Datasets:
Tasks:
Token Classification
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
abbreviation-detection
License:
dipteshkanojia
commited on
Commit
·
cc93bfb
1
Parent(s):
37e4746
changes
Browse files
README.md
CHANGED
@@ -1,4 +1,23 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# PLOD: An Abbreviation Detection Dataset
|
4 |
|
@@ -12,6 +31,108 @@ We provide two variants of our dataset - Filtered and Unfiltered. They are descr
|
|
12 |
|
13 |
2. The Unfiltered version can be accessed via [Huggingface Datasets here](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) and a [CONLL format is present here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection).<br/>
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
### Installation
|
16 |
|
17 |
We use the custom NER pipeline in the [spaCy transformers](https://spacy.io/universe/project/spacy-transformers) library to train our models. This library supports training via any pre-trained language models available at the :rocket: [HuggingFace repository](https://huggingface.co/).<br/>
|
|
|
1 |
+
annotations_creators:
|
2 |
+
- Leonardo Zilio, Hadeel Saadany, Prashant Sharma, Diptesh Kanojia, Constantin Orasan
|
3 |
+
language_creators:
|
4 |
+
- found
|
5 |
+
languages:
|
6 |
+
- en
|
7 |
+
licenses:
|
8 |
+
- cc-by-sa4.0
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
paperswithcode_id: acronym-identification
|
12 |
+
pretty_name: 'PLOD: An Abbreviation Detection Dataset'
|
13 |
+
size_categories:
|
14 |
+
- 100K<n<1M
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
task_categories:
|
18 |
+
- token-classification
|
19 |
+
task_ids:
|
20 |
+
- named-entity-recognition
|
21 |
|
22 |
# PLOD: An Abbreviation Detection Dataset
|
23 |
|
|
|
31 |
|
32 |
2. The Unfiltered version can be accessed via [Huggingface Datasets here](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) and a [CONLL format is present here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection).<br/>
|
33 |
|
34 |
+
# Dataset Card for PLOD-unfiltered
|
35 |
+
|
36 |
+
## Table of Contents
|
37 |
+
- [Dataset Description](#dataset-description)
|
38 |
+
- [Dataset Summary](#dataset-summary)
|
39 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
40 |
+
- [Languages](#languages)
|
41 |
+
- [Dataset Structure](#dataset-structure)
|
42 |
+
- [Data Instances](#data-instances)
|
43 |
+
- [Data Fields](#data-instances)
|
44 |
+
- [Data Splits](#data-instances)
|
45 |
+
- [Dataset Creation](#dataset-creation)
|
46 |
+
- [Curation Rationale](#curation-rationale)
|
47 |
+
- [Source Data](#source-data)
|
48 |
+
- [Annotations](#annotations)
|
49 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
50 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
51 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
52 |
+
- [Discussion of Biases](#discussion-of-biases)
|
53 |
+
- [Other Known Limitations](#other-known-limitations)
|
54 |
+
- [Additional Information](#additional-information)
|
55 |
+
- [Dataset Curators](#dataset-curators)
|
56 |
+
- [Licensing Information](#licensing-information)
|
57 |
+
- [Citation Information](#citation-information)
|
58 |
+
|
59 |
+
## Dataset Description
|
60 |
+
|
61 |
+
- **Homepage:** [Needs More Information]
|
62 |
+
- **Repository:** https://github.com/surrey-nlp/PLOD-AbbreviationDetection
|
63 |
+
- **Paper:** XX
|
64 |
+
- **Leaderboard:** YY
|
65 |
+
- **Point of Contact:** [Diptesh Kanojia](mailto:[email protected])
|
66 |
+
|
67 |
+
### Dataset Summary
|
68 |
+
|
69 |
+
This PLOD Dataset is an English-language dataset of abbreviations and their long-forms tagged in text. The dataset has been collected for research from the PLOS journals indexing of abbreviations and long-forms in the text. This dataset was created to support the Natural Language Processing task of abbreviation detection and covers the scientific domain.
|
70 |
+
|
71 |
+
### Supported Tasks and Leaderboards
|
72 |
+
|
73 |
+
This dataset primarily supports the Abbreviation Detection Task. It has also been tested on a train+dev split provided by the Acronym Detection Shared Task organized as a part of the Scientific Document Understanding (SDU) workshop at AAAI 2022.
|
74 |
+
|
75 |
+
|
76 |
+
### Languages
|
77 |
+
|
78 |
+
English
|
79 |
+
|
80 |
+
## Dataset Structure
|
81 |
+
|
82 |
+
### Data Instances
|
83 |
+
|
84 |
+
A typical data point comprises an ID, a set of `tokens` present in the text, a set of `pos_tags` for the corresponding tokens obtained via Spacy NER, and a set of `ner_tags` which are limited to `AC` for `Acronym` and `LF` for `long-forms`.
|
85 |
+
|
86 |
+
An example from the dataset:
|
87 |
+
{'id': '1',
|
88 |
+
'tokens': ['Study', '-', 'specific', 'risk', 'ratios', '(', 'RRs', ')', 'and', 'mean', 'BW', 'differences', 'were', 'calculated', 'using', 'linear', 'and', 'log', '-', 'binomial', 'regression', 'models', 'controlling', 'for', 'confounding', 'using', 'inverse', 'probability', 'of', 'treatment', 'weights', '(', 'IPTW', ')', 'truncated', 'at', 'the', '1st', 'and', '99th', 'percentiles', '.'],
|
89 |
+
'pos_tags': [8, 13, 0, 8, 8, 13, 12, 13, 5, 0, 12, 8, 3, 16, 16, 0, 5, 0, 13, 0, 8, 8, 16, 1, 8, 16, 0, 8, 1, 8, 8, 13, 12, 13, 16, 1, 6, 0, 5, 0, 8, 13],
|
90 |
+
'ner_tags': [0, 0, 0, 3, 4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
91 |
+
}
|
92 |
+
|
93 |
+
### Data Fields
|
94 |
+
|
95 |
+
- id: the row identifier for the dataset point.
|
96 |
+
- tokens: The tokens contained in the text.
|
97 |
+
- pos_tags: the Part-of-Speech tags obtained for the corresponding token above from Spacy NER.
|
98 |
+
- ner_tags: The tags for abbreviations and long-forms.
|
99 |
+
|
100 |
+
|
101 |
+
### Data Splits
|
102 |
+
|
103 |
+
| | Train | Valid | Test |
|
104 |
+
| ----- | ------ | ----- | ---- |
|
105 |
+
| Filtered | 112652 | 24140 | 24140|
|
106 |
+
| Unfiltered | 113860 | 24399 | 24399|
|
107 |
+
|
108 |
+
|
109 |
+
## Dataset Creation
|
110 |
+
|
111 |
+
### Source Data
|
112 |
+
|
113 |
+
#### Initial Data Collection and Normalization
|
114 |
+
|
115 |
+
Extracting the data from PLOS Journals online and then tokenization, normalization.
|
116 |
+
|
117 |
+
#### Who are the source language producers?
|
118 |
+
|
119 |
+
PLOS Journal
|
120 |
+
|
121 |
+
## Additional Information
|
122 |
+
|
123 |
+
### Dataset Curators
|
124 |
+
|
125 |
+
The dataset was initially created by Leonardo Zilio, Hadeel Saadany, Prashant Sharma,
|
126 |
+
Diptesh Kanojia, Constantin Orasan.
|
127 |
+
|
128 |
+
### Licensing Information
|
129 |
+
|
130 |
+
CC-BY-SA 4.0
|
131 |
+
|
132 |
+
### Citation Information
|
133 |
+
|
134 |
+
[Needs More Information]
|
135 |
+
|
136 |
### Installation
|
137 |
|
138 |
We use the custom NER pipeline in the [spaCy transformers](https://spacy.io/universe/project/spacy-transformers) library to train our models. This library supports training via any pre-trained language models available at the :rocket: [HuggingFace repository](https://huggingface.co/).<br/>
|