File size: 15,527 Bytes
7a6289f
 
 
 
 
7a6e38f
7a6289f
154ac3b
7a6289f
 
 
fd39ae0
 
7a6289f
 
 
 
cdf110e
3f0cbac
7fb380d
cdf110e
 
75ff1b1
 
 
 
 
 
 
 
 
 
 
ac0f430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ff1b1
 
 
 
 
 
 
 
 
4c97b91
 
 
75ff1b1
 
 
 
 
 
 
 
 
 
 
 
ac0f430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ff1b1
 
 
 
 
 
 
 
 
4c97b91
 
 
75ff1b1
 
ac0f430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b12672a
 
 
7a6289f
 
 
 
 
 
 
 
3f0cbac
7a6289f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee3cf8
7a6289f
 
 
154ac3b
 
7a6289f
 
154ac3b
7a6289f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee3cf8
 
 
cdf110e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
annotations_creators:
- other
language_creators:
- other
language:
- en
license: apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: discovery
pretty_name: Discovery
tags:
- discourse-marker-prediction
dataset_info:
- config_name: discovery
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '[no-conn]'
          '1': absolutely,
          '2': accordingly
          '3': actually,
          '4': additionally
          '5': admittedly,
          '6': afterward
          '7': again,
          '8': already,
          '9': also,
          '10': alternately,
          '11': alternatively
          '12': although,
          '13': altogether,
          '14': amazingly,
          '15': and
          '16': anyway,
          '17': apparently,
          '18': arguably,
          '19': as_a_result,
          '20': basically,
          '21': because_of_that
          '22': because_of_this
          '23': besides,
          '24': but
          '25': by_comparison,
          '26': by_contrast,
          '27': by_doing_this,
          '28': by_then
          '29': certainly,
          '30': clearly,
          '31': coincidentally,
          '32': collectively,
          '33': consequently
          '34': conversely
          '35': curiously,
          '36': currently,
          '37': elsewhere,
          '38': especially,
          '39': essentially,
          '40': eventually,
          '41': evidently,
          '42': finally,
          '43': first,
          '44': firstly,
          '45': for_example
          '46': for_instance
          '47': fortunately,
          '48': frankly,
          '49': frequently,
          '50': further,
          '51': furthermore
          '52': generally,
          '53': gradually,
          '54': happily,
          '55': hence,
          '56': here,
          '57': historically,
          '58': honestly,
          '59': hopefully,
          '60': however
          '61': ideally,
          '62': immediately,
          '63': importantly,
          '64': in_contrast,
          '65': in_fact,
          '66': in_other_words
          '67': in_particular,
          '68': in_short,
          '69': in_sum,
          '70': in_the_end,
          '71': in_the_meantime,
          '72': in_turn,
          '73': incidentally,
          '74': increasingly,
          '75': indeed,
          '76': inevitably,
          '77': initially,
          '78': instead,
          '79': interestingly,
          '80': ironically,
          '81': lastly,
          '82': lately,
          '83': later,
          '84': likewise,
          '85': locally,
          '86': luckily,
          '87': maybe,
          '88': meaning,
          '89': meantime,
          '90': meanwhile,
          '91': moreover
          '92': mostly,
          '93': namely,
          '94': nationally,
          '95': naturally,
          '96': nevertheless
          '97': next,
          '98': nonetheless
          '99': normally,
          '100': notably,
          '101': now,
          '102': obviously,
          '103': occasionally,
          '104': oddly,
          '105': often,
          '106': on_the_contrary,
          '107': on_the_other_hand
          '108': once,
          '109': only,
          '110': optionally,
          '111': or,
          '112': originally,
          '113': otherwise,
          '114': overall,
          '115': particularly,
          '116': perhaps,
          '117': personally,
          '118': plus,
          '119': preferably,
          '120': presently,
          '121': presumably,
          '122': previously,
          '123': probably,
          '124': rather,
          '125': realistically,
          '126': really,
          '127': recently,
          '128': regardless,
          '129': remarkably,
          '130': sadly,
          '131': second,
          '132': secondly,
          '133': separately,
          '134': seriously,
          '135': significantly,
          '136': similarly,
          '137': simultaneously
          '138': slowly,
          '139': so,
          '140': sometimes,
          '141': soon,
          '142': specifically,
          '143': still,
          '144': strangely,
          '145': subsequently,
          '146': suddenly,
          '147': supposedly,
          '148': surely,
          '149': surprisingly,
          '150': technically,
          '151': thankfully,
          '152': then,
          '153': theoretically,
          '154': thereafter,
          '155': thereby,
          '156': therefore
          '157': third,
          '158': thirdly,
          '159': this,
          '160': though,
          '161': thus,
          '162': together,
          '163': traditionally,
          '164': truly,
          '165': truthfully,
          '166': typically,
          '167': ultimately,
          '168': undoubtedly,
          '169': unfortunately,
          '170': unsurprisingly,
          '171': usually,
          '172': well,
          '173': yet,
  - name: idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 334809726
    num_examples: 1566000
  - name: validation
    num_bytes: 18607661
    num_examples: 87000
  - name: test
    num_bytes: 18615474
    num_examples: 87000
  download_size: 146233621
  dataset_size: 372032861
- config_name: discoverysmall
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '[no-conn]'
          '1': absolutely,
          '2': accordingly
          '3': actually,
          '4': additionally
          '5': admittedly,
          '6': afterward
          '7': again,
          '8': already,
          '9': also,
          '10': alternately,
          '11': alternatively
          '12': although,
          '13': altogether,
          '14': amazingly,
          '15': and
          '16': anyway,
          '17': apparently,
          '18': arguably,
          '19': as_a_result,
          '20': basically,
          '21': because_of_that
          '22': because_of_this
          '23': besides,
          '24': but
          '25': by_comparison,
          '26': by_contrast,
          '27': by_doing_this,
          '28': by_then
          '29': certainly,
          '30': clearly,
          '31': coincidentally,
          '32': collectively,
          '33': consequently
          '34': conversely
          '35': curiously,
          '36': currently,
          '37': elsewhere,
          '38': especially,
          '39': essentially,
          '40': eventually,
          '41': evidently,
          '42': finally,
          '43': first,
          '44': firstly,
          '45': for_example
          '46': for_instance
          '47': fortunately,
          '48': frankly,
          '49': frequently,
          '50': further,
          '51': furthermore
          '52': generally,
          '53': gradually,
          '54': happily,
          '55': hence,
          '56': here,
          '57': historically,
          '58': honestly,
          '59': hopefully,
          '60': however
          '61': ideally,
          '62': immediately,
          '63': importantly,
          '64': in_contrast,
          '65': in_fact,
          '66': in_other_words
          '67': in_particular,
          '68': in_short,
          '69': in_sum,
          '70': in_the_end,
          '71': in_the_meantime,
          '72': in_turn,
          '73': incidentally,
          '74': increasingly,
          '75': indeed,
          '76': inevitably,
          '77': initially,
          '78': instead,
          '79': interestingly,
          '80': ironically,
          '81': lastly,
          '82': lately,
          '83': later,
          '84': likewise,
          '85': locally,
          '86': luckily,
          '87': maybe,
          '88': meaning,
          '89': meantime,
          '90': meanwhile,
          '91': moreover
          '92': mostly,
          '93': namely,
          '94': nationally,
          '95': naturally,
          '96': nevertheless
          '97': next,
          '98': nonetheless
          '99': normally,
          '100': notably,
          '101': now,
          '102': obviously,
          '103': occasionally,
          '104': oddly,
          '105': often,
          '106': on_the_contrary,
          '107': on_the_other_hand
          '108': once,
          '109': only,
          '110': optionally,
          '111': or,
          '112': originally,
          '113': otherwise,
          '114': overall,
          '115': particularly,
          '116': perhaps,
          '117': personally,
          '118': plus,
          '119': preferably,
          '120': presently,
          '121': presumably,
          '122': previously,
          '123': probably,
          '124': rather,
          '125': realistically,
          '126': really,
          '127': recently,
          '128': regardless,
          '129': remarkably,
          '130': sadly,
          '131': second,
          '132': secondly,
          '133': separately,
          '134': seriously,
          '135': significantly,
          '136': similarly,
          '137': simultaneously
          '138': slowly,
          '139': so,
          '140': sometimes,
          '141': soon,
          '142': specifically,
          '143': still,
          '144': strangely,
          '145': subsequently,
          '146': suddenly,
          '147': supposedly,
          '148': surely,
          '149': surprisingly,
          '150': technically,
          '151': thankfully,
          '152': then,
          '153': theoretically,
          '154': thereafter,
          '155': thereby,
          '156': therefore
          '157': third,
          '158': thirdly,
          '159': this,
          '160': though,
          '161': thus,
          '162': together,
          '163': traditionally,
          '164': truly,
          '165': truthfully,
          '166': typically,
          '167': ultimately,
          '168': undoubtedly,
          '169': unfortunately,
          '170': unsurprisingly,
          '171': usually,
          '172': well,
          '173': yet,
  - name: idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 3355192
    num_examples: 15662
  - name: validation
    num_bytes: 185296
    num_examples: 871
  - name: test
    num_bytes: 187471
    num_examples: 869
  download_size: 146233621
  dataset_size: 3727959
train-eval-index:
- config: discovery
  task: text-classification
  task_id: multi-class-classification
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
- config: discoverysmall
  task: text-classification
  task_id: multi-class-classification
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
config_names:
- discovery
- discoverysmall
---


# Dataset Card for Discovery

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/sileod/Discovery
- **Repository:** https://github.com/sileod/Discovery
- **Paper:** https://www.aclweb.org/anthology/N19-1351/
- **Leaderboard:**
- **Point of Contact:** damien.sileo at inria.fr

### Dataset Summary

Discourse marker prediction with 174 markers

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English

## Dataset Structure

input : sentence1, sentence2, 
label: marker originally between sentence1 and sentence2

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

Train/Val/Test

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

Aranea english web corpus

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

Self supervised (see paper)

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{sileo-etal-2019-mining,
    title = "Mining Discourse Markers for Unsupervised Sentence Representation Learning",
    author = "Sileo, Damien  and
      Van De Cruys, Tim  and
      Pradel, Camille  and
      Muller, Philippe",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N19-1351",
    pages = "3477--3486",
    abstract = "Current state of the art systems in NLP heavily rely on manually annotated datasets, which are expensive to construct. Very little work adequately exploits unannotated data {--} such as discourse markers between sentences {--} mainly because of data sparseness and ineffective extraction methods. In the present work, we propose a method to automatically discover sentence pairs with relevant discourse markers, and apply it to massive amounts of data. Our resulting dataset contains 174 discourse markers with at least 10k examples each, even for rare markers such as {``}coincidentally{''} or {``}amazingly{''}. We use the resulting data as supervision for learning transferable sentence embeddings. In addition, we show that even though sentence representation learning through prediction of discourse marker yields state of the art results across different transfer tasks, it{'}s not clear that our models made use of the semantic relation between sentences, thus leaving room for further improvements.",
}
```

### Contributions

Thanks to [@sileod](https://github.com/sileod) for adding this dataset.