Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SST-2 (Stanford Sentiment Treebank v2) dataset.""" | |
import csv | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{socher2013recursive, | |
title={Recursive deep models for semantic compositionality over a sentiment treebank}, | |
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher}, | |
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing}, | |
pages={1631--1642}, | |
year={2013} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Stanford Sentiment Treebank consists of sentences from movie reviews and | |
human annotations of their sentiment. The task is to predict the sentiment of a | |
given sentence. We use the two-way (positive/negative) class split, and use only | |
sentence-level labels. | |
""" | |
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/" | |
_LICENSE = "Unknown" | |
_URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip" | |
class Sst2(datasets.GeneratorBasedBuilder): | |
"""SST-2 dataset.""" | |
VERSION = datasets.Version("2.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"idx": datasets.Value("int32"), | |
"sentence": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["negative", "positive"]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
dl_dir = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"file_paths": dl_manager.iter_files(dl_dir), | |
"data_filename": "train.tsv", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"file_paths": dl_manager.iter_files(dl_dir), | |
"data_filename": "dev.tsv", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"file_paths": dl_manager.iter_files(dl_dir), | |
"data_filename": "test.tsv", | |
}, | |
), | |
] | |
def _generate_examples(self, file_paths, data_filename): | |
for file_path in file_paths: | |
filename = os.path.basename(file_path) | |
if filename == data_filename: | |
with open(file_path, encoding="utf8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for idx, row in enumerate(reader): | |
yield idx, { | |
"idx": row["index"] if "index" in row else idx, | |
"sentence": row["sentence"], | |
"label": int(row["label"]) if "label" in row else -1, | |
} | |