Datasets:
Tasks:
Token Classification
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
abbreviation-detection
License:
import os | |
import datasets | |
from typing import List | |
import json | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022. | |
The dataset can help build sequence labelling models for the task Abbreviation Detection. | |
""" | |
class PLODunfilteredConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Conll2003""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig forConll2003. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PLODunfilteredConfig, self).__init__(**kwargs) | |
class PLODunfilteredConfig(datasets.GeneratorBasedBuilder): | |
"""PLOD Unfiltered dataset.""" | |
BUILDER_CONFIGS = [ | |
PLODunfilteredConfig(name="PLODunfiltered", version=datasets.Version("0.0.2"), description="PLOD unfiltered dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"ADJ", | |
"ADP", | |
"ADV", | |
"AUX", | |
"CONJ", | |
"CCONJ", | |
"DET", | |
"INTJ", | |
"NOUN", | |
"NUM", | |
"PART", | |
"PRON", | |
"PROPN", | |
"PUNCT", | |
"SCONJ", | |
"SYM", | |
"VERB", | |
"X", | |
"SPACE" | |
] | |
) | |
), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"B-O", | |
"B-AC", | |
"I-AC", | |
"B-LF", | |
"I-LF" | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", | |
citation=_CITATION, | |
) | |
_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered/resolve/main/data/" | |
_URLS = { | |
"train": _URL + "PLOS-train70-unfiltered-pos_bio.json", | |
"dev": _URL + "PLOS-val15-unfiltered-pos_bio.json", | |
"test": _URL + "PLOS-test15-unfiltered-pos_bio.json" | |
} | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
urls_to_download = self._URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath) as f: | |
plod = json.load(f) | |
for object in plod: | |
id_ = int(object['id']) | |
yield id_, { | |
"id": str(id_), | |
"tokens": object['tokens'], | |
"pos_tags": object['pos_tags'], | |
"ner_tags": object['ner_tags'], | |
} |