Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
stance-detection
License:
test split done
Browse files- dataset_infos.json +1 -1
- rumoureval_2019.py +4 -3
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"RumourEval2019": {"description": "This new dataset is designed to solve this great NLP task and is crafted with a lot of care.\n", "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n", "homepage": "", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "source_text": {"dtype": "string", "id": null, "_type": "Value"}, "reply_text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["support", "query", "deny", "comment"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "rumour_eval2019", "config_name": "RumourEval2019", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1242200, "num_examples": 4879, "dataset_name": "rumour_eval2019"}, "validation": {"name": "validation", "num_bytes": 412707, "num_examples": 1440, "dataset_name": "rumour_eval2019"}, "test": {"name": "test", "num_bytes": 491431, "num_examples": 1675, "dataset_name": "rumour_eval2019"}}, "download_checksums": {"rumoureval2019_train.csv": {"num_bytes": 1203917, "checksum": "134c036e34da708f0edb22b3cc688054d6395d1669eef78e4afa0fd9a4ed4c43"}, "rumoureval2019_val.csv": {"num_bytes": 402303, "checksum": "6cc859c2eff320ba002866e0b78f7e956b78d58e9e3a7843798b2dd9c23de201"}, "rumoureval2019_test.csv": {"num_bytes": 479250, "checksum": "7d103bfb55cdef3b0d26c481ceb772159ae824aa15bf26e8b26dc87a58c55508"}}, "download_size": 2085470, "post_processing_size": null, "dataset_size": 2146338, "size_in_bytes": 4231808}}
|
rumoureval_2019.py
CHANGED
@@ -53,7 +53,7 @@ class RumourEval2019Config(datasets.BuilderConfig):
|
|
53 |
class RumourEval2019(datasets.GeneratorBasedBuilder):
|
54 |
"""RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)"""
|
55 |
|
56 |
-
VERSION = datasets.Version("0.
|
57 |
|
58 |
BUILDER_CONFIGS = [
|
59 |
RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"),
|
@@ -88,10 +88,11 @@ class RumourEval2019(datasets.GeneratorBasedBuilder):
|
|
88 |
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
|
89 |
validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
|
90 |
test_text = dl_manager.download_and_extract("rumoureval2019_test.csv")
|
|
|
91 |
return [
|
92 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
93 |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}),
|
94 |
-
datasets.SplitGenerator(name=datasets.Split.TEST,
|
95 |
]
|
96 |
|
97 |
def _generate_examples(self, filepath, split):
|
|
|
53 |
class RumourEval2019(datasets.GeneratorBasedBuilder):
|
54 |
"""RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)"""
|
55 |
|
56 |
+
VERSION = datasets.Version("1.0.0")
|
57 |
|
58 |
BUILDER_CONFIGS = [
|
59 |
RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"),
|
|
|
88 |
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
|
89 |
validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
|
90 |
test_text = dl_manager.download_and_extract("rumoureval2019_test.csv")
|
91 |
+
|
92 |
return [
|
93 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}),
|
94 |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}),
|
95 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}),
|
96 |
]
|
97 |
|
98 |
def _generate_examples(self, filepath, split):
|