 4, 5]) True >>> is_sorted([1, 3, 2, 4, 5]) False >>> is_sorted([1, 2, 3, 4, 5, 6]) True >>> is_sorted([1, 2, 3, 4, 5, 6, 7]) True >>> is_sorted([1, 3, 2, 4, 5, 6, 7]) False >>> is_sorted([1, 2, 2, 3, 3, 4]) True >>> is_sorted([1, 2, 2, 2, 3, 4]) False """
def is_sorted(lst: List[int]) -> bool: """ Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples >>> is_sorted([5]) True >>> is_sorted([1, 2, 3, 4, 5]) True >>> is_sorted([1, 3, 2, 4, 5]) False >>> is_sorted([1, 2, 3, 4, 5, 6]) True >>> is_sorted([1, 2, 3, 4, 5, 6, 7]) True >>> is_sorted([1, 3, 2, 4, 5, 6, 7]) False >>> is_sorted([1, 2, 2, 3, 3, 4]) True >>> is_sorted([1, 2, 2, 2, 3, 4]) False """ count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i] += 1 if any((count_digit[i] > 2 for i in lst)): return False if all((lst[i - 1] <= lst[i] for i in range(1, len(lst)))): return True else: return False
is_sorted
def all_sorted(lst: List[List[int]]) -> bool: """ Given a non-empty list of lists of integers, return a boolean values indicating whether each sublist is sorted in ascending order without more than one duplicate of the same number. Examples >>> all_sorted([[5], [1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [1, 2, 3, 4, 5, 6], [1, 2, 2, 2, 3, 4]]) False >>> all_sorted([1, 2, 3, 4, 5, 6, 7], [1, 2, 2, 3, 3, 4], [3, 5, 7, 8]) True """
def all_sorted(lst: List[List[int]]) -> bool: """ Given a non-empty list of lists of integers, return a boolean values indicating whether each sublist is sorted in ascending order without more than one duplicate of the same number. Examples >>> all_sorted([[5], [1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [1, 2, 3, 4, 5, 6], [1, 2, 2, 2, 3, 4]]) False >>> all_sorted([1, 2, 3, 4, 5, 6, 7], [1, 2, 2, 3, 3, 4], [3, 5, 7, 8]) True """ return all([is_sorted(sublist) for sublist in lst])
all_sorted
def check(candidate): assert candidate([1, 1, 1, 2], [2, 3, 5], [4, 4, 5]) is False assert candidate([1, 2, 3, 4, 5], [5, 7, 10, 13]) is True assert candidate([3, 3, 4], [1, 2, 3], [7, 6, 7]) is False def test_check(): check(all_sorted) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples >>> is_sorted([5]) True >>> is_sorted([1, 2, 3, 4, 5]) True >>> is_sorted([1, 3, 2, 4, 5]) False >>> is_sorted([1, 2, 3, 4, 5, 6]) True >>> is_sorted([1, 2, 3, 4, 5, 6, 7]) True >>> is_sorted([1, 3, 2, 4, 5, 6, 7]) False >>> is_sorted([1, 2, 2, 3, 3, 4]) True >>> is_sorted([1, 2, 2, 2, 3, 4]) False
Given a non-empty list of lists of integers, return a boolean values indicating whether each sublist is sorted in ascending order without more than one duplicate of the same number. Examples >>> all_sorted([[5], [1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [1, 2, 3, 4, 5, 6], [1, 2, 2, 2, 3, 4]]) False >>> all_sorted([1, 2, 3, 4, 5, 6, 7], [1, 2, 2, 3, 3, 4], [3, 5, 7, 8]) True
count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i] += 1 if any((count_digit[i] > 2 for i in lst)): return False if all((lst[i - 1] <= lst[i] for i in range(1, len(lst)))): return True else: return False
return all([is_sorted(sublist) for sublist in lst])
is_sorted(lst: List[int]) -> bool
all_sorted(lst: List[List[int]]) -> bool
from itertools import combinations from typing import List, Tuple
def intersection(interval1: Tuple[int, int], interval2: Tuple[int, int]) -> str: """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: >>> intersection((1, 2), (2, 3)) 'NO' >>> intersection((-1, 1), (0, 4)) 'NO' >>> intersection((-3, -1), (-5, 5)) 'YES' """
def intersection(interval1: Tuple[int, int], interval2: Tuple[int, int]) -> str: """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: >>> intersection((1, 2), (2, 3)) 'NO' >>> intersection((-1, 1), (0, 4)) 'NO' >>> intersection((-3, -1), (-5, 5)) 'YES' """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num % i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return 'YES' return 'NO'
intersection
def all_prime_intersection(intervals: List[Tuple[int, int]]) -> bool: """Check if all intersections of given intervals are prime numbers. [inpt/output] samples: >>> all_prime_intersection([(1, 2), (2, 3), (3, 4)]) False >>> all_prime_intersection([(-3, 4), (-5, 5), (1, 4)]) True """
def all_prime_intersection(intervals: List[Tuple[int, int]]) -> bool: """Check if all intersections of given intervals are prime numbers. [inpt/output] samples: >>> all_prime_intersection([(1, 2), (2, 3), (3, 4)]) False >>> all_prime_intersection([(-3, 4), (-5, 5), (1, 4)]) True """ comb = combinations(intervals, 2) for (interval1, interval2) in comb: if intersection(interval1, interval2) == 'NO': return False return True
all_prime_intersection
def check(candidate): assert candidate([(-3, -1), (-5, 5), (3, 4)]) is False assert candidate([(-1, 7), (-5, 4), (1, 4)]) is True assert candidate([(1, 8), (3, 8), (-2, 6)]) is True def test_check(): check(all_prime_intersection) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: >>> intersection((1, 2), (2, 3)) 'NO' >>> intersection((-1, 1), (0, 4)) 'NO' >>> intersection((-3, -1), (-5, 5)) 'YES'
Check if all intersections of given intervals are prime numbers. [inpt/output] samples: >>> all_prime_intersection([(1, 2), (2, 3), (3, 4)]) False >>> all_prime_intersection([(-3, 4), (-5, 5), (1, 4)]) True
def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num % i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return 'YES' return 'NO'
comb = combinations(intervals, 2) for (interval1, interval2) in comb: if intersection(interval1, interval2) == 'NO': return False return True
intersection(interval1: Tuple[int, int], interval2: Tuple[int, int]) -> str
all_prime_intersection(intervals: List[Tuple[int, int]]) -> bool
from typing import List, Optional
def prod_signs(arr: List[int]) -> Optional[int]: """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) 9 >>> prod_signs([0, 1]) 0 >>> prod_signs([]) None """
def prod_signs(arr: List[int]) -> Optional[int]: """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) 9 >>> prod_signs([0, 1]) 0 >>> prod_signs([]) None """ if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
prod_signs
def prod_signs_within_threshold(arr: List[int], threshold: int) -> Optional[int]: """ You are given an array arr of integers and you need to return sum of magnitudes of integers within the threshold value, multiplied by product of all signs of each number in the array. Note: return None for empty arr. Example: >>> prod_signs_within_threshold([1, 2, 2, -4], 3) 5 >>> prod_signs_within_threshold([0, 1], 1) 0 >>> prod_signs_within_threshold([], 1) None """
def prod_signs_within_threshold(arr: List[int], threshold: int) -> Optional[int]: """ You are given an array arr of integers and you need to return sum of magnitudes of integers within the threshold value, multiplied by product of all signs of each number in the array. Note: return None for empty arr. Example: >>> prod_signs_within_threshold([1, 2, 2, -4], 3) 5 >>> prod_signs_within_threshold([0, 1], 1) 0 >>> prod_signs_within_threshold([], 1) None """ return prod_signs(list(filter(lambda x: abs(x) <= threshold, arr)))
prod_signs_within_threshold
def check(candidate): assert candidate([-1, -3, -5, -7, -9], 5) == 4 assert candidate([-10, -20, 30, -40, 50, -60], 45) == -100 assert candidate([-3, -2, -1, 0, 1, 2, 3], 2) == 0 def test_check(): check(prod_signs_within_threshold) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) 9 >>> prod_signs([0, 1]) 0 >>> prod_signs([]) None
You are given an array arr of integers and you need to return sum of magnitudes of integers within the threshold value, multiplied by product of all signs of each number in the array. Note: return None for empty arr. Example: >>> prod_signs_within_threshold([1, 2, 2, -4], 3) 5 >>> prod_signs_within_threshold([0, 1], 1) 0 >>> prod_signs_within_threshold([], 1) None
if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
return prod_signs(list(filter(lambda x: abs(x) <= threshold, arr)))
prod_signs(arr: List[int]) -> Optional[int]
prod_signs_within_threshold(arr: List[int], threshold: int) -> Optional[int]
def tri(n: int) -> list[int]: """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: >>> tri(3) [1, 3, 2, 8] """
def tri(n: int) -> list[int]: """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: >>> tri(3) [1, 3, 2, 8] """ if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
tri
def beautiful_tri(start: int, end: int) -> list[int]: """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the start-th number and end-th number of the Tribonacci sequence that the number is a multiple of 3. Examples: >>> tri(5, 10) [3] """
def beautiful_tri(start: int, end: int) -> list[int]: """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the start-th number and end-th number of the Tribonacci sequence that the number is a multiple of 3. Examples: >>> tri(5, 10) [3] """ return [int(i) for i in tri(end)[start:] if i % 3 == 0]
beautiful_tri
def check(candidate): assert candidate(5, 10) == [15, 24, 6] assert candidate(21, 29) == [12, 168, 195, 15, 255] assert candidate(33, 49) == [18, 360, 399, 21, 483, 528, 24, 624, 675] def test_check(): check(beautiful_tri) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: >>> tri(3) [1, 3, 2, 8]
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the start-th number and end-th number of the Tribonacci sequence that the number is a multiple of 3. Examples: >>> tri(5, 10) [3]
if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
return [int(i) for i in tri(end)[start:] if i % 3 == 0]
tri(n: int) -> list[int]
beautiful_tri(start: int, end: int) -> list[int]
from typing import List
def digits(n: int) -> int: """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: >>> digits(1) 1 >>> digits(4) 0 >>> digits(235) 15 """
def digits(n: int) -> int: """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: >>> digits(1) 1 >>> digits(4) 0 >>> digits(235) 15 """ product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: product = product * int_digit odd_count += 1 if odd_count == 0: return 0 else: return product
digits
def unique_odd_digits(lst: List[int]) -> int: """Given a list of positive integers, return the product of unique odd digits. For example: >>> unique_odd_digits([1, 4, 235]) 15 >>> unique_odd_digits([123, 456, 789]) 945 >>> unique_odd_digits([2, 4, 6, 8, 99]) 9 """
def unique_odd_digits(lst: List[int]) -> int: """Given a list of positive integers, return the product of unique odd digits. For example: >>> unique_odd_digits([1, 4, 235]) 15 >>> unique_odd_digits([123, 456, 789]) 945 >>> unique_odd_digits([2, 4, 6, 8, 99]) 9 """ concat = '' for num in lst: concat += str(num) unique = set(concat) return digits(int(''.join(unique)))
unique_odd_digits
def check(candidate): assert candidate([0, 1, 2, 3, 4, 5]) == 15 assert candidate([22, 44, 66, 88]) == 0 assert candidate([1325, 540, 938]) == 135 def test_check(): check(unique_odd_digits) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: >>> digits(1) 1 >>> digits(4) 0 >>> digits(235) 15
Given a list of positive integers, return the product of unique odd digits. For example: >>> unique_odd_digits([1, 4, 235]) 15 >>> unique_odd_digits([123, 456, 789]) 945 >>> unique_odd_digits([2, 4, 6, 8, 99]) 9
product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: product = product * int_digit odd_count += 1 if odd_count == 0: return 0 else: return product
concat = '' for num in lst: concat += str(num) unique = set(concat) return digits(int(''.join(unique)))
digits(n: int) -> int
unique_odd_digits(lst: List[int]) -> int
from typing import List
def sum_squares(lst: List[float]) -> int: """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: >>> lst([1.0, 2.0, 3.0]) 14 >>> lst([1.0, 4.0, 9.0]) 98 >>> lst([1.0, 3.0, 5.0, 7.0]) 84 >>> lst([1.4, 4.2, 0.0]) 29 >>> lst([-2.4, 1.0, 1.0]) 6 """
def sum_squares(lst: List[float]) -> int: """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: >>> lst([1.0, 2.0, 3.0]) 14 >>> lst([1.0, 4.0, 9.0]) 98 >>> lst([1.0, 3.0, 5.0, 7.0]) 84 >>> lst([1.4, 4.2, 0.0]) 29 >>> lst([-2.4, 1.0, 1.0]) 6 """ import math squared = 0 for i in lst: squared += math.ceil(i) ** 2 return squared
sum_squares
def diff_ceil_floor_sum_squares(lst: List[float]) -> int: """You are given a list of numbers. You need to return the absolute difference between the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first, and the sum of squared numbers in the given list, round each element in the list to the lower int(Floor) first. Examples: >>> lst([1.0, 2.0, 3.0]) 0 >>> lst([1.4, 4.2, 0.0]) 12 >>> lst([-2.4, 1.0, 1.0]) 5 """
def diff_ceil_floor_sum_squares(lst: List[float]) -> int: """You are given a list of numbers. You need to return the absolute difference between the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first, and the sum of squared numbers in the given list, round each element in the list to the lower int(Floor) first. Examples: >>> lst([1.0, 2.0, 3.0]) 0 >>> lst([1.4, 4.2, 0.0]) 12 >>> lst([-2.4, 1.0, 1.0]) 5 """ return abs(sum_squares(lst) - sum_squares([-i for i in lst]))
diff_ceil_floor_sum_squares
def check(candidate): assert candidate([-3.1, 2.5, 7.9]) == 13 assert candidate([0.5, -0.5, 3.0, -2.0]) == 0 assert candidate([-3.2, -2.8, -1.6, 0.7, 1.5, 2.8]) == 6 def test_check(): check(diff_ceil_floor_sum_squares) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: >>> lst([1.0, 2.0, 3.0]) 14 >>> lst([1.0, 4.0, 9.0]) 98 >>> lst([1.0, 3.0, 5.0, 7.0]) 84 >>> lst([1.4, 4.2, 0.0]) 29 >>> lst([-2.4, 1.0, 1.0]) 6
You are given a list of numbers. You need to return the absolute difference between the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first, and the sum of squared numbers in the given list, round each element in the list to the lower int(Floor) first. Examples: >>> lst([1.0, 2.0, 3.0]) 0 >>> lst([1.4, 4.2, 0.0]) 12 >>> lst([-2.4, 1.0, 1.0]) 5
import math squared = 0 for i in lst: squared += math.ceil(i) ** 2 return squared
return abs(sum_squares(lst) - sum_squares([-i for i in lst]))
sum_squares(lst: List[float]) -> int
diff_ceil_floor_sum_squares(lst: List[float]) -> int
def check_if_last_char_is_a_letter(txt: str) -> bool: """ Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_last_char_is_a_letter('apple pie') False >>> check_if_last_char_is_a_letter('apple pi e') True >>> check_if_last_char_is_a_letter('apple pi e ') False >>> check_if_last_char_is_a_letter('') False """
def check_if_last_char_is_a_letter(txt: str) -> bool: """ Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_last_char_is_a_letter('apple pie') False >>> check_if_last_char_is_a_letter('apple pi e') True >>> check_if_last_char_is_a_letter('apple pi e ') False >>> check_if_last_char_is_a_letter('') False """ check = txt.split(' ')[-1] return True if len(check) == 1 and 97 <= ord(check.lower()) <= 122 else False
check_if_last_char_is_a_letter
def check_if_first_char_is_a_letter(txt: str) -> bool: """ Create a function that returns True if the first character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_first_char_is_a_letter('apple pie') False >>> check_if_first_char_is_a_letter('a pple pie') True >>> check_if_first_char_is_a_letter(' a pple pie') False >>> check_if_first_char_is_a_letter('') False """
def check_if_first_char_is_a_letter(txt: str) -> bool: """ Create a function that returns True if the first character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_first_char_is_a_letter('apple pie') False >>> check_if_first_char_is_a_letter('a pple pie') True >>> check_if_first_char_is_a_letter(' a pple pie') False >>> check_if_first_char_is_a_letter('') False """ return check_if_last_char_is_a_letter(txt[::-1])
check_if_first_char_is_a_letter
def check(candidate): assert candidate('a boat is on the river') is True assert candidate(' over the rainbow') is False assert candidate('life is good') is False def test_check(): check(check_if_first_char_is_a_letter) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_last_char_is_a_letter('apple pie') False >>> check_if_last_char_is_a_letter('apple pi e') True >>> check_if_last_char_is_a_letter('apple pi e ') False >>> check_if_last_char_is_a_letter('') False
Create a function that returns True if the first character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_first_char_is_a_letter('apple pie') False >>> check_if_first_char_is_a_letter('a pple pie') True >>> check_if_first_char_is_a_letter(' a pple pie') False >>> check_if_first_char_is_a_letter('') False
check = txt.split(' ')[-1] return True if len(check) == 1 and 97 <= ord(check.lower()) <= 122 else False
return check_if_last_char_is_a_letter(txt[::-1])
check_if_last_char_is_a_letter(txt: str) -> bool
check_if_first_char_is_a_letter(txt: str) -> bool
from typing import List
def can_arrange(arr: List[int]) -> int: """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: >>> can_arrange([1, 2, 4, 3, 5]) 3 >>> can_arrange([1, 2, 3]) -1 """
def can_arrange(arr: List[int]) -> int: """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: >>> can_arrange([1, 2, 4, 3, 5]) 3 >>> can_arrange([1, 2, 3]) -1 """ ind = -1 i = 1 while i < len(arr): if arr[i] < arr[i - 1]: ind = i i += 1 return ind
can_arrange
def is_ordered(arr: List[int]) -> bool: """Create a function which returns True if the given array is sorted in either ascending or descending order, otherwise return False. Examples: >>> is_ordered([1, 2, 4, 3, 5]) False >>> is_ordered([1, 2, 3]) True >>> is_ordered([3, 2, 1]) True """
def is_ordered(arr: List[int]) -> bool: """Create a function which returns True if the given array is sorted in either ascending or descending order, otherwise return False. Examples: >>> is_ordered([1, 2, 4, 3, 5]) False >>> is_ordered([1, 2, 3]) True >>> is_ordered([3, 2, 1]) True """ return can_arrange(arr) == -1 or can_arrange(arr[::-1]) == -1
is_ordered
def check(candidate): assert candidate([6, 5, 4, 3, 2, 1]) is True assert candidate([3, 5, 4, 2, 7, 9]) is False assert candidate([-1, -2, -3, -5]) is True def test_check(): check(is_ordered) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: >>> can_arrange([1, 2, 4, 3, 5]) 3 >>> can_arrange([1, 2, 3]) -1
Create a function which returns True if the given array is sorted in either ascending or descending order, otherwise return False. Examples: >>> is_ordered([1, 2, 4, 3, 5]) False >>> is_ordered([1, 2, 3]) True >>> is_ordered([3, 2, 1]) True
ind = -1 i = 1 while i < len(arr): if arr[i] < arr[i - 1]: ind = i i += 1 return ind
return can_arrange(arr) == -1 or can_arrange(arr[::-1]) == -1
can_arrange(arr: List[int]) -> int
is_ordered(arr: List[int]) -> bool
from typing import List, Optional, Tuple
def largest_smallest_integers(lst: List[int]) -> Tuple[Optional[int], Optional[int]]: """ Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: >>> largest_smallest_integers([2, 4, 1, 3, 5, 7]) (None, 1) >>> largest_smallest_integers([]) (None, None) >>> largest_smallest_integers([0]) (None, None) """
def largest_smallest_integers(lst: List[int]) -> Tuple[Optional[int], Optional[int]]: """ Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: >>> largest_smallest_integers([2, 4, 1, 3, 5, 7]) (None, 1) >>> largest_smallest_integers([]) (None, None) >>> largest_smallest_integers([0]) (None, None) """ smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
largest_smallest_integers
def smallest_interval_including_zero(lst: List[int]) -> int: """ Create a function that returns the length of the smallest interval that includes zero. If there is no such interval, return 0. Examples: >>> smallest_interval_including_zero([2, 4, 1, 3, 5, 7]) 0 >>> smallest_interval_including_zero([0]) 0 >>> smallest_interval_including_zero([-5, -3, 1, 2, 4]) 4 """
def smallest_interval_including_zero(lst: List[int]) -> int: """ Create a function that returns the length of the smallest interval that includes zero. If there is no such interval, return 0. Examples: >>> smallest_interval_including_zero([2, 4, 1, 3, 5, 7]) 0 >>> smallest_interval_including_zero([0]) 0 >>> smallest_interval_including_zero([-5, -3, 1, 2, 4]) 4 """ (start, end) = largest_smallest_integers(lst) if start is None or end is None: return 0 return end - start
smallest_interval_including_zero
def check(candidate): assert candidate([-2, 0, 1, 2, 3]) == 3 assert candidate([0, 1, 2, 3]) == 0 assert candidate([-5, -4, -3, -2, -1]) == 0 def test_check(): check(smallest_interval_including_zero) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: >>> largest_smallest_integers([2, 4, 1, 3, 5, 7]) (None, 1) >>> largest_smallest_integers([]) (None, None) >>> largest_smallest_integers([0]) (None, None)
Create a function that returns the length of the smallest interval that includes zero. If there is no such interval, return 0. Examples: >>> smallest_interval_including_zero([2, 4, 1, 3, 5, 7]) 0 >>> smallest_interval_including_zero([0]) 0 >>> smallest_interval_including_zero([-5, -3, 1, 2, 4]) 4
smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
(start, end) = largest_smallest_integers(lst) if start is None or end is None: return 0 return end - start
largest_smallest_integers(lst: List[int]) -> Tuple[Optional[int], Optional[int]]
smallest_interval_including_zero(lst: List[int]) -> int
from itertools import combinations from typing import List, Union
def compare_one(a: Union[int, float, str], b: Union[int, float, str]) -> Union[int, float, str, None]: """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , >>> compare_one(1, 2.5) 2.5 >>> compare_one(1, '2,3') '2,3' >>> compare_one('5,1', '6') '6' >>> compare_one('1', 1) None """
def compare_one(a: Union[int, float, str], b: Union[int, float, str]) -> Union[int, float, str, None]: """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , >>> compare_one(1, 2.5) 2.5 >>> compare_one(1, '2,3') '2,3' >>> compare_one('5,1', '6') '6' >>> compare_one('1', 1) None """ (temp_a, temp_b) = (a, b) if isinstance(temp_a, str): temp_a = temp_a.replace(',', '.') if isinstance(temp_b, str): temp_b = temp_b.replace(',', '.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
compare_one
def biggest(lst: List[Union[int, float, str]]) -> Union[int, float, str, None]: """ Create a function that takes a list of integers, floats, or strings representing real numbers, and returns the non-duplicate largest variable in its given variable type. Return None if the largest value is duplicated. Note: If a real number is represented as a string, the floating point might be . or , >>> biggest([1, 2.5, '2,3']) 2.5 >>> biggest(['1', 1]) None >>> biggest(['5,1', '-6']) '5,1' """
def biggest(lst: List[Union[int, float, str]]) -> Union[int, float, str, None]: """ Create a function that takes a list of integers, floats, or strings representing real numbers, and returns the non-duplicate largest variable in its given variable type. Return None if the largest value is duplicated. Note: If a real number is represented as a string, the floating point might be . or , >>> biggest([1, 2.5, '2,3']) 2.5 >>> biggest(['1', 1]) None >>> biggest(['5,1', '-6']) '5,1' """ bigger = [compare_one(a, b) for (a, b) in combinations(lst, 2)] bigger = [elem for elem in bigger if elem is not None] if not bigger: return None return max(bigger)
biggest
def check(candidate): assert candidate([1, 1, 1, 1, 1]) is None assert candidate(['8,4', 8.1, '-8,3', 8.2]) == '8,4' assert candidate([10, 10, 8, 9, 6]) == 10 def test_check(): check(biggest) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , >>> compare_one(1, 2.5) 2.5 >>> compare_one(1, '2,3') '2,3' >>> compare_one('5,1', '6') '6' >>> compare_one('1', 1) None
Create a function that takes a list of integers, floats, or strings representing real numbers, and returns the non-duplicate largest variable in its given variable type. Return None if the largest value is duplicated. Note: If a real number is represented as a string, the floating point might be . or , >>> biggest([1, 2.5, '2,3']) 2.5 >>> biggest(['1', 1]) None >>> biggest(['5,1', '-6']) '5,1'
(temp_a, temp_b) = (a, b) if isinstance(temp_a, str): temp_a = temp_a.replace(',', '.') if isinstance(temp_b, str): temp_b = temp_b.replace(',', '.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
bigger = [compare_one(a, b) for (a, b) in combinations(lst, 2)] bigger = [elem for elem in bigger if elem is not None] if not bigger: return None return max(bigger)
compare_one(a: Union[int, float, str], b: Union[int, float, str]) -> Union[int, float, str, None]
biggest(lst: List[Union[int, float, str]]) -> Union[int, float, str, None]
from typing import List
def is_equal_to_sum_even(n: int) -> bool: """Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example >>> is_equal_to_sum_even(4) False >>> is_equal_to_sum_even(6) False >>> is_equal_to_sum_even(8) True """
def is_equal_to_sum_even(n: int) -> bool: """Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example >>> is_equal_to_sum_even(4) False >>> is_equal_to_sum_even(6) False >>> is_equal_to_sum_even(8) True """ return n % 2 == 0 and n >= 8
is_equal_to_sum_even
def num_test_subjects(lst: List[int]) -> int: """In your country, people are obligated to take a inspection test every 2 years after they turn 8. You are given a list of ages of people in your country. Return the number of people who are required to take the test in the next year. Example >>> num_test_subjects([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 2 >>> num_test_subjects([30, 42, 27, 21, 8, 1]) 2 >>> num_test_subjects([7, 3, 5, 6, 8, 9]) 2 """
def num_test_subjects(lst: List[int]) -> int: """In your country, people are obligated to take a inspection test every 2 years after they turn 8. You are given a list of ages of people in your country. Return the number of people who are required to take the test in the next year. Example >>> num_test_subjects([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 2 >>> num_test_subjects([30, 42, 27, 21, 8, 1]) 2 >>> num_test_subjects([7, 3, 5, 6, 8, 9]) 2 """ return sum([is_equal_to_sum_even(x + 1) for x in lst])
num_test_subjects
def check(candidate): assert candidate([27, 28, 29, 30, 31, 32]) == 3 assert candidate([7, 6, 8, 9, 11, 13, 100]) == 4 assert candidate([37, 31, 30, 29, 8, 13, 14, 49, 57]) == 6 def test_check(): check(num_test_subjects) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example >>> is_equal_to_sum_even(4) False >>> is_equal_to_sum_even(6) False >>> is_equal_to_sum_even(8) True
In your country, people are obligated to take a inspection test every 2 years after they turn 8. You are given a list of ages of people in your country. Return the number of people who are required to take the test in the next year. Example >>> num_test_subjects([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 2 >>> num_test_subjects([30, 42, 27, 21, 8, 1]) 2 >>> num_test_subjects([7, 3, 5, 6, 8, 9]) 2
return n % 2 == 0 and n >= 8
return sum([is_equal_to_sum_even(x + 1) for x in lst])
is_equal_to_sum_even(n: int) -> bool
num_test_subjects(lst: List[int]) -> int
def special_factorial(n: int) -> int: """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """
def special_factorial(n: int) -> int: """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """ fact_i = 1 special_fact = 1 for i in range(1, n + 1): fact_i *= i special_fact *= fact_i return special_fact
special_factorial
def factorial(n: int) -> int: """The factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example: >>> factorial(4) 24 >>> factorial(1) 1 >>> factorial(5) 120 The function will receive an integer as input and should return the factorial of this integer. """
def factorial(n: int) -> int: """The factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example: >>> factorial(4) 24 >>> factorial(1) 1 >>> factorial(5) 120 The function will receive an integer as input and should return the factorial of this integer. """ fact = special_factorial(n) for i in range(1, n): fact //= special_factorial(i) return fact
factorial
def check(candidate): assert candidate(7) == 5040 assert candidate(6) == 720 assert candidate(10) == 3628800 def test_check(): check(factorial) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer.
The factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example: >>> factorial(4) 24 >>> factorial(1) 1 >>> factorial(5) 120 The function will receive an integer as input and should return the factorial of this integer.
fact_i = 1 special_fact = 1 for i in range(1, n + 1): fact_i *= i special_fact *= fact_i return special_fact
fact = special_factorial(n) for i in range(1, n): fact //= special_factorial(i) return fact
special_factorial(n: int) -> int
factorial(n: int) -> int
def fix_spaces(text: str) -> str: """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> fix_spaces('Example') 'Example' >>> fix_spaces('Example 1') 'Example_1' >>> fix_spaces(' Example 2') '_Example_2' >>> fix_spaces(' Example 3') '_Example-3' """
def fix_spaces(text: str) -> str: """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> fix_spaces('Example') 'Example' >>> fix_spaces('Example 1') 'Example_1' >>> fix_spaces(' Example 2') '_Example_2' >>> fix_spaces(' Example 3') '_Example-3' """ new_text = '' i = 0 (start, end) = (0, 0) while i < len(text): if text[i] == ' ': end += 1 else: if end - start > 2: new_text += '-' + text[i] elif end - start > 0: new_text += '_' * (end - start) + text[i] else: new_text += text[i] (start, end) = (i + 1, i + 1) i += 1 if end - start > 2: new_text += '-' elif end - start > 0: new_text += '_' return new_text
fix_spaces
def extended_fix_spaces(text: str) -> str: """ Given a string text, replace all spaces and tab in it with underscores. Consider a tab as 4 spaces, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> extended_fix_spaces('Example') 'Example' >>> extended_fix_spaces('Example 1') 'Example-1' >>> extended_fix_spaces(' Example 2') '-Example_2' >>> extended_fix_spaces(' Example 3') '_Example-3' >>> extended_fix_spaces(' Example 4_') '_Example-4_' """
def extended_fix_spaces(text: str) -> str: """ Given a string text, replace all spaces and tab in it with underscores. Consider a tab as 4 spaces, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> extended_fix_spaces('Example') 'Example' >>> extended_fix_spaces('Example 1') 'Example-1' >>> extended_fix_spaces(' Example 2') '-Example_2' >>> extended_fix_spaces(' Example 3') '_Example-3' >>> extended_fix_spaces(' Example 4_') '_Example-4_' """ return fix_spaces(text.replace('\t', ' '))
extended_fix_spaces
def check(candidate): assert candidate('\tcandidate([9, 2, 4, 3, 8, 9])') == '-candidate([9,_2,_4,_3,_8,_9])' assert candidate('cool\tand aweesome function!') == 'cool-and_aweesome_function!' assert candidate('\t\t\t\t') == '-' def test_check(): check(extended_fix_spaces) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> fix_spaces('Example') 'Example' >>> fix_spaces('Example 1') 'Example_1' >>> fix_spaces(' Example 2') '_Example_2' >>> fix_spaces(' Example 3') '_Example-3'
Given a string text, replace all spaces and tab in it with underscores. Consider a tab as 4 spaces, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> extended_fix_spaces('Example') 'Example' >>> extended_fix_spaces('Example 1') 'Example-1' >>> extended_fix_spaces(' Example 2') '-Example_2' >>> extended_fix_spaces(' Example 3') '_Example-3' >>> extended_fix_spaces(' Example 4_') '_Example-4_'
new_text = '' i = 0 (start, end) = (0, 0) while i < len(text): if text[i] == ' ': end += 1 else: if end - start > 2: new_text += '-' + text[i] elif end - start > 0: new_text += '_' * (end - start) + text[i] else: new_text += text[i] (start, end) = (i + 1, i + 1) i += 1 if end - start > 2: new_text += '-' elif end - start > 0: new_text += '_' return new_text
return fix_spaces(text.replace('\t', ' '))
fix_spaces(text: str) -> str
extended_fix_spaces(text: str) -> str
def file_name_check(file_name: str) -> str: """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: >>> file_name_check('example.txt') 'Yes' >>> file_name_check('1example.dll') 'No' """
def file_name_check(file_name: str) -> str: """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: >>> file_name_check('example.txt') 'Yes' >>> file_name_check('1example.dll') 'No' """ suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0: return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
file_name_check
def download_link_check(link: str) -> str: """Create a function which takes a string representing a link address, and returns 'Yes' if the the link is valid, and returns 'No' otherwise. A link name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] - The link should start with 'https://' Examples: >>> download_link_check('https://example.txt') 'Yes' >>> file_name_check('https://1example.dll') 'No' >>> file_name_check('example.txt') 'No' """
def download_link_check(link: str) -> str: """Create a function which takes a string representing a link address, and returns 'Yes' if the the link is valid, and returns 'No' otherwise. A link name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] - The link should start with 'https://' Examples: >>> download_link_check('https://example.txt') 'Yes' >>> file_name_check('https://1example.dll') 'No' >>> file_name_check('example.txt') 'No' """ if not link.startswith('https://'): return 'No' return file_name_check(link[8:])
download_link_check
def check(candidate): assert candidate('https://hello-world.dll') == 'Yes' assert candidate('file://cool010.exe') == 'No' assert candidate('https://0010110.txt') == 'No' def test_check(): check(download_link_check) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: >>> file_name_check('example.txt') 'Yes' >>> file_name_check('1example.dll') 'No'
Create a function which takes a string representing a link address, and returns 'Yes' if the the link is valid, and returns 'No' otherwise. A link name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] - The link should start with 'https://' Examples: >>> download_link_check('https://example.txt') 'Yes' >>> file_name_check('https://1example.dll') 'No' >>> file_name_check('example.txt') 'No'
suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0: return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
if not link.startswith('https://'): return 'No' return file_name_check(link[8:])
file_name_check(file_name: str) -> str
download_link_check(link: str) -> str
def sum_squares(lst: list[int]) -> int: """ " This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5]) -126 """
def sum_squares(lst: list[int]) -> int: """ " This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5]) -126 """ result = [] for i in range(len(lst)): if i % 3 == 0: result.append(lst[i] ** 2) elif i % 4 == 0 and i % 3 != 0: result.append(lst[i] ** 3) else: result.append(lst[i]) return sum(result)
sum_squares
def extended_sum_squares(lst: list[int]) -> int: """ This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3 and negate the integer entry if its index is a multiple of 5 and not a multiple of 3 and 4. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4 or 5. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5, -6]) -120 """
def extended_sum_squares(lst: list[int]) -> int: """ This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3 and negate the integer entry if its index is a multiple of 5 and not a multiple of 3 and 4. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4 or 5. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5, -6]) -120 """ return sum_squares([-x if idx % 5 == 0 and idx % 4 != 0 and (idx % 3 != 0) else x for (idx, x) in enumerate(lst)])
extended_sum_squares
def check(candidate): assert candidate([4, 7, 5, 3, 1, 1, 4, 6, 8, 9, 100]) == 552 assert candidate([3, 4, 1, 5, 0, 8, 8, 5]) == 100 assert candidate([2, 3, 5, 7, 11, 13, 17, 19]) == 1687 def test_check(): check(extended_sum_squares) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5]) -126
This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3 and negate the integer entry if its index is a multiple of 5 and not a multiple of 3 and 4. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4 or 5. The function shall then return the sum of all entries. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares([]) 0 >>> sum_squares([-1, -5, 2, -1, -5, -6]) -120
result = [] for i in range(len(lst)): if i % 3 == 0: result.append(lst[i] ** 2) elif i % 4 == 0 and i % 3 != 0: result.append(lst[i] ** 3) else: result.append(lst[i]) return sum(result)
return sum_squares([-x if idx % 5 == 0 and idx % 4 != 0 and (idx % 3 != 0) else x for (idx, x) in enumerate(lst)])
sum_squares(lst: list[int]) -> int
extended_sum_squares(lst: list[int]) -> int
def words_in_sentence(sentence: str) -> str: """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> words_in_sentence('This is a test') 'is' Example 2: >>> words_in_sentence('lets go for swimming') 'go for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """
def words_in_sentence(sentence: str) -> str: """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> words_in_sentence('This is a test') 'is' Example 2: >>> words_in_sentence('lets go for swimming') 'go for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1 for i in range(2, len(word)): if len(word) % i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return ' '.join(new_lst)
words_in_sentence
def extended_words_in_sentence(sentence: str, sep: str) -> str: """ You are given a string representing a sentence, the sentence contains some words separated by `sep`, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> extended_words_in_sentence('This is a test', ' ') 'is' Example 2: >>> extended_words_in_sentence('lets,go,for,swimming', ',') 'go,for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """
def extended_words_in_sentence(sentence: str, sep: str) -> str: """ You are given a string representing a sentence, the sentence contains some words separated by `sep`, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> extended_words_in_sentence('This is a test', ' ') 'is' Example 2: >>> extended_words_in_sentence('lets,go,for,swimming', ',') 'go,for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ return words_in_sentence(sentence.replace(sep, ' ')).replace(' ', sep)
extended_words_in_sentence
def check(candidate): assert candidate('apple|delta|for|much|quantity', '|') == 'apple|delta|for' assert candidate('what-is-your-hobby', '-') == 'is-hobby' assert candidate('your,task,is,to,support,your,colleague', ',') == 'is,to,support' def test_check(): check(extended_words_in_sentence) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> words_in_sentence('This is a test') 'is' Example 2: >>> words_in_sentence('lets go for swimming') 'go for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters
You are given a string representing a sentence, the sentence contains some words separated by `sep`, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> extended_words_in_sentence('This is a test', ' ') 'is' Example 2: >>> extended_words_in_sentence('lets,go,for,swimming', ',') 'go,for' Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters
new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1 for i in range(2, len(word)): if len(word) % i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return ' '.join(new_lst)
return words_in_sentence(sentence.replace(sep, ' ')).replace(' ', sep)
words_in_sentence(sentence: str) -> str
extended_words_in_sentence(sentence: str, sep: str) -> str
from typing import Optional
def simplify(x: str, n: str) -> bool: """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. >>> simplify('1/5', '5/1') True >>> simplify('1/6', '2/1') False >>> simplify('7/10', '10/2') False """
def simplify(x: str, n: str) -> bool: """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. >>> simplify('1/5', '5/1') True >>> simplify('1/6', '2/1') False >>> simplify('7/10', '10/2') False """ (a, b) = x.split('/') (c, d) = n.split('/') numerator = int(a) * int(c) denom = int(b) * int(d) if numerator / denom == int(numerator / denom): return True return False
simplify
def get_simplified_pair(l: list[str]) -> Optional[tuple[str, str]]: """Find a pair (a, b) which can be simplified in the given list of fractions. Simplified means that a * b is a whole number. Both a and b are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. If there is no such pair, return None. If there is multiple such pair, return the first one. Example: >>> get_simplified_pair(['1/5', '5/1', '1/6', '2/1', '7/10', '10/2']) ('1/5', '5/1') >>> get_simplified_pair(['1/6', '2/1', '7/10', '10/2']) ('2/1', '10/2') """
def get_simplified_pair(l: list[str]) -> Optional[tuple[str, str]]: """Find a pair (a, b) which can be simplified in the given list of fractions. Simplified means that a * b is a whole number. Both a and b are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. If there is no such pair, return None. If there is multiple such pair, return the first one. Example: >>> get_simplified_pair(['1/5', '5/1', '1/6', '2/1', '7/10', '10/2']) ('1/5', '5/1') >>> get_simplified_pair(['1/6', '2/1', '7/10', '10/2']) ('2/1', '10/2') """ for i in range(len(l)): for j in range(i + 1, len(l)): if simplify(l[i], l[j]): return (l[i], l[j]) return None
get_simplified_pair
def check(candidate): assert candidate(['3/5', '3/7', '9/3', '7/2']) is None assert candidate(['4/9', '18/1', '7/3']) == ('4/9', '18/1') assert candidate(['11/13', '7/3', '18/14', '4/6']) == ('7/3', '18/14') def test_check(): check(get_simplified_pair) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. >>> simplify('1/5', '5/1') True >>> simplify('1/6', '2/1') False >>> simplify('7/10', '10/2') False
Find a pair (a, b) which can be simplified in the given list of fractions. Simplified means that a * b is a whole number. Both a and b are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. If there is no such pair, return None. If there is multiple such pair, return the first one. Example: >>> get_simplified_pair(['1/5', '5/1', '1/6', '2/1', '7/10', '10/2']) ('1/5', '5/1') >>> get_simplified_pair(['1/6', '2/1', '7/10', '10/2']) ('2/1', '10/2')
(a, b) = x.split('/') (c, d) = n.split('/') numerator = int(a) * int(c) denom = int(b) * int(d) if numerator / denom == int(numerator / denom): return True return False
for i in range(len(l)): for j in range(i + 1, len(l)): if simplify(l[i], l[j]): return (l[i], l[j]) return None
simplify(x: str, n: str) -> bool
get_simplified_pair(l: list[str]) -> Optional[tuple[str, str]]
def order_by_points(nums: list[int]) -> list[int]: """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) [-1, -11, 1, -12, 11] >>> order_by_points([]) [] """
def order_by_points(nums: list[int]) -> list[int]: """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) [-1, -11, 1, -12, 11] >>> order_by_points([]) [] """ def digits_sum(n): neg = 1 if n < 0: (n, neg) = (-1 * n, -1) n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
order_by_points
def positive_order_by_points(nums: list[int]) -> list[int]: """Write a function which sorts the integers in the given list that is greater than zero. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> positive_order_by_points([1, 11, -1, -11, -12]) [1, 11] >>> positive_order_by_points([]) [] """
def positive_order_by_points(nums: list[int]) -> list[int]: """Write a function which sorts the integers in the given list that is greater than zero. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> positive_order_by_points([1, 11, -1, -11, -12]) [1, 11] >>> positive_order_by_points([]) [] """ return order_by_points([num for num in nums if num > 0])
positive_order_by_points
def check(candidate): assert candidate([302, 444, 97, 92, 114]) == [302, 114, 92, 444, 97] assert candidate([4932, -30585, -392828, 1128]) == [1128, 4932] assert candidate([85, -7, 877, 344]) == [344, 85, 877] def test_check(): check(positive_order_by_points) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) [-1, -11, 1, -12, 11] >>> order_by_points([]) []
Write a function which sorts the integers in the given list that is greater than zero. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> positive_order_by_points([1, 11, -1, -11, -12]) [1, 11] >>> positive_order_by_points([]) []
def digits_sum(n): neg = 1 if n < 0: (n, neg) = (-1 * n, -1) n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
return order_by_points([num for num in nums if num > 0])
order_by_points(nums: list[int]) -> list[int]
positive_order_by_points(nums: list[int]) -> list[int]
def specialFilter(nums: list[int]) -> int: """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 2 """
def specialFilter(nums: list[int]) -> int: """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 2 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
specialFilter
def extended_special_filter(nums: list[int]) -> int: """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first digits of a number are odd (1, 3, 5, 7, 9) and last digits of a number is even. For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 0 """
def extended_special_filter(nums: list[int]) -> int: """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first digits of a number are odd (1, 3, 5, 7, 9) and last digits of a number is even. For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 0 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) even_digits = (2, 4, 6, 8, 0) number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in even_digits: count += 1 return count
extended_special_filter
def check(candidate): assert candidate([302, 444, 97, 92, 114]) == 3 assert candidate([4932, 30585, 392828, 1128]) == 2 assert candidate([66485, 9327, 88757, 344]) == 1 def test_check(): check(extended_special_filter) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 2
Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first digits of a number are odd (1, 3, 5, 7, 9) and last digits of a number is even. For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 0
count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) even_digits = (2, 4, 6, 8, 0) number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in even_digits: count += 1 return count
specialFilter(nums: list[int]) -> int
extended_special_filter(nums: list[int]) -> int
def get_max_triples(n: int) -> int: """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : >>> get_max_triples(5) 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """
def get_max_triples(n: int) -> int: """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : >>> get_max_triples(5) 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ A = [i * i - i + 1 for i in range(1, n + 1)] ans = [] for i in range(n): for j in range(i + 1, n): for k in range(j + 1, n): if (A[i] + A[j] + A[k]) % 3 == 0: ans += [(A[i], A[j], A[k])] return len(ans)
get_max_triples
def get_not_max_triple(n: int) -> int: """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is not a multiple of 3. Assume that n >= 3. Example : >>> get_not_max_triples(5) 9 """
def get_not_max_triple(n: int) -> int: """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is not a multiple of 3. Assume that n >= 3. Example : >>> get_not_max_triples(5) 9 """ return n * (n - 1) * (n - 2) // 6 - get_max_triples(n)
get_not_max_triple
def check(candidate): assert candidate(8) == 45 assert candidate(13) == 198 assert candidate(16) == 385 def test_check(): check(get_not_max_triple) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : >>> get_max_triples(5) 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13).
You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is not a multiple of 3. Assume that n >= 3. Example : >>> get_not_max_triples(5) 9
A = [i * i - i + 1 for i in range(1, n + 1)] ans = [] for i in range(n): for j in range(i + 1, n): for k in range(j + 1, n): if (A[i] + A[j] + A[k]) % 3 == 0: ans += [(A[i], A[j], A[k])] return len(ans)
return n * (n - 1) * (n - 2) // 6 - get_max_triples(n)
get_max_triples(n: int) -> int
get_not_max_triple(n: int) -> int
from typing import Tuple
def bf(planet1: str, planet2: str) -> Tuple[str, ...]: """ There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples >>> bf('Jupiter', 'Neptune') ('Saturn', 'Uranus') >>> bf('Earth', 'Mercury') 'Venus' >>> bf('Mercury', 'Uranus') ('Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn') """
def bf(planet1: str, planet2: str) -> Tuple[str, ...]: """ There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples >>> bf('Jupiter', 'Neptune') ('Saturn', 'Uranus') >>> bf('Earth', 'Mercury') 'Venus' >>> bf('Mercury', 'Uranus') ('Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn') """ planet_names = ('Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune') if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1) planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return planet_names[planet1_index + 1:planet2_index] else: return planet_names[planet2_index + 1:planet1_index]
bf
def living_area(planet1: str, planet2: str) -> bool: """ There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Among this planets, Earth is the only planet that can live human. Your task is to check whether there is a planet that can live human between planet1 and planet2 exclusively. Return true if there is a planet that can live human between planet1 and planet2. Examples: >>> living_area('Jupiter', 'Neptune') False >>> living_area('Earth', 'Mercury') False >>> living_area('Mercury', 'Uranus') True """
def living_area(planet1: str, planet2: str) -> bool: """ There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Among this planets, Earth is the only planet that can live human. Your task is to check whether there is a planet that can live human between planet1 and planet2 exclusively. Return true if there is a planet that can live human between planet1 and planet2. Examples: >>> living_area('Jupiter', 'Neptune') False >>> living_area('Earth', 'Mercury') False >>> living_area('Mercury', 'Uranus') True """ return 'Earth' in bf(planet1, planet2)
living_area
def check(candidate): assert candidate('Venus', 'Jupiter') is True assert candidate('Uranus', 'Mars') is False assert candidate('Mars', 'Mercury') is True def test_check(): check(living_area) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples >>> bf('Jupiter', 'Neptune') ('Saturn', 'Uranus') >>> bf('Earth', 'Mercury') 'Venus' >>> bf('Mercury', 'Uranus') ('Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn')
There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Among this planets, Earth is the only planet that can live human. Your task is to check whether there is a planet that can live human between planet1 and planet2 exclusively. Return true if there is a planet that can live human between planet1 and planet2. Examples: >>> living_area('Jupiter', 'Neptune') False >>> living_area('Earth', 'Mercury') False >>> living_area('Mercury', 'Uranus') True
planet_names = ('Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune') if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1) planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return planet_names[planet1_index + 1:planet2_index] else: return planet_names[planet2_index + 1:planet1_index]
return 'Earth' in bf(planet1, planet2)
bf(planet1: str, planet2: str) -> Tuple[str, ...]
living_area(planet1: str, planet2: str) -> bool
from typing import List
def sorted_list_sum(lst: List[str]) -> List[str]: """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: >>> list_sort(['aa', 'a', 'aaa']) ['aa'] >>> list_sort(['ab', 'a', 'aaa', 'cd']) ['ab', 'cd'] """
def sorted_list_sum(lst: List[str]) -> List[str]: """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: >>> list_sort(['aa', 'a', 'aaa']) ['aa'] >>> list_sort(['ab', 'a', 'aaa', 'cd']) ['ab', 'cd'] """ lst.sort() new_lst = [] for i in lst: if len(i) % 2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
sorted_list_sum
def extract_even_words(text: str) -> str: """Write a function that accepts a string as a parameter, and a string is consisted of words separated by spaces, deletes the words that have odd lengths from it, and returns the resulted string with a sorted order, The order of the words should be ascending by length of each word, and you should return the string sorted by that rule. IF two words have the same length, sort the string alphabetically. For example: >>> extract_odd_words('aa a aaa') 'aa' >>> extract_odd_words('ab a aaa cd') 'ab cd' """
def extract_even_words(text: str) -> str: """Write a function that accepts a string as a parameter, and a string is consisted of words separated by spaces, deletes the words that have odd lengths from it, and returns the resulted string with a sorted order, The order of the words should be ascending by length of each word, and you should return the string sorted by that rule. IF two words have the same length, sort the string alphabetically. For example: >>> extract_odd_words('aa a aaa') 'aa' >>> extract_odd_words('ab a aaa cd') 'ab cd' """ return ' '.join(sorted_list_sum(text.split()))
extract_even_words
def check(candidate): assert candidate('apple sand pear black cheeze') == 'pear sand cheeze' assert candidate('answer python analysis task mirror') == 'task answer mirror python analysis' assert candidate('hand monitor cream tissue water') == 'hand tissue' def test_check(): check(extract_even_words) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: >>> list_sort(['aa', 'a', 'aaa']) ['aa'] >>> list_sort(['ab', 'a', 'aaa', 'cd']) ['ab', 'cd']
Write a function that accepts a string as a parameter, and a string is consisted of words separated by spaces, deletes the words that have odd lengths from it, and returns the resulted string with a sorted order, The order of the words should be ascending by length of each word, and you should return the string sorted by that rule. IF two words have the same length, sort the string alphabetically. For example: >>> extract_odd_words('aa a aaa') 'aa' >>> extract_odd_words('ab a aaa cd') 'ab cd'
lst.sort() new_lst = [] for i in lst: if len(i) % 2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
return ' '.join(sorted_list_sum(text.split()))
sorted_list_sum(lst: List[str]) -> List[str]
extract_even_words(text: str) -> str
def x_or_y(n: int, x: int, y: int) -> int: """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: >>> x_or_y(7, 34, 12) 34 >>> x_or_y(15, 8, 5) 5 """
def x_or_y(n: int, x: int, y: int) -> int: """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: >>> x_or_y(7, 34, 12) 34 >>> x_or_y(15, 8, 5) 5 """ if n == 1: return y for i in range(2, n): if n % i == 0: return y else: return x
x_or_y
def list_x_or_y(ns: list[int], xs: list[int], ys: list[int]) -> list[int]: """A simple program which should return a list of values of x if the corresponding value in ns is a prime number and should return the value of y otherwise. Examples: >>> list_x_or_by([7, 15, 21], [34, 8, 3], [12, 5, 7]) [34, 5, 7] >>> list_x_or_by([1, 2, 3], [34, 8, 3], [12, 5, 7]) [12, 8, 3] """
def list_x_or_y(ns: list[int], xs: list[int], ys: list[int]) -> list[int]: """A simple program which should return a list of values of x if the corresponding value in ns is a prime number and should return the value of y otherwise. Examples: >>> list_x_or_by([7, 15, 21], [34, 8, 3], [12, 5, 7]) [34, 5, 7] >>> list_x_or_by([1, 2, 3], [34, 8, 3], [12, 5, 7]) [12, 8, 3] """ return [x_or_y(n, x, y) for (n, x, y) in zip(ns, xs, ys)]
list_x_or_y
def check(candidate): assert candidate([9, 5, 13, 7, 15, 33], [3, 4, 6, 2, 6, 4], [2, 3, 7, 2, 4, 3]) == [2, 4, 6, 2, 4, 3] assert candidate([44, 43, 42, 41, 40], [9, 3, 5, 3, 2], [8, 7, 6, 5, 4]) == [8, 3, 6, 3, 4] assert candidate([95, 97, 45, 39], [11, 4, 38, 2], [10, 1, 4, 9]) == [10, 4, 4, 9] def test_check(): check(list_x_or_y) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: >>> x_or_y(7, 34, 12) 34 >>> x_or_y(15, 8, 5) 5
A simple program which should return a list of values of x if the corresponding value in ns is a prime number and should return the value of y otherwise. Examples: >>> list_x_or_by([7, 15, 21], [34, 8, 3], [12, 5, 7]) [34, 5, 7] >>> list_x_or_by([1, 2, 3], [34, 8, 3], [12, 5, 7]) [12, 8, 3]
if n == 1: return y for i in range(2, n): if n % i == 0: return y else: return x
return [x_or_y(n, x, y) for (n, x, y) in zip(ns, xs, ys)]
x_or_y(n: int, x: int, y: int) -> int
list_x_or_y(ns: list[int], xs: list[int], ys: list[int]) -> list[int]
def double_the_difference(lst: list[float]) -> int: """ Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 10 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0. """
def double_the_difference(lst: list[float]) -> int: """ Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 10 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0. """ return sum([i ** 2 for i in lst if i > 0 and i % 2 != 0 and ('.' not in str(i))])
double_the_difference
def extended_double_the_difference(lst: list[float]) -> int: """ Given a list of numbers, return the sum of squares of the numbers in the list that are odd and the cubic of the number in the list that are even. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 18 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0. """
def extended_double_the_difference(lst: list[float]) -> int: """ Given a list of numbers, return the sum of squares of the numbers in the list that are odd and the cubic of the number in the list that are even. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 18 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0. """ x = double_the_difference(lst) x += sum((i ** 3 for i in lst if i > 0 and i % 2 == 0 and ('.' not in str(i)))) return x
extended_double_the_difference
def check(candidate): assert candidate([-1, 9, -5, 5, 13, 7, 0, 15]) == 549 assert candidate([-5, -2, 7, 2, 1]) == 58 assert candidate([3, 4, 5, 6, 7]) == 363 def test_check(): check(extended_double_the_difference) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 10 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0.
Given a list of numbers, return the sum of squares of the numbers in the list that are odd and the cubic of the number in the list that are even. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 18 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input list is empty, return 0.
return sum([i ** 2 for i in lst if i > 0 and i % 2 != 0 and ('.' not in str(i))])
x = double_the_difference(lst) x += sum((i ** 3 for i in lst if i > 0 and i % 2 == 0 and ('.' not in str(i)))) return x
double_the_difference(lst: list[float]) -> int
extended_double_the_difference(lst: list[float]) -> int
def compare(game: list[int], guess: list[int]) -> list[int]: """I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: >>> compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) [0, 0, 0, 0, 3, 3] >>> compare([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2]) [4, 4, 1, 0, 0, 6] """
def compare(game: list[int], guess: list[int]) -> list[int]: """I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: >>> compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) [0, 0, 0, 0, 3, 3] >>> compare([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2]) [4, 4, 1, 0, 0, 6] """ return [abs(x - y) for (x, y) in zip(game, guess)]
compare
def who_is_winner(game: list[int], guesses: list[list[int]]) -> int: """Return the index of guesses that is the most closely guess the game. If there is a tie, return the index of the first guess that is the most closely guess the game. Example: >>> who_is_winner([1, 2, 3], [[2, 0, 3], [1, 2, 3]]) 1 >>> who_is_winner([1, 2, 3], [[2, 0, 3], [4, 5, 6]]) 0 """
def who_is_winner(game: list[int], guesses: list[list[int]]) -> int: """Return the index of guesses that is the most closely guess the game. If there is a tie, return the index of the first guess that is the most closely guess the game. Example: >>> who_is_winner([1, 2, 3], [[2, 0, 3], [1, 2, 3]]) 1 >>> who_is_winner([1, 2, 3], [[2, 0, 3], [4, 5, 6]]) 0 """ return min(range(len(guesses)), key=lambda i: sum(compare(game, guesses[i])))
who_is_winner
def check(candidate): assert candidate([3, 9], [[1, 2], [3, 0], [0, 9]]) == 2 assert candidate([3, 3], [[3, 0], [0, 3]]) == 0 assert candidate([4, 2, 8], [[0, 3, 5], [5, 0, 7], [1, 2, 9]]) == 1 def test_check(): check(who_is_winner) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: >>> compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) [0, 0, 0, 0, 3, 3] >>> compare([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2]) [4, 4, 1, 0, 0, 6]
Return the index of guesses that is the most closely guess the game. If there is a tie, return the index of the first guess that is the most closely guess the game. Example: >>> who_is_winner([1, 2, 3], [[2, 0, 3], [1, 2, 3]]) 1 >>> who_is_winner([1, 2, 3], [[2, 0, 3], [4, 5, 6]]) 0
return [abs(x - y) for (x, y) in zip(game, guess)]
return min(range(len(guesses)), key=lambda i: sum(compare(game, guesses[i])))
compare(game: list[int], guess: list[int]) -> list[int]
who_is_winner(game: list[int], guesses: list[list[int]]) -> int
def Strongest_Extension(class_name: str, extensions: list[str]) -> str: """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: >>> Strongest_Extension('my_class', ['AA', 'Be', 'CC']) 'my_class.AA' """
def Strongest_Extension(class_name: str, extensions: list[str]) -> str: """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: >>> Strongest_Extension('my_class', ['AA', 'Be', 'CC']) 'my_class.AA' """ strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val: strong = s my_val = val ans = class_name + '.' + strong return ans
Strongest_Extension
def extended_strongest_extension(extensions: list[str]) -> str: """You will be given a list of extensions. These extensions consist of package name and function name such as `package1.function1`. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the function's name, and let SM be the number of lowercase letters in the function's name, the strength is given by the fraction CAP - SM. You should find the strongest functions and return a dictionary which has package name as key and the strongest extension as value in this format: `package1.function1`. If there are two or more extensions with the same strength in the same package, you should choose the one that comes first in the list. Example: >>> extended_strongest_extension(['my_class.AA', 'my_class.Be', 'my_class2.Be', 'my_class2.CC']) {'my_class': 'my_class.AA', 'my_class2': 'my_class2.CC'} """
def extended_strongest_extension(extensions: list[str]) -> str: """You will be given a list of extensions. These extensions consist of package name and function name such as `package1.function1`. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the function's name, and let SM be the number of lowercase letters in the function's name, the strength is given by the fraction CAP - SM. You should find the strongest functions and return a dictionary which has package name as key and the strongest extension as value in this format: `package1.function1`. If there are two or more extensions with the same strength in the same package, you should choose the one that comes first in the list. Example: >>> extended_strongest_extension(['my_class.AA', 'my_class.Be', 'my_class2.Be', 'my_class2.CC']) {'my_class': 'my_class.AA', 'my_class2': 'my_class2.CC'} """ result = {} for extension in extensions: (package, function) = extension.split('.') if package not in result: result[package] = [function] else: result[package].append(function) for package in result: result[package] = Strongest_Extension(package, result[package]) return result
extended_strongest_extension
def check(candidate): assert candidate(['pack1.func1', 'pack1.Func1', 'pack1.FunC1']) == {'pack1': 'pack1.FunC1'} assert candidate(['math.MIN', 'math.MAX', 'abc.abstractmethod']) == {'math': 'math.MIN', 'abc': 'abc.abstractmethod'} assert candidate(['mirror.iSNa', 'category.FUNC', 'mirror.IsnA']) == {'mirror': 'mirror.iSNa', 'category': 'category.FUNC'} def test_check(): check(extended_strongest_extension) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: >>> Strongest_Extension('my_class', ['AA', 'Be', 'CC']) 'my_class.AA'
You will be given a list of extensions. These extensions consist of package name and function name such as `package1.function1`. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the function's name, and let SM be the number of lowercase letters in the function's name, the strength is given by the fraction CAP - SM. You should find the strongest functions and return a dictionary which has package name as key and the strongest extension as value in this format: `package1.function1`. If there are two or more extensions with the same strength in the same package, you should choose the one that comes first in the list. Example: >>> extended_strongest_extension(['my_class.AA', 'my_class.Be', 'my_class2.Be', 'my_class2.CC']) {'my_class': 'my_class.AA', 'my_class2': 'my_class2.CC'}
strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val: strong = s my_val = val ans = class_name + '.' + strong return ans
result = {} for extension in extensions: (package, function) = extension.split('.') if package not in result: result[package] = [function] else: result[package].append(function) for package in result: result[package] = Strongest_Extension(package, result[package]) return result
Strongest_Extension(class_name: str, extensions: list[str]) -> str
extended_strongest_extension(extensions: list[str]) -> str
def cycpattern_check(a: str, b: str) -> bool: """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word >>> cycpattern_check('abcd', 'abd') False >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efef', 'eeff') False >>> cycpattern_check('himenss', 'simen') True """
def cycpattern_check(a: str, b: str) -> bool: """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word >>> cycpattern_check('abcd', 'abd') False >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efef', 'eeff') False >>> cycpattern_check('himenss', 'simen') True """ l = len(b) pat = b + b for i in range(len(a) - l + 1): for j in range(l + 1): if a[i:i + l] == pat[j:j + l]: return True return False
cycpattern_check
def extended_cycpattern_check(a: str, b: str) -> bool: """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word or any of its rotations >>> cycpattern_check('abcd', 'abd') True >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efeff', 'eeff') True >>> cycpattern_check('himenss', 'simen') True """
def extended_cycpattern_check(a: str, b: str) -> bool: """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word or any of its rotations >>> cycpattern_check('abcd', 'abd') True >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efeff', 'eeff') True >>> cycpattern_check('himenss', 'simen') True """ return any((cycpattern_check(a[i:] + a[:i], b) for i in range(len(a))))
extended_cycpattern_check
def check(candidate): assert candidate('oossiie', 'iso') is False assert candidate('rikkenwhwiejf', 'friwiej') is True assert candidate('whatemfho', 'howhat') is True def test_check(): check(extended_cycpattern_check) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word >>> cycpattern_check('abcd', 'abd') False >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efef', 'eeff') False >>> cycpattern_check('himenss', 'simen') True
You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word or any of its rotations >>> cycpattern_check('abcd', 'abd') True >>> cycpattern_check('hello', 'ell') True >>> cycpattern_check('whassup', 'psus') False >>> cycpattern_check('abab', 'baa') True >>> cycpattern_check('efeff', 'eeff') True >>> cycpattern_check('himenss', 'simen') True
l = len(b) pat = b + b for i in range(len(a) - l + 1): for j in range(l + 1): if a[i:i + l] == pat[j:j + l]: return True return False
return any((cycpattern_check(a[i:] + a[:i], b) for i in range(len(a))))
cycpattern_check(a: str, b: str) -> bool
extended_cycpattern_check(a: str, b: str) -> bool
from typing import Tuple
def even_odd_count(num: int) -> Tuple[int, int]: """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: >>> even_odd_count(-12) (1, 1) >>> even_odd_count(123) (1, 2) """
def even_odd_count(num: int) -> Tuple[int, int]: """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: >>> even_odd_count(-12) (1, 1) >>> even_odd_count(123) (1, 2) """ even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i) % 2 == 0: even_count += 1 else: odd_count += 1 return (even_count, odd_count)
even_odd_count
def balanced_number(num: int) -> bool: """Given an integer. return True if the number of even digits and odd digits are the same. Example: >>> balanced_number(1324) True >>> balanced_number(9119) False """
def balanced_number(num: int) -> bool: """Given an integer. return True if the number of even digits and odd digits are the same. Example: >>> balanced_number(1324) True >>> balanced_number(9119) False """ (even_count, odd_count) = even_odd_count(num) return even_count == odd_count
balanced_number
def check(candidate): assert candidate(1234) is True assert candidate(12345) is False assert candidate(10) is True def test_check(): check(balanced_number) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given an integer. return a tuple that has the number of even and odd digits respectively. Example: >>> even_odd_count(-12) (1, 1) >>> even_odd_count(123) (1, 2)
Given an integer. return True if the number of even digits and odd digits are the same. Example: >>> balanced_number(1324) True >>> balanced_number(9119) False
even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i) % 2 == 0: even_count += 1 else: odd_count += 1 return (even_count, odd_count)
(even_count, odd_count) = even_odd_count(num) return even_count == odd_count
even_odd_count(num: int) -> Tuple[int, int]
balanced_number(num: int) -> bool
def int_to_mini_roman(number: int) -> str: """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) 'xix' >>> int_to_mini_roman(152) 'clii' >>> int_to_mini_roman(426) 'cdxxvi' """
def int_to_mini_roman(number: int) -> str: """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) 'xix' >>> int_to_mini_roman(152) 'clii' >>> int_to_mini_roman(426) 'cdxxvi' """ num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ['I', 'IV', 'V', 'IX', 'X', 'XL', 'L', 'XC', 'C', 'CD', 'D', 'CM', 'M'] i = 12 res = '' while number: div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
int_to_mini_roman
def beautiful_roman_number(number: int) -> bool: """Check if a given number is a beautiful roman number. A roman number is beautiful if it is a palindrome and its length is greater than 1. Restrictions: 1 <= a * b <= 1000 Examples: >>> beautiful_roman_number(2) True >>> beautiful_roman_number(4) False >>> beautiful_roman_number(19) True """
def beautiful_roman_number(number: int) -> bool: """Check if a given number is a beautiful roman number. A roman number is beautiful if it is a palindrome and its length is greater than 1. Restrictions: 1 <= a * b <= 1000 Examples: >>> beautiful_roman_number(2) True >>> beautiful_roman_number(4) False >>> beautiful_roman_number(19) True """ x = int_to_mini_roman(number) return x == x[::-1] and len(x) > 1
beautiful_roman_number
def check(candidate): assert candidate(30) is True assert candidate(190) is True assert candidate(450) is False def test_check(): check(beautiful_roman_number) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) 'xix' >>> int_to_mini_roman(152) 'clii' >>> int_to_mini_roman(426) 'cdxxvi'
Check if a given number is a beautiful roman number. A roman number is beautiful if it is a palindrome and its length is greater than 1. Restrictions: 1 <= a * b <= 1000 Examples: >>> beautiful_roman_number(2) True >>> beautiful_roman_number(4) False >>> beautiful_roman_number(19) True
num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ['I', 'IV', 'V', 'IX', 'X', 'XL', 'L', 'XC', 'C', 'CD', 'D', 'CM', 'M'] i = 12 res = '' while number: div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
x = int_to_mini_roman(number) return x == x[::-1] and len(x) > 1
int_to_mini_roman(number: int) -> str
beautiful_roman_number(number: int) -> bool
def right_angle_triangle(a: int, b: int, c: int) -> bool: """ Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> right_angle_triangle(3, 4, 5) True >>> right_angle_triangle(1, 2, 3) False """
def right_angle_triangle(a: int, b: int, c: int) -> bool: """ Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> right_angle_triangle(3, 4, 5) True >>> right_angle_triangle(1, 2, 3) False """ return a * a == b * b + c * c or b * b == a * a + c * c or c * c == a * a + b * b
right_angle_triangle
def make_right_angle_triangle(a: int, b: int) -> int: """ Given the lengths of two sides of a triangle, return the integer length of the third side if the three sides form a right-angled triangle, -1 otherwise. All sides of the triangle could not exceed 1000. If there is more than one possible value, return the smallest one. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> make_right_angle_triangle(3, 4) 5 >>> make_right_angle_triangle(1, 2) -1 """
def make_right_angle_triangle(a: int, b: int) -> int: """ Given the lengths of two sides of a triangle, return the integer length of the third side if the three sides form a right-angled triangle, -1 otherwise. All sides of the triangle could not exceed 1000. If there is more than one possible value, return the smallest one. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> make_right_angle_triangle(3, 4) 5 >>> make_right_angle_triangle(1, 2) -1 """ if 1 <= a <= 1000 and 1 <= b <= 1000: for c in range(1, 1000): if right_angle_triangle(a, b, c): return c return -1
make_right_angle_triangle
def check(candidate): assert candidate(6, 10) == 8 assert candidate(13, 5) == 12 assert candidate(5, 11) == -1 def test_check(): check(make_right_angle_triangle) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> right_angle_triangle(3, 4, 5) True >>> right_angle_triangle(1, 2, 3) False
Given the lengths of two sides of a triangle, return the integer length of the third side if the three sides form a right-angled triangle, -1 otherwise. All sides of the triangle could not exceed 1000. If there is more than one possible value, return the smallest one. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> make_right_angle_triangle(3, 4) 5 >>> make_right_angle_triangle(1, 2) -1
return a * a == b * b + c * c or b * b == a * a + c * c or c * c == a * a + b * b
if 1 <= a <= 1000 and 1 <= b <= 1000: for c in range(1, 1000): if right_angle_triangle(a, b, c): return c return -1
right_angle_triangle(a: int, b: int, c: int) -> bool
make_right_angle_triangle(a: int, b: int) -> int
def find_max(words: list[str]) -> str: """Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. >>> find_max(['name', 'of', 'string']) 'string' >>> find_max(['name', 'enam', 'game']) 'enam' >>> find_max(['aaaaaaa', 'bb', 'cc']) 'aaaaaaa' """
def find_max(words: list[str]) -> str: """Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. >>> find_max(['name', 'of', 'string']) 'string' >>> find_max(['name', 'enam', 'game']) 'enam' >>> find_max(['aaaaaaa', 'bb', 'cc']) 'aaaaaaa' """ return sorted(words, key=lambda x: (-len(set(x)), x))[0]
find_max
def contain_complicated_words(words: list[str]) -> int: """Check if the given list of words contains complicated words. complicated words means the word contains more than 5 unique characters. Return the index of the most complicated word in words and -1 if there doesn't exist complicated word. If there are multiple the most complicated words, return the index of the first complicated word in lexicographical order. >>> contain_complicated_words(['name', 'of', 'string']) 2 >>> contain_complicated_words(['name', 'enam', 'game']) -1 >>> contain_complicated_words(['aaaaaaa', 'bb', 'cc']) -1 """
def contain_complicated_words(words: list[str]) -> int: """Check if the given list of words contains complicated words. complicated words means the word contains more than 5 unique characters. Return the index of the most complicated word in words and -1 if there doesn't exist complicated word. If there are multiple the most complicated words, return the index of the first complicated word in lexicographical order. >>> contain_complicated_words(['name', 'of', 'string']) 2 >>> contain_complicated_words(['name', 'enam', 'game']) -1 >>> contain_complicated_words(['aaaaaaa', 'bb', 'cc']) -1 """ word = find_max(words) if len(set(word)) > 5: return words.index(word) else: return -1
contain_complicated_words
def check(candidate): assert candidate(['analysis', 'cheeze', 'accept', 'centered']) == 0 assert candidate(['pee', 'sat', 'erase']) == -1 assert candidate(['eeeeeeee', 'wwwwseeeeew', 'wwwwwzxdef']) == 2 def test_check(): check(contain_complicated_words) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. >>> find_max(['name', 'of', 'string']) 'string' >>> find_max(['name', 'enam', 'game']) 'enam' >>> find_max(['aaaaaaa', 'bb', 'cc']) 'aaaaaaa'
Check if the given list of words contains complicated words. complicated words means the word contains more than 5 unique characters. Return the index of the most complicated word in words and -1 if there doesn't exist complicated word. If there are multiple the most complicated words, return the index of the first complicated word in lexicographical order. >>> contain_complicated_words(['name', 'of', 'string']) 2 >>> contain_complicated_words(['name', 'enam', 'game']) -1 >>> contain_complicated_words(['aaaaaaa', 'bb', 'cc']) -1
return sorted(words, key=lambda x: (-len(set(x)), x))[0]
word = find_max(words) if len(set(word)) > 5: return words.index(word) else: return -1
find_max(words: list[str]) -> str
contain_complicated_words(words: list[str]) -> int
def eat(number: int, need: int, remaining: int) -> list[int]: """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: >>> eat(5, 6, 10) [11, 4] >>> eat(4, 8, 9) [12, 1] >>> eat(1, 10, 10) [11, 0] >>> eat(2, 11, 5) [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """
def eat(number: int, need: int, remaining: int) -> list[int]: """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: >>> eat(5, 6, 10) [11, 4] >>> eat(4, 8, 9) [12, 1] >>> eat(1, 10, 10) [11, 0] >>> eat(2, 11, 5) [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ if need <= remaining: return [number + need, remaining - need] else: return [number + remaining, 0]
eat
def eat_days(numbers: list[int], need: int, remaining: int) -> list[int]: """ You're a hungry rabbit, and every you already have eaten a certain number of carrots in your friend's house, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after a couple of days, the number of remaining carrots in a stock after a couple of days ] if there are not enough remaining carrots, you will eat all remaining carrots, and sleep in a hunger status. (you will not eat more carrots in the next day) Example: >>> eat_week([3, 7, 4, 6, 5, 2, 9], 7, 10) [50, 0] Variables: @numbers: the number of carrots that you already have eaten in your friend's house during a couple of days. @need : integer the number of carrots that you need to eat during a day. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= the elements in numbers <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """
def eat_days(numbers: list[int], need: int, remaining: int) -> list[int]: """ You're a hungry rabbit, and every you already have eaten a certain number of carrots in your friend's house, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after a couple of days, the number of remaining carrots in a stock after a couple of days ] if there are not enough remaining carrots, you will eat all remaining carrots, and sleep in a hunger status. (you will not eat more carrots in the next day) Example: >>> eat_week([3, 7, 4, 6, 5, 2, 9], 7, 10) [50, 0] Variables: @numbers: the number of carrots that you already have eaten in your friend's house during a couple of days. @need : integer the number of carrots that you need to eat during a day. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= the elements in numbers <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ (ans1, ans2) = (0, remaining) for number in numbers: (x1, ans2) = eat(number, max(need - number, 0), ans2) ans1 += x1 return [ans1, ans2]
eat_days
def check(candidate): assert candidate([3, 5, 4, 5], 5, 10) == [20, 7] assert candidate([1, 2, 1, 2], 4, 5) == [11, 0] assert candidate([3, 5], 4, 2) == [9, 1] def test_check(): check(eat_days) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: >>> eat(5, 6, 10) [11, 4] >>> eat(4, 8, 9) [12, 1] >>> eat(1, 10, 10) [11, 0] >>> eat(2, 11, 5) [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :)
You're a hungry rabbit, and every you already have eaten a certain number of carrots in your friend's house, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after a couple of days, the number of remaining carrots in a stock after a couple of days ] if there are not enough remaining carrots, you will eat all remaining carrots, and sleep in a hunger status. (you will not eat more carrots in the next day) Example: >>> eat_week([3, 7, 4, 6, 5, 2, 9], 7, 10) [50, 0] Variables: @numbers: the number of carrots that you already have eaten in your friend's house during a couple of days. @need : integer the number of carrots that you need to eat during a day. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= the elements in numbers <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :)
if need <= remaining: return [number + need, remaining - need] else: return [number + remaining, 0]
(ans1, ans2) = (0, remaining) for number in numbers: (x1, ans2) = eat(number, max(need - number, 0), ans2) ans1 += x1 return [ans1, ans2]
eat(number: int, need: int, remaining: int) -> list[int]
eat_days(numbers: list[int], need: int, remaining: int) -> list[int]
def do_algebra(operator: list[str], operand: list[int]) -> int: """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """
def do_algebra(operator: list[str], operand: list[int]) -> int: """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ expression = str(operand[0]) for (oprt, oprn) in zip(operator, operand[1:]): expression += oprt + str(oprn) return eval(expression)
do_algebra
def do_algebra_sequentially(operator: list, operand: list) -> list[int]: """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. Note that the operator is applied sequentially from left to right. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = (((2 + 3) * 4) - 5) => result = 15 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """
def do_algebra_sequentially(operator: list, operand: list) -> list[int]: """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. Note that the operator is applied sequentially from left to right. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = (((2 + 3) * 4) - 5) => result = 15 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ val = operand[0] for (op, val2) in zip(operator, operand[1:]): val = do_algebra([op], [val, val2]) return val
do_algebra_sequentially
def check(candidate): assert candidate(['-', '*', '+'], [3, 1, 4, 5]) == 13 assert candidate(['-', '-', '//', '+'], [9, 3, 2, 3, 5]) == 6 assert candidate(['*', '+'], [3, 5, 7]) == 22 def test_check(): check(do_algebra_sequentially) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands.
Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. Note that the operator is applied sequentially from left to right. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = (((2 + 3) * 4) - 5) => result = 15 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands.
expression = str(operand[0]) for (oprt, oprn) in zip(operator, operand[1:]): expression += oprt + str(oprn) return eval(expression)
val = operand[0] for (op, val2) in zip(operator, operand[1:]): val = do_algebra([op], [val, val2]) return val
do_algebra(operator: list[str], operand: list[int]) -> int
do_algebra_sequentially(operator: list, operand: list) -> list[int]
from typing import Optional
def string_to_md5(text: str) -> Optional[str]: """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') '3e25960a79dbc69b674cd4ec67a72c62' """
def string_to_md5(text: str) -> Optional[str]: """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') '3e25960a79dbc69b674cd4ec67a72c62' """ import hashlib return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
string_to_md5
def match_password(password: str, h: str) -> bool: """ Given a string 'password' and its md5 hash equivalent string 'h', return True if 'password' is the original string, otherwise return False. if 'password' is an empty string, return False. >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a72c62') True >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a73c62') False """
def match_password(password: str, h: str) -> bool: """ Given a string 'password' and its md5 hash equivalent string 'h', return True if 'password' is the original string, otherwise return False. if 'password' is an empty string, return False. >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a72c62') True >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a73c62') False """ return string_to_md5(password) == h if len(password) > 0 else False
match_password
def check(candidate): assert candidate('this is password', '8910e62fae2505e21f568632df8410a9') is True assert candidate('this was password', '8910e62fae2505e21f568632df8410a9') is False assert candidate('', '8910e62fae2505e21f568632df8410a9') is False def test_check(): check(match_password) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') '3e25960a79dbc69b674cd4ec67a72c62'
Given a string 'password' and its md5 hash equivalent string 'h', return True if 'password' is the original string, otherwise return False. if 'password' is an empty string, return False. >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a72c62') True >>> match_password('Hello world', '3e25960a79dbc69b674cd4ec67a73c62') False
import hashlib return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
return string_to_md5(password) == h if len(password) > 0 else False
string_to_md5(text: str) -> Optional[str]
match_password(password: str, h: str) -> bool
def generate_integers(a: int, b: int) -> list[int]: """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: >>> generate_integers(2, 8) [2, 4, 6, 8] >>> generate_integers(8, 2) [2, 4, 6, 8] >>> generate_integers(10, 14) [] """
def generate_integers(a: int, b: int) -> list[int]: """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: >>> generate_integers(2, 8) [2, 4, 6, 8] >>> generate_integers(8, 2) [2, 4, 6, 8] >>> generate_integers(10, 14) [] """ lower = max(2, min(a, b)) upper = min(8, max(a, b)) return [i for i in range(lower, upper + 1) if i % 2 == 0]
generate_integers
def sum_of_even_digits(a: int, b: int) -> int: """ Given two positive integers a and b, return the sum of the even digits between a and b, inclusive. For example: >>> sum_of_even_digits(2, 8) 20 >>> sum_of_even_digits(8, 2) 20 >>> sum_of_even_digits(10, 14) 0 """
def sum_of_even_digits(a: int, b: int) -> int: """ Given two positive integers a and b, return the sum of the even digits between a and b, inclusive. For example: >>> sum_of_even_digits(2, 8) 20 >>> sum_of_even_digits(8, 2) 20 >>> sum_of_even_digits(10, 14) 0 """ return sum(generate_integers(a, b))
sum_of_even_digits
def check(candidate): assert candidate(7, 3) == 10 assert candidate(10, 1) == 20 assert candidate(6, 6) == 6 def test_check(): check(sum_of_even_digits) test_check()
[ "\ndef", "\n#", "\nif", "\nclass" ]
Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: >>> generate_integers(2, 8) [2, 4, 6, 8] >>> generate_integers(8, 2) [2, 4, 6, 8] >>> generate_integers(10, 14) []
Given two positive integers a and b, return the sum of the even digits between a and b, inclusive. For example: >>> sum_of_even_digits(2, 8) 20 >>> sum_of_even_digits(8, 2) 20 >>> sum_of_even_digits(10, 14) 0
lower = max(2, min(a, b)) upper = min(8, max(a, b)) return [i for i in range(lower, upper + 1) if i % 2 == 0]
return sum(generate_integers(a, b))
generate_integers(a: int, b: int) -> list[int]
sum_of_even_digits(a: int, b: int) -> int