text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library without using a Trainer. """ import argparse import json import logging import math import os import random from pathlib import Path import datasets import evaluate import numpy as np import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import ClassLabel, load_dataset from huggingface_hub import Repository, create_repo from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, PretrainedConfig, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser( description="Finetune a transformers model on a text classification task (NER) with accelerate library" ) parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--text_column_name", type=str, default=None, help="The column name of text to input in the file (a csv or JSON file).", ) parser.add_argument( "--label_column_name", type=str, default=None, help="The column name of label to input in the file (a csv or JSON file).", ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--label_all_tokens", action="store_true", help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.", ) parser.add_argument( "--return_entity_level_metrics", action="store_true", help="Indication whether entity level metrics are to be returner.", ) parser.add_argument( "--task_name", type=str, default="ner", choices=["ner", "pos", "chunk"], help="The name of the task.", ) parser.add_argument( "--debug", action="store_true", help="Activate debug mode and run training only with a subset of data.", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", type=bool, default=False, help=( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--ignore_mismatched_sizes", action="store_true", help="Whether or not to enable to load a pretrained model whose head dimensions are different.", ) args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_ner_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator = ( Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id # Clone repo locally repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called # 'tokens' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # Trim a number of training examples if args.debug: for split in raw_datasets.keys(): raw_datasets[split] = raw_datasets[split].select(range(100)) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names features = raw_datasets["train"].features else: column_names = raw_datasets["validation"].column_names features = raw_datasets["validation"].features if args.text_column_name is not None: text_column_name = args.text_column_name elif "tokens" in column_names: text_column_name = "tokens" else: text_column_name = column_names[0] if args.label_column_name is not None: label_column_name = args.label_column_name elif f"{args.task_name}_tags" in column_names: label_column_name = f"{args.task_name}_tags" else: label_column_name = column_names[1] # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. labels_are_int = isinstance(features[label_column_name].feature, ClassLabel) if labels_are_int: label_list = features[label_column_name].feature.names label_to_id = {i: i for i in range(len(label_list))} else: label_list = get_label_list(raw_datasets["train"][label_column_name]) label_to_id = {l: i for i, l in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained( args.config_name, num_labels=num_labels, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=num_labels, trust_remote_code=args.trust_remote_code ) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path if not tokenizer_name_or_path: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if config.model_type in {"bloom", "gpt2", "roberta"}: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_fast=True, add_prefix_space=True, trust_remote_code=args.trust_remote_code ) else: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_fast=True, trust_remote_code=args.trust_remote_code ) if args.model_name_or_path: model = AutoModelForTokenClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ignore_mismatched_sizes=args.ignore_mismatched_sizes, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForTokenClassification.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Model has labels -> use them. if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id: if sorted(model.config.label2id.keys()) == sorted(label_list): # Reorganize `label_list` to match the ordering of the model. if labels_are_int: label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)} label_list = [model.config.id2label[i] for i in range(num_labels)] else: label_list = [model.config.id2label[i] for i in range(num_labels)] label_to_id = {l: i for i, l in enumerate(label_list)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:" f" {sorted(label_list)}.\nIgnoring the model labels as a result.", ) # Set the correspondences label/ID inside the model config model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = dict(enumerate(label_list)) # Map that sends B-Xxx label to its I-Xxx counterpart b_to_i_label = [] for idx, label in enumerate(label_list): if label.startswith("B-") and label.replace("B-", "I-") in label_list: b_to_i_label.append(label_list.index(label.replace("B-", "I-"))) else: b_to_i_label.append(idx) # Preprocessing the datasets. # First we tokenize all the texts. padding = "max_length" if args.pad_to_max_length else False # Tokenize all texts and align the labels with them. def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples[text_column_name], max_length=args.max_length, padding=padding, truncation=True, # We use this argument because the texts in our dataset are lists of words (with a label for each word). is_split_into_words=True, ) labels = [] for i, label in enumerate(examples[label_column_name]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label to -100 so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(-100) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_ids.append(label_to_id[label[word_idx]]) # For the other tokens in a word, we set the label to either the current label or -100, depending on # the label_all_tokens flag. else: if args.label_all_tokens: label_ids.append(b_to_i_label[label_to_id[label[word_idx]]]) else: label_ids.append(-100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs with accelerator.main_process_first(): processed_raw_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names, desc="Running tokenizer on dataset", ) train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForTokenClassification( tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None) ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Use the device given by the `accelerator` object. device = accelerator.device model.to(device) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("ner_no_trainer", experiment_config) # Metrics metric = evaluate.load("seqeval") def get_labels(predictions, references): # Transform predictions and references tensos to numpy arrays if device.type == "cpu": y_pred = predictions.detach().clone().numpy() y_true = references.detach().clone().numpy() else: y_pred = predictions.detach().cpu().clone().numpy() y_true = references.detach().cpu().clone().numpy() # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] true_labels = [ [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] return true_predictions, true_labels def compute_metrics(): results = metric.compute() if args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) labels = batch["labels"] if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) predictions_gathered, labels_gathered = accelerator.gather((predictions, labels)) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: predictions_gathered = predictions_gathered[: len(eval_dataloader.dataset) - samples_seen] labels_gathered = labels_gathered[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += labels_gathered.shape[0] preds, refs = get_labels(predictions_gathered, labels_gathered) metric.add_batch( predictions=preds, references=refs, ) # predictions and preferences are expected to be a nested list of labels, not label_ids eval_metric = compute_metrics() accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "seqeval": eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) all_results = {f"eval_{k}": v for k, v in eval_metric.items()} if args.with_tracking: all_results.update({"train_loss": total_loss.item() / len(train_dataloader)}) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: # Convert all float64 & int64 type numbers to float & int for json serialization for key, value in all_results.items(): if isinstance(value, np.float64): all_results[key] = float(value) elif isinstance(value, np.int64): all_results[key] = int(value) json.dump(all_results, f) if __name__ == "__main__": main()
transformers/examples/pytorch/token-classification/run_ner_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/token-classification/run_ner_no_trainer.py", "repo_id": "transformers", "token_count": 14733 }
46
# Examples In this folder we showcase some examples to use code models for downstream tasks. ## Complexity prediction In this task we want to predict the complexity of Java programs in [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex) dataset. Using Hugging Face `trainer`, we finetuned [multilingual CodeParrot](https://huggingface.co/codeparrot/codeparrot-small-multi) and [UniXcoder](https://huggingface.co/microsoft/unixcoder-base-nine) on it, and we used the latter to build this Java complexity prediction [space](https://huggingface.co/spaces/codeparrot/code-complexity-predictor) on Hugging Face hub. To fine-tune a model on this dataset you can use the following commands: ```python python train_complexity_predictor.py \ --model_ckpt microsoft/unixcoder-base-nine \ --num_epochs 60 \ --num_warmup_steps 10 \ --batch_size 8 \ --learning_rate 5e-4 ``` ## Code generation: text to python In this task we want to train a model to generate code from english text. We finetuned Codeparrot-small on [github-jupyter-text-to-code](https://huggingface.co/datasets/codeparrot/github-jupyter-text-to-code), a dataset where the samples are a succession of docstrings and their Python code, originally extracted from Jupyter notebooks parsed in this [dataset](https://huggingface.co/datasets/codeparrot/github-jupyter-parsed). To fine-tune a model on this dataset we use the same [script](https://github.com/huggingface/transformers/blob/main/examples/research_projects/codeparrot/scripts/codeparrot_training.py) as the pretraining of codeparrot: ```python accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --dataset_name_train codeparrot/github-jupyter-text-to-code \ --dataset_name_valid codeparrot/github-jupyter-text-to-code \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 100 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 3000 \ --save_checkpoint_steps 200 \ --save_dir jupyter-text-to-python ``` ## Code explanation: python to text In this task we want to train a model to explain python code. We finetuned Codeparrot-small on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text), a dataset where the samples are a succession of Python code and its explanation as a docstring, we just inverted the order of text and code pairs in github-jupyter-code-to-text dataset and added the delimiters "Explanation:" and "End of explanation" inside the doctrings. To fine-tune a model on this dataset we use the same [script](https://github.com/huggingface/transformers/blob/main/examples/research_projects/codeparrot/scripts/codeparrot_training.py) as the pretraining of codeparrot: ```python accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --dataset_name_train codeparrot/github-jupyter-code-to-text \ --dataset_name_valid codeparrot/github-jupyter-code-to-text \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 100 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 3000 \ --save_checkpoint_steps 200 \ --save_dir jupyter-python-to-text ```
transformers/examples/research_projects/codeparrot/examples/README.md/0
{ "file_path": "transformers/examples/research_projects/codeparrot/examples/README.md", "repo_id": "transformers", "token_count": 1170 }
47
import gym import numpy as np import torch from mujoco_py import GlfwContext from transformers import DecisionTransformerModel GlfwContext(offscreen=True) # Create a window to init GLFW. def get_action(model, states, actions, rewards, returns_to_go, timesteps): # we don't care about the past rewards in this model states = states.reshape(1, -1, model.config.state_dim) actions = actions.reshape(1, -1, model.config.act_dim) returns_to_go = returns_to_go.reshape(1, -1, 1) timesteps = timesteps.reshape(1, -1) if model.config.max_length is not None: states = states[:, -model.config.max_length :] actions = actions[:, -model.config.max_length :] returns_to_go = returns_to_go[:, -model.config.max_length :] timesteps = timesteps[:, -model.config.max_length :] # pad all tokens to sequence length attention_mask = torch.cat( [torch.zeros(model.config.max_length - states.shape[1]), torch.ones(states.shape[1])] ) attention_mask = attention_mask.to(dtype=torch.long, device=states.device).reshape(1, -1) states = torch.cat( [ torch.zeros( (states.shape[0], model.config.max_length - states.shape[1], model.config.state_dim), device=states.device, ), states, ], dim=1, ).to(dtype=torch.float32) actions = torch.cat( [ torch.zeros( (actions.shape[0], model.config.max_length - actions.shape[1], model.config.act_dim), device=actions.device, ), actions, ], dim=1, ).to(dtype=torch.float32) returns_to_go = torch.cat( [ torch.zeros( (returns_to_go.shape[0], model.config.max_length - returns_to_go.shape[1], 1), device=returns_to_go.device, ), returns_to_go, ], dim=1, ).to(dtype=torch.float32) timesteps = torch.cat( [ torch.zeros( (timesteps.shape[0], model.config.max_length - timesteps.shape[1]), device=timesteps.device ), timesteps, ], dim=1, ).to(dtype=torch.long) else: attention_mask = None _, action_preds, _ = model( states=states, actions=actions, rewards=rewards, returns_to_go=returns_to_go, timesteps=timesteps, attention_mask=attention_mask, return_dict=False, ) return action_preds[0, -1] # build the environment env = gym.make("Hopper-v3") state_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] max_ep_len = 1000 device = "cuda" scale = 1000.0 # normalization for rewards/returns TARGET_RETURN = 3600 / scale # evaluation conditioning targets, 3600 is reasonable from the paper LINK state_mean = np.array( [ 1.311279, -0.08469521, -0.5382719, -0.07201576, 0.04932366, 2.1066856, -0.15017354, 0.00878345, -0.2848186, -0.18540096, -0.28461286, ] ) state_std = np.array( [ 0.17790751, 0.05444621, 0.21297139, 0.14530419, 0.6124444, 0.85174465, 1.4515252, 0.6751696, 1.536239, 1.6160746, 5.6072536, ] ) state_mean = torch.from_numpy(state_mean).to(device=device) state_std = torch.from_numpy(state_std).to(device=device) # Create the decision transformer model model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium") model = model.to(device) model.eval() for ep in range(10): episode_return, episode_length = 0, 0 state = env.reset() target_return = torch.tensor(TARGET_RETURN, device=device, dtype=torch.float32).reshape(1, 1) states = torch.from_numpy(state).reshape(1, state_dim).to(device=device, dtype=torch.float32) actions = torch.zeros((0, act_dim), device=device, dtype=torch.float32) rewards = torch.zeros(0, device=device, dtype=torch.float32) timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1) for t in range(max_ep_len): env.render() # add padding actions = torch.cat([actions, torch.zeros((1, act_dim), device=device)], dim=0) rewards = torch.cat([rewards, torch.zeros(1, device=device)]) action = get_action( model, (states.to(dtype=torch.float32) - state_mean) / state_std, actions.to(dtype=torch.float32), rewards.to(dtype=torch.float32), target_return.to(dtype=torch.float32), timesteps.to(dtype=torch.long), ) actions[-1] = action action = action.detach().cpu().numpy() state, reward, done, _ = env.step(action) cur_state = torch.from_numpy(state).to(device=device).reshape(1, state_dim) states = torch.cat([states, cur_state], dim=0) rewards[-1] = reward pred_return = target_return[0, -1] - (reward / scale) target_return = torch.cat([target_return, pred_return.reshape(1, 1)], dim=1) timesteps = torch.cat([timesteps, torch.ones((1, 1), device=device, dtype=torch.long) * (t + 1)], dim=1) episode_return += reward episode_length += 1 if done: break
transformers/examples/research_projects/decision_transformer/run_decision_transformer.py/0
{ "file_path": "transformers/examples/research_projects/decision_transformer/run_decision_transformer.py", "repo_id": "transformers", "token_count": 2763 }
48
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This is the exact same script as `examples/question-answering/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation.""" import argparse import glob import logging import os import random import timeit import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForQuestionAnswering, BertTokenizer, DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer, RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer, XLMConfig, XLMForQuestionAnswering, XLMTokenizer, XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, squad_evaluate, ) from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer), "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_dataset, model, tokenizer, teacher=None): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 1 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to global_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproducibility set_seed(args) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() if teacher is not None: teacher.eval() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "start_positions": batch[3], "end_positions": batch[4], } if args.model_type != "distilbert": inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) outputs = model(**inputs) loss, start_logits_stu, end_logits_stu = outputs # Distillation loss if teacher is not None: if "token_type_ids" not in inputs: inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] with torch.no_grad(): start_logits_tea, end_logits_tea = teacher( input_ids=inputs["input_ids"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"], ) assert start_logits_tea.size() == start_logits_stu.size() assert end_logits_tea.size() == end_logits_stu.size() loss_fct = nn.KLDivLoss(reduction="batchmean") loss_start = loss_fct( nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1), nn.functional.softmax(start_logits_tea / args.temperature, dim=-1), ) * (args.temperature**2) loss_end = loss_fct( nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1), nn.functional.softmax(end_logits_tea / args.temperature, dim=-1), ) * (args.temperature**2) loss_ce = (loss_start + loss_end) / 2.0 loss = args.alpha_ce * loss_ce + args.alpha_squad * loss if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Log metrics if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1]} if args.model_type != "distilbert": inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] # XLM don't use segment_ids example_indices = batch[3] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) outputs = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None if args.model_type in ["xlnet", "xlm"]: # XLNet uses a more complex post-processing procedure predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, model.config.start_n_top, model.config.end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, ) # Compute the F1 and exact scores. results = squad_evaluate(examples, predictions) return results def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_file = args.predict_file if evaluate else args.train_file cached_features_file = os.path.join( os.path.dirname(input_file), "cached_distillation_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) try: features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) except KeyError: raise DeprecationWarning( "You seem to be loading features from an older version of this script please delete the " "file %s in order for it to be created again" % cached_features_file ) else: logger.info("Creating features from dataset file at %s", input_file) processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if evaluate: examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) else: examples = processor.get_train_examples(args.data_dir, filename=args.train_file) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Distillation parameters (optional) parser.add_argument( "--teacher_type", default=None, type=str, help=( "Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" " distillation." ), ) parser.add_argument( "--teacher_name_or_path", default=None, type=str, help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.", ) parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." ) parser.add_argument( "--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation." ) parser.add_argument( "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help=( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument( "--verbose_logging", action="store_true", help=( "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation." ), ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.teacher_type is not None: assert args.teacher_name_or_path is not None assert args.alpha_ce > 0.0 assert args.alpha_ce + args.alpha_squad > 0.0 assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT." teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] teacher_config = teacher_config_class.from_pretrained( args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None ) teacher = teacher_model_class.from_pretrained( args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None ) teacher.to(args.device) else: teacher = None if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
transformers/examples/research_projects/distillation/run_squad_w_distillation.py/0
{ "file_path": "transformers/examples/research_projects/distillation/run_squad_w_distillation.py", "repo_id": "transformers", "token_count": 15430 }
49
from .model import FSNERModel from .tokenizer_utils import FSNERTokenizerUtils __all__ = ["FSNERModel", "FSNERTokenizerUtils"]
transformers/examples/research_projects/fsner/src/fsner/__init__.py/0
{ "file_path": "transformers/examples/research_projects/fsner/src/fsner/__init__.py", "repo_id": "transformers", "token_count": 44 }
50
command: - python3 - train.py method: random parameters: lr: values: [4e-5, 3e-5] warmup_steps: values: [20000, 15000, 10000, 5000] weight_decay: distribution: normal mu: 1e-2 sigma: 2e-3 metric: name: eval_loss goal: minimize
transformers/examples/research_projects/jax-projects/big_bird/sweep_flax.yaml/0
{ "file_path": "transformers/examples/research_projects/jax-projects/big_bird/sweep_flax.yaml", "repo_id": "transformers", "token_count": 222 }
51
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning LayoutLMv3 for token classification on FUNSD or CORD. """ # You can also adapt this script on your own token classification task and datasets. Pointers for this are left as # comments. import logging import os import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np from datasets import ClassLabel, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoProcessor, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.data.data_collator import default_data_collator from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.19.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="microsoft/layoutlmv3-base", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) processor_name: Optional[str] = field( default=None, metadata={"help": "Name or path to the processor files if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) dataset_name: Optional[str] = field( default="nielsr/funsd-layoutlmv3", metadata={"help": "The name of the dataset to use (via the datasets library)."}, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a csv or JSON file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, ) text_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} ) label_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=512, metadata={ "help": ( "The maximum total input sequence length after tokenization. If set, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) label_all_tokens: bool = field( default=False, metadata={ "help": ( "Whether to put the label for one word on all tokens of generated by that word or just on the " "one (in which case the other tokens will have a padding index)." ) }, ) return_entity_level_metrics: bool = field( default=False, metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." self.task_name = self.task_name.lower() def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name == "funsd": # Downloading and loading a dataset from the hub. dataset = load_dataset( "nielsr/funsd-layoutlmv3", data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=True if model_args.use_auth_token else None, ) elif data_args.dataset_name == "cord": # Downloading and loading a dataset from the hub. dataset = load_dataset( "nielsr/cord-layoutlmv3", data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=True if model_args.use_auth_token else None, ) else: raise ValueError("This script only supports either FUNSD or CORD out-of-the-box.") if training_args.do_train: column_names = dataset["train"].column_names features = dataset["train"].features else: column_names = dataset["test"].column_names features = dataset["test"].features image_column_name = "image" text_column_name = "words" if "words" in column_names else "tokens" boxes_column_name = "bboxes" label_column_name = ( f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1] ) remove_columns = column_names # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. id2label = dict(enumerate(label_list)) label2id = {v: k for k, v in enumerate(label_list)} else: label_list = get_label_list(datasets["train"][label_column_name]) id2label = dict(enumerate(label_list)) label2id = {v: k for k, v in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) processor = AutoProcessor.from_pretrained( model_args.processor_name if model_args.processor_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, add_prefix_space=True, apply_ocr=False, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) # Set the correspondences label/ID inside the model config model.config.label2id = label2id model.config.id2label = id2label # Preprocessing the dataset # The processor does everything for us (prepare the image using LayoutLMv3ImageProcessor # and prepare the words, boxes and word-level labels using LayoutLMv3TokenizerFast) def prepare_examples(examples): images = examples[image_column_name] words = examples[text_column_name] boxes = examples[boxes_column_name] word_labels = examples[label_column_name] encoding = processor( images, words, boxes=boxes, word_labels=word_labels, truncation=True, padding="max_length", max_length=data_args.max_seq_length, ) return encoding if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: validation_name = "test" if validation_name not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset[validation_name] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = datasets["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) with training_args.main_process_first(desc="prediction dataset map pre-processing"): predict_dataset = predict_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Metrics metric = load_metric("seqeval") def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true_labels = [ [label_list[l] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] results = metric.compute(predictions=true_predictions, references=true_labels) if data_args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor, data_collator=default_data_collator, compute_metrics=compute_metrics, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics trainer.save_model() # Saves the tokenizer too for easy upload max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: logger.info("*** Predict ***") predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) # Save predictions output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt") if trainer.is_world_process_zero(): with open(output_predictions_file, "w") as writer: for prediction in true_predictions: writer.write(" ".join(prediction) + "\n") kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/research_projects/layoutlmv3/run_funsd_cord.py/0
{ "file_path": "transformers/examples/research_projects/layoutlmv3/run_funsd_cord.py", "repo_id": "transformers", "token_count": 8703 }
52
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Whole Word Mask Language Model These scripts leverage the 🤗 Datasets library and the Trainer API. You can easily customize them to your needs if you need extra processing on your datasets. The following examples, will run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation. We give examples of both below. The BERT authors released a new version of BERT using Whole Word Masking in May 2019. Instead of masking randomly selected tokens (which may be part of words), they mask randomly selected words (masking all the tokens corresponding to that word). This technique has been refined for Chinese in [this paper](https://arxiv.org/abs/1906.08101). To fine-tune a model using whole word masking, use the following script: ```bash python run_mlm_wwm.py \ --model_name_or_path FacebookAI/roberta-base \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-mlm-wwm ``` For Chinese models, we need to generate a reference files (which requires the ltp library), because it's tokenized at the character level. **Q :** Why a reference file? **A :** Suppose we have a Chinese sentence like: `我喜欢你` The original Chinese-BERT will tokenize it as `['我','喜','欢','你']` (character level). But `喜欢` is a whole word. For whole word masking proxy, we need a result like `['我','喜','##欢','你']`, so we need a reference file to tell the model which position of the BERT original token should be added `##`. **Q :** Why LTP ? **A :** Cause the best known Chinese WWM BERT is [Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm) by HIT. It works well on so many Chines Task like CLUE (Chinese GLUE). They use LTP, so if we want to fine-tune their model, we need LTP. You could run the following: ```bash export TRAIN_FILE=/path/to/train/file export LTP_RESOURCE=/path/to/ltp/tokenizer export BERT_RESOURCE=/path/to/bert/tokenizer export SAVE_PATH=/path/to/data/ref.txt python run_chinese_ref.py \ --file_name=$TRAIN_FILE \ --ltp=$LTP_RESOURCE \ --bert=$BERT_RESOURCE \ --save_path=$SAVE_PATH ``` Then you can run the script like this: ```bash export TRAIN_FILE=/path/to/train/file export VALIDATION_FILE=/path/to/validation/file export TRAIN_REF_FILE=/path/to/train/chinese_ref/file export VALIDATION_REF_FILE=/path/to/validation/chinese_ref/file export OUTPUT_DIR=/tmp/test-mlm-wwm python run_mlm_wwm.py \ --model_name_or_path FacebookAI/roberta-base \ --train_file $TRAIN_FILE \ --validation_file $VALIDATION_FILE \ --train_ref_file $TRAIN_REF_FILE \ --validation_ref_file $VALIDATION_REF_FILE \ --do_train \ --do_eval \ --output_dir $OUTPUT_DIR ``` **Note1:** On TPU, you should the flag `--pad_to_max_length` to make sure all your batches have the same length. **Note2:** And if you have any questions or something goes wrong when running this code, don't hesitate to pin @wlhgtc.
transformers/examples/research_projects/mlm_wwm/README.md/0
{ "file_path": "transformers/examples/research_projects/mlm_wwm/README.md", "repo_id": "transformers", "token_count": 1192 }
53
# coding=utf-8 # Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Masked Linear module: A fully connected layer that computes an adaptive binary mask on the fly. The mask (binary or not) is computed at each forward pass and multiplied against the weight matrix to prune a portion of the weights. The pruned weight matrix is then multiplied against the inputs (and if necessary, the bias is added). """ import math import torch from torch import nn from torch.nn import init from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer class MaskedLinear(nn.Linear): """ Fully Connected layer with on the fly adaptive mask. If needed, a score matrix is created to store the importance of each associated weight. """ def __init__( self, in_features: int, out_features: int, bias: bool = True, mask_init: str = "constant", mask_scale: float = 0.0, pruning_method: str = "topK", ): """ Args: in_features (`int`) Size of each input sample out_features (`int`) Size of each output sample bias (`bool`) If set to ``False``, the layer will not learn an additive bias. Default: ``True`` mask_init (`str`) The initialization method for the score matrix if a score matrix is needed. Choices: ["constant", "uniform", "kaiming"] Default: ``constant`` mask_scale (`float`) The initialization parameter for the chosen initialization method `mask_init`. Default: ``0.`` pruning_method (`str`) Method to compute the mask. Choices: ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] Default: ``topK`` """ super(MaskedLinear, self).__init__(in_features=in_features, out_features=out_features, bias=bias) assert pruning_method in ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] self.pruning_method = pruning_method if self.pruning_method in ["topK", "threshold", "sigmoied_threshold", "l0"]: self.mask_scale = mask_scale self.mask_init = mask_init self.mask_scores = nn.Parameter(torch.empty(self.weight.size())) self.init_mask() def init_mask(self): if self.mask_init == "constant": init.constant_(self.mask_scores, val=self.mask_scale) elif self.mask_init == "uniform": init.uniform_(self.mask_scores, a=-self.mask_scale, b=self.mask_scale) elif self.mask_init == "kaiming": init.kaiming_uniform_(self.mask_scores, a=math.sqrt(5)) def forward(self, input: torch.tensor, threshold: float): # Get the mask if self.pruning_method == "topK": mask = TopKBinarizer.apply(self.mask_scores, threshold) elif self.pruning_method in ["threshold", "sigmoied_threshold"]: sig = "sigmoied" in self.pruning_method mask = ThresholdBinarizer.apply(self.mask_scores, threshold, sig) elif self.pruning_method == "magnitude": mask = MagnitudeBinarizer.apply(self.weight, threshold) elif self.pruning_method == "l0": l, r, b = -0.1, 1.1, 2 / 3 if self.training: u = torch.zeros_like(self.mask_scores).uniform_().clamp(0.0001, 0.9999) s = torch.sigmoid((u.log() - (1 - u).log() + self.mask_scores) / b) else: s = torch.sigmoid(self.mask_scores) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) # Mask weights with computed mask weight_thresholded = mask * self.weight # Compute output (linear layer) with masked weights return nn.functional.linear(input, weight_thresholded, self.bias)
transformers/examples/research_projects/movement-pruning/emmental/modules/masked_nn.py/0
{ "file_path": "transformers/examples/research_projects/movement-pruning/emmental/modules/masked_nn.py", "repo_id": "transformers", "token_count": 1917 }
54
import argparse import logging import os import sys import tempfile from pathlib import Path import lightning_base import pytest import pytorch_lightning as pl import torch from convert_pl_checkpoint_to_hf import convert_pl_to_hf from distillation import distill_main from finetune import SummarizationModule, main from huggingface_hub import list_models from parameterized import parameterized from run_eval import generate_summaries_or_translations from torch import nn from transformers import AutoConfig, AutoModelForSeq2SeqLM from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_gpu, slow from utils import label_smoothed_nll_loss, lmap, load_json logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() CUDA_AVAILABLE = torch.cuda.is_available() CHEAP_ARGS = { "max_tokens_per_batch": None, "supervise_forward": True, "normalize_hidden": True, "label_smoothing": 0.2, "eval_max_gen_length": None, "eval_beams": 1, "val_metric": "loss", "save_top_k": 1, "adafactor": True, "early_stopping_patience": 2, "logger_name": "default", "length_penalty": 0.5, "cache_dir": "", "task": "summarization", "num_workers": 2, "alpha_hid": 0, "freeze_embeds": True, "enc_only": False, "tgt_suffix": "", "resume_from_checkpoint": None, "sortish_sampler": True, "student_decoder_layers": 1, "val_check_interval": 1.0, "output_dir": "", "fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp "no_teacher": False, "fp16_opt_level": "O1", "gpus": 1 if CUDA_AVAILABLE else 0, "n_tpu_cores": 0, "max_grad_norm": 1.0, "do_train": True, "do_predict": True, "accumulate_grad_batches": 1, "server_ip": "", "server_port": "", "seed": 42, "model_name_or_path": "sshleifer/bart-tiny-random", "config_name": "", "tokenizer_name": "facebook/bart-large", "do_lower_case": False, "learning_rate": 0.3, "lr_scheduler": "linear", "weight_decay": 0.0, "adam_epsilon": 1e-08, "warmup_steps": 0, "max_epochs": 1, "train_batch_size": 2, "eval_batch_size": 2, "max_source_length": 12, "max_target_length": 12, "val_max_target_length": 12, "test_max_target_length": 12, "fast_dev_run": False, "no_cache": False, "n_train": -1, "n_val": -1, "n_test": -1, "student_encoder_layers": 1, "freeze_encoder": False, "auto_scale_batch_size": False, "overwrite_output_dir": False, "student": None, } def _dump_articles(path: Path, articles: list): content = "\n".join(articles) Path(path).open("w").writelines(content) ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."] SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] T5_TINY = "patrickvonplaten/t5-tiny-random" T5_TINIER = "sshleifer/t5-tinier-random" BART_TINY = "sshleifer/bart-tiny-random" MBART_TINY = "sshleifer/tiny-mbart" MARIAN_TINY = "sshleifer/tiny-marian-en-de" FSMT_TINY = "stas/tiny-wmt19-en-de" stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks def make_test_data_dir(tmp_dir): for split in ["train", "val", "test"]: _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES) _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES) return tmp_dir class TestSummarizationDistiller(TestCasePlus): @classmethod def setUpClass(cls): logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks return cls @slow @require_torch_gpu def test_hub_configs(self): """I put require_torch_gpu cause I only want this to run with self-scheduled.""" model_list = list_models() org = "sshleifer" model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)] allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"] failures = [] for m in model_ids: if m in allowed_to_be_broken: continue try: AutoConfig.from_pretrained(m) except Exception: failures.append(m) assert not failures, f"The following models could not be loaded through AutoConfig: {failures}" def test_distill_no_teacher(self): updates = {"student_encoder_layers": 2, "student_decoder_layers": 1, "no_teacher": True} self._test_distiller_cli(updates) def test_distill_checkpointing_with_teacher(self): updates = { "student_encoder_layers": 2, "student_decoder_layers": 1, "max_epochs": 4, "val_check_interval": 0.25, "alpha_hid": 2.0, "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", } model = self._test_distiller_cli(updates, check_contents=False) ckpts = list(Path(model.output_dir).glob("*.ckpt")) self.assertEqual(1, len(ckpts)) transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) self.assertEqual(len(transformer_ckpts), 2) examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines()) out_path = tempfile.mktemp() # XXX: not being cleaned up generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr")) self.assertTrue(Path(out_path).exists()) out_path_new = self.get_auto_remove_tmp_dir() convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new) assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin")) def test_loss_fn(self): model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY) input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"] target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device) decoder_input_ids = target_ids[:, :-1].contiguous() # Why this line? lm_labels = target_ids[:, 1:].clone() # why clone? model_computed_loss = model( input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False ).loss logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits lprobs = nn.functional.log_softmax(logits, dim=-1) smoothed_loss, nll_loss = label_smoothed_nll_loss( lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id ) with self.assertRaises(AssertionError): # TODO: understand why this breaks self.assertEqual(nll_loss, model_computed_loss) def test_distill_mbart(self): updates = { "student_encoder_layers": 2, "student_decoder_layers": 1, "num_train_epochs": 4, "val_check_interval": 0.25, "alpha_hid": 2.0, "task": "translation", "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", "tokenizer_name": MBART_TINY, "teacher": MBART_TINY, "src_lang": "en_XX", "tgt_lang": "ro_RO", } model = self._test_distiller_cli(updates, check_contents=False) assert model.model.config.model_type == "mbart" ckpts = list(Path(model.output_dir).glob("*.ckpt")) self.assertEqual(1, len(ckpts)) transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) all_files = list(Path(model.output_dir).glob("best_tfmr/*")) assert len(all_files) > 2 self.assertEqual(len(transformer_ckpts), 2) def test_distill_t5(self): updates = { "student_encoder_layers": 1, "student_decoder_layers": 1, "alpha_hid": 2.0, "teacher": T5_TINY, "model_name_or_path": T5_TINY, "tokenizer_name": T5_TINY, } self._test_distiller_cli(updates) def test_distill_different_base_models(self): updates = { "teacher": T5_TINY, "student": T5_TINIER, "model_name_or_path": T5_TINIER, "tokenizer_name": T5_TINIER, } self._test_distiller_cli(updates) def _test_distiller_cli(self, updates, check_contents=True): default_updates = { "label_smoothing": 0.0, "early_stopping_patience": -1, "train_batch_size": 1, "eval_batch_size": 2, "max_epochs": 2, "alpha_mlm": 0.2, "alpha_ce": 0.8, "do_predict": True, "model_name_or_path": "sshleifer/tinier_bart", "teacher": CHEAP_ARGS["model_name_or_path"], "val_check_interval": 0.5, } default_updates.update(updates) args_d: dict = CHEAP_ARGS.copy() tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) output_dir = self.get_auto_remove_tmp_dir() args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates) model = distill_main(argparse.Namespace(**args_d)) if not check_contents: return model contents = os.listdir(output_dir) contents = {os.path.basename(p) for p in contents} ckpt_files = [p for p in contents if p.endswith("ckpt")] assert len(ckpt_files) > 0 self.assertIn("test_generations.txt", contents) self.assertIn("test_results.txt", contents) metrics = load_json(model.metrics_save_path) last_step_stats = metrics["val"][-1] self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01) self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"]) self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float) desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1) self.assertEqual(len(metrics["val"]), desired_n_evals) self.assertEqual(len(metrics["test"]), 1) return model class TestTheRest(TestCasePlus): @parameterized.expand( [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY], ) def test_finetune(self, model): args_d: dict = CHEAP_ARGS.copy() task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization" args_d["label_smoothing"] = 0.1 if task == "translation" else 0 tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) output_dir = self.get_auto_remove_tmp_dir() args_d.update( data_dir=tmp_dir, model_name_or_path=model, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, output_dir=output_dir, do_predict=True, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) assert "n_train" in args_d args = argparse.Namespace(**args_d) module = main(args) input_embeds = module.model.get_input_embeddings() assert not input_embeds.weight.requires_grad if model == T5_TINY: lm_head = module.model.lm_head assert not lm_head.weight.requires_grad assert (lm_head.weight == input_embeds.weight).all().item() elif model == FSMT_TINY: fsmt = module.model.model embed_pos = fsmt.decoder.embed_positions assert not embed_pos.weight.requires_grad assert not fsmt.decoder.embed_tokens.weight.requires_grad # check that embeds are not the same assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens else: bart = module.model.model embed_pos = bart.decoder.embed_positions assert not embed_pos.weight.requires_grad assert not bart.shared.weight.requires_grad # check that embeds are the same assert bart.decoder.embed_tokens == bart.encoder.embed_tokens assert bart.decoder.embed_tokens == bart.shared example_batch = load_json(module.output_dir / "text_batch.json") assert isinstance(example_batch, dict) assert len(example_batch) >= 4 def test_finetune_extra_model_args(self): args_d: dict = CHEAP_ARGS.copy() task = "summarization" tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) args_d.update( data_dir=tmp_dir, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, do_predict=False, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) # test models whose config includes the extra_model_args model = BART_TINY output_dir = self.get_auto_remove_tmp_dir() args_d1 = args_d.copy() args_d1.update( model_name_or_path=model, output_dir=output_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: args_d1[p] = 0.5 args = argparse.Namespace(**args_d1) model = main(args) for p in extra_model_params: assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}" # test models whose config doesn't include the extra_model_args model = T5_TINY output_dir = self.get_auto_remove_tmp_dir() args_d2 = args_d.copy() args_d2.update( model_name_or_path=model, output_dir=output_dir, ) unsupported_param = "encoder_layerdrop" args_d2[unsupported_param] = 0.5 args = argparse.Namespace(**args_d2) with pytest.raises(Exception) as excinfo: model = main(args) assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute" def test_finetune_lr_schedulers(self): args_d: dict = CHEAP_ARGS.copy() task = "summarization" tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) model = BART_TINY output_dir = self.get_auto_remove_tmp_dir() args_d.update( data_dir=tmp_dir, model_name_or_path=model, output_dir=output_dir, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, do_predict=False, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) # emulate finetune.py parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = SummarizationModule.add_model_specific_args(parser, os.getcwd()) args = {"--help": True} # --help test with pytest.raises(SystemExit) as excinfo: with CaptureStdout() as cs: args = parser.parse_args(args) assert False, "--help is expected to sys.exit" assert excinfo.type == SystemExit expected = lightning_base.arg_to_scheduler_metavar assert expected in cs.out, "--help is expected to list the supported schedulers" # --lr_scheduler=non_existing_scheduler test unsupported_param = "non_existing_scheduler" args = {f"--lr_scheduler={unsupported_param}"} with pytest.raises(SystemExit) as excinfo: with CaptureStderr() as cs: args = parser.parse_args(args) assert False, "invalid argument is expected to sys.exit" assert excinfo.type == SystemExit expected = f"invalid choice: '{unsupported_param}'" assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}" # --lr_scheduler=existing_scheduler test supported_param = "cosine" args_d1 = args_d.copy() args_d1["lr_scheduler"] = supported_param args = argparse.Namespace(**args_d1) model = main(args) assert ( getattr(model.hparams, "lr_scheduler") == supported_param ), f"lr_scheduler={supported_param} shouldn't fail"
transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py", "repo_id": "transformers", "token_count": 7908 }
55
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-base-100h" \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --evaluation_strategy="steps" \ --save_total_limit="3" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="facebook/wav2vec2-base" \ --fp16 \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="32" \ --group_by_length \ --freeze_feature_extractor
transformers/examples/research_projects/wav2vec2/finetune_base_100.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_base_100.sh", "repo_id": "transformers", "token_count": 249 }
56
# Zero-shot classifier distillation Author: @joeddav This script provides a way to improve the speed and memory performance of a zero-shot classifier by training a more efficient student model from the zero-shot teacher's predictions over an unlabeled dataset. The zero-shot classification pipeline uses a model pre-trained on natural language inference (NLI) to determine the compatibility of a set of candidate class names with a given sequence. This serves as a convenient out-of-the-box classifier without the need for labeled training data. However, for a given sequence, the method requires each possible label to be fed through the large NLI model separately. Thus for `N` sequences and `K` classes, a total of `N*K` forward passes through the model are required. This requirement slows inference considerably, particularly as `K` grows. Given (1) an unlabeled corpus and (2) a set of candidate class names, the provided script trains a student model with a standard classification head with `K` output dimensions. The resulting student model can then be used for classifying novel text instances with a significant boost in speed and memory performance while retaining similar classification performance to the original zero-shot model ### Usage A teacher NLI model can be distilled to a more efficient student model by running [`distill_classifier.py`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/zero-shot-distillation/distill_classifier.py): ```bash python distill_classifier.py \ --data_file <unlabeled_data.txt> \ --class_names_file <class_names.txt> \ --output_dir <output_dir> ``` `<unlabeled_data.txt>` should be a text file with a single unlabeled example per line. `<class_names.txt>` is a text file with one class name per line. Other optional arguments include: - `--teacher_name_or_path` (default: `roberta-large-mnli`): The name or path of the NLI teacher model. - `--student_name_or_path` (default: `distillbert-base-uncased`): The name or path of the student model which will be fine-tuned to copy the teacher predictions. - `--hypothesis_template` (default `"This example is {}."`): The template used to turn each label into an NLI-style hypothesis when generating teacher predictions. This template must include a `{}` or similar syntax for the candidate label to be inserted into the template. For example, the default template is `"This example is {}."` With the candidate label `sports`, this would be fed into the model like `[CLS] sequence to classify [SEP] This example is sports . [SEP]`. - `--multi_class`: Whether or not multiple candidate labels can be true. By default, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If `--multi_class` is passed, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. This is sometimes called "multi-class multi-label" classification. - `--temperature` (default: `1.0`): The temperature applied to the softmax of the teacher model predictions. A higher temperature results in a student with smoother (lower confidence) predictions than the teacher while a value `<1` resultings in a higher-confidence, peaked distribution. The default `1.0` is equivalent to no smoothing. - `--teacher_batch_size` (default: `32`): The batch size used for generating a single set of teacher predictions. Does not affect training. Use `--per_device_train_batch_size` to change the training batch size. Any of the arguments in the 🤗 Trainer's [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html?#trainingarguments) can also be modified, such as `--learning_rate`, `--fp16`, `--no_cuda`, `--warmup_steps`, etc. Run `python distill_classifier.py -h` for a full list of available arguments or consult the [Trainer documentation](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments). > **Note**: Distributed and TPU training are not currently supported. Single-node multi-GPU is supported, however, and will run automatically if multiple GPUs are available. ### Example: Topic classification > A full colab demo notebook of this example can be found [here](https://colab.research.google.com/drive/1mjBjd0cR8G57ZpsnFCS3ngGyo5nCa9ya?usp=sharing). Let's say we're interested in classifying news articles into one of four topic categories: "the world", "sports", "business", or "science/tech". We have an unlabeled dataset, [AG's News](https://huggingface.co/datasets/ag_news), which corresponds to this problem (in reality AG's News is annotated, but we will pretend it is not for the sake of example). We can use an NLI model like `roberta-large-mnli` for zero-shot classification like so: ```python >>> class_names = ["the world", "sports", "business", "science/tech"] >>> hypothesis_template = "This text is about {}." >>> sequence = "A new moon has been discovered in Jupiter's orbit" >>> zero_shot_classifier = pipeline("zero-shot-classification", model="roberta-large-mnli") >>> zero_shot_classifier(sequence, class_names, hypothesis_template=hypothesis_template) {'sequence': "A new moon has been discovered in Jupiter's orbit", 'labels': ['science/tech', 'the world', 'business', 'sports'], 'scores': [0.7035840153694153, 0.18744826316833496, 0.06027870625257492, 0.04868902638554573]} ``` Unfortunately, inference is slow since each of our 4 class names must be fed through the large model for every sequence to be classified. But with our unlabeled data we can distill the model to a small distilbert classifier to make future inference much faster. To run the script, we will need to put each training example (text only) from AG's News on its own line in `agnews/train_unlabeled.txt`, and each of the four class names in the newline-separated `agnews/class_names.txt`. Then we can run distillation with the following command: ```bash python distill_classifier.py \ --data_file ./agnews/unlabeled.txt \ --class_names_files ./agnews/class_names.txt \ --teacher_name_or_path roberta-large-mnli \ --hypothesis_template "This text is about {}." \ --output_dir ./agnews/distilled ``` The script will generate a set of soft zero-shot predictions from `roberta-large-mnli` for each example in `agnews/unlabeled.txt`. It will then train a student distilbert classifier on the teacher predictions and save the resulting model in `./agnews/distilled`. The resulting model can then be loaded and used like any other pre-trained classifier: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("./agnews/distilled") tokenizer = AutoTokenizer.from_pretrained("./agnews/distilled") ``` and even used trivially with a `TextClassificationPipeline`: ```python >>> distilled_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) >>> distilled_classifier(sequence) [[{'label': 'the world', 'score': 0.14899294078350067}, {'label': 'sports', 'score': 0.03205857425928116}, {'label': 'business', 'score': 0.05943061783909798}, {'label': 'science/tech', 'score': 0.7595179080963135}]] ``` > Tip: pass `device=0` when constructing a pipeline to run on a GPU As we can see, the results of the student closely resemble that of the trainer despite never having seen this example during training. Now let's do a quick & dirty speed comparison simulating 16K examples with a batch size of 16: ```python for _ in range(1000): zero_shot_classifier([sequence] * 16, class_names) # runs in 1m 23s on a single V100 GPU ``` ```python %%time for _ in range(1000): distilled_classifier([sequence] * 16) # runs in 10.3s on a single V100 GPU ``` As we can see, the distilled student model runs an order of magnitude faster than its teacher NLI model. This is also a seeting where we only have `K=4` possible labels. The higher the number of classes for a given task, the more drastic the speedup will be, since the zero-shot teacher's complexity scales linearly with the number of classes. Since we secretly have access to ground truth labels for AG's news, we can evaluate the accuracy of each model. The original zero-shot model `roberta-large-mnli` gets an accuracy of 69.3% on the held-out test set. After training a student on the unlabeled training set, the distilled model gets a similar score of 70.4%. Lastly, you can share the distilled model with the community and/or use it with our inference API by [uploading it to the 🤗 Hub](https://huggingface.co/transformers/model_sharing.html). We've uploaded the distilled model from this example at [joeddav/distilbert-base-uncased-agnews-student](https://huggingface.co/joeddav/distilbert-base-uncased-agnews-student).
transformers/examples/research_projects/zero-shot-distillation/README.md/0
{ "file_path": "transformers/examples/research_projects/zero-shot-distillation/README.md", "repo_id": "transformers", "token_count": 2467 }
57
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for preparing TFRecord shards for pre-tokenized examples.""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name", type=str, default="wikitext", help="Name of the training. Explore datasets at: hf.co/datasets.", ) parser.add_argument( "--dataset_config", type=str, default="wikitext-103-raw-v1", help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path", type=str, default="sayakpaul/unigram-tokenizer-wikitext", help="Tokenizer identifier. Can be a local filepath or a Hub identifier.", ) parser.add_argument( "--shard_size", type=int, default=1000, help="Number of entries to go in a single shard.", ) parser.add_argument("--split", type=str, default="train", choices=["train", "test", "validation"]) parser.add_argument( "--limit", default=None, type=int, help="Limit the number of shards (used for debugging).", ) parser.add_argument( "--max_length", type=int, default=512, help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8.", ) parser.add_argument( "--output_dir", default="tf-tpu", type=str, help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket.", ) args = parser.parse_args() return args def tokenize_function(tokenizer): def fn(examples): return tokenizer(examples["text"]) return fn def get_serialized_examples(tokenized_data): records = [] for i in range(len(tokenized_data["input_ids"])): features = { "input_ids": tf.train.Feature(int64_list=tf.train.Int64List(value=tokenized_data["input_ids"][i])), "attention_mask": tf.train.Feature( int64_list=tf.train.Int64List(value=tokenized_data["attention_mask"][i]) ), } features = tf.train.Features(feature=features) example = tf.train.Example(features=features) record_bytes = example.SerializeToString() records.append(record_bytes) return records def main(args): dataset = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split) if args.limit is not None: max_samples = min(len(dataset), args.limit) dataset = dataset.select(range(max_samples)) print(f"Limiting the dataset to {args.limit} entries.") tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) split_dir = os.path.join(args.output_dir, args.split) if not os.path.exists(split_dir): os.makedirs(split_dir) else: split_dir = os.path.join(args.output_dir, args.split) # Tokenize the whole dataset at once. tokenize_fn = tokenize_function(tokenizer) dataset_tokenized = dataset.map(tokenize_fn, batched=True, num_proc=4, remove_columns=["text"]) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 total_length = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. result = { k: [t[i : i + args.max_length] for i in range(0, total_length, args.max_length)] for k, t in concatenated_examples.items() } return result grouped_dataset = dataset_tokenized.map(group_texts, batched=True, batch_size=1000, num_proc=4) shard_count = 0 total_records = 0 for shard in range(0, len(grouped_dataset), args.shard_size): dataset_snapshot = grouped_dataset[shard : shard + args.shard_size] records_containing = len(dataset_snapshot["input_ids"]) filename = os.path.join(split_dir, f"dataset-{shard_count}-{records_containing}.tfrecord") serialized_examples = get_serialized_examples(dataset_snapshot) with tf.io.TFRecordWriter(filename) as out_file: for i in range(len(serialized_examples)): example = serialized_examples[i] out_file.write(example) print("Wrote file {} containing {} records".format(filename, records_containing)) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt", "w") as f: print(f"Total {args.split} records: {total_records}", file=f) if __name__ == "__main__": args = parse_args() main(args)
transformers/examples/tensorflow/language-modeling-tpu/prepare_tfrecord_shards.py/0
{ "file_path": "transformers/examples/tensorflow/language-modeling-tpu/prepare_tfrecord_shards.py", "repo_id": "transformers", "token_count": 2654 }
58
[tool.ruff] # Never enforce `E501` (line length violations). ignore = ["C901", "E501", "E741", "F402", "F823" ] select = ["C", "E", "F", "I", "W"] line-length = 119 # Ignore import violations in all `__init__.py` files. [tool.ruff.per-file-ignores] "__init__.py" = ["E402", "F401", "F403", "F811"] "src/transformers/file_utils.py" = ["F401"] "src/transformers/utils/dummy_*.py" = ["F401"] [tool.ruff.isort] lines-after-imports = 2 known-first-party = ["transformers"] [tool.ruff.format] # Like Black, use double quotes for strings. quote-style = "double" # Like Black, indent with spaces, rather than tabs. indent-style = "space" # Like Black, respect magic trailing commas. skip-magic-trailing-comma = false # Like Black, automatically detect the appropriate line ending. line-ending = "auto" [tool.pytest.ini_options] doctest_optionflags="NUMBER NORMALIZE_WHITESPACE ELLIPSIS" doctest_glob="**/*.md" markers = [ "flash_attn_test: marks tests related to flash attention (deselect with '-m \"not flash_attn_test\"')", "bitsandbytes: select (or deselect with `not`) bitsandbytes integration tests", ]
transformers/pyproject.toml/0
{ "file_path": "transformers/pyproject.toml", "repo_id": "transformers", "token_count": 406 }
59
# This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp # Copyright 2020 The HuggingFace Team and the AllenNLP authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for working with the local dataset cache. """ import copy import csv import linecache import os import platform import sys import warnings from abc import ABC, abstractmethod from collections import defaultdict, namedtuple from datetime import datetime from multiprocessing import Pipe, Process, Queue from multiprocessing.connection import Connection from typing import Callable, Iterable, List, NamedTuple, Optional, Union from .. import AutoConfig, PretrainedConfig from .. import __version__ as version from ..utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available, logging from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): from torch.cuda import empty_cache as torch_empty_cache if is_tf_available(): from tensorflow.python.eager import context as tf_context if is_psutil_available(): import psutil if is_py3nvml_available(): import py3nvml.py3nvml as nvml if platform.system() == "Windows": from signal import CTRL_C_EVENT as SIGKILL else: from signal import SIGKILL logger = logging.get_logger(__name__) # pylint: disable=invalid-name _is_memory_tracing_enabled = False BenchmarkOutput = namedtuple( "BenchmarkOutput", [ "time_inference_result", "memory_inference_result", "time_train_result", "memory_train_result", "inference_summary", "train_summary", ], ) def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: bool) -> Callable[[], None]: """ This function wraps another function into its own separated process. In order to ensure accurate memory measurements it is important that the function is executed in a separate process Args: - `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process - `do_multi_processing`: (`bool`) Whether to run function on separate process or not """ def multi_process_func(*args, **kwargs): # run function in an individual # process to get correct memory def wrapper_func(queue: Queue, *args): try: result = func(*args) except Exception as e: logger.error(e) print(e) result = "N/A" queue.put(result) queue = Queue() p = Process(target=wrapper_func, args=[queue] + list(args)) p.start() result = queue.get() p.join() return result if do_multi_processing: logger.info(f"Function {func} is executed in its own process...") return multi_process_func else: return func def is_memory_tracing_enabled(): global _is_memory_tracing_enabled return _is_memory_tracing_enabled class Frame(NamedTuple): """ `Frame` is a NamedTuple used to gather the current frame state. `Frame` has the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script """ filename: str module: str line_number: int event: str line_text: str class UsedMemoryState(NamedTuple): """ `UsedMemoryState` are named tuples with the following fields: - 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file, location in current file) - 'cpu_memory': CPU RSS memory state *before* executing the line - 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if provided) """ frame: Frame cpu_memory: int gpu_memory: int class Memory(NamedTuple): """ `Memory` NamedTuple have a single field `bytes` and you can get a human readable str of the number of mega bytes by calling `__repr__` - `byte` (integer): number of bytes, """ bytes: int def __repr__(self) -> str: return str(bytes_to_mega_bytes(self.bytes)) class MemoryState(NamedTuple): """ `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple """ frame: Frame cpu: Memory gpu: Memory cpu_gpu: Memory class MemorySummary(NamedTuple): """ `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by subtracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). """ sequential: List[MemoryState] cumulative: List[MemoryState] current: List[MemoryState] total: Memory MemoryTrace = List[UsedMemoryState] def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_idx=None) -> int: """ measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package `memory_profiler`: https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239 Args: - `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure the peak memory - `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage - `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage Returns: - `max_memory`: (`int`) consumed memory peak in Bytes """ def get_cpu_memory(process_id: int) -> int: """ measures current cpu memory usage of a given `process_id` Args: - `process_id`: (`int`) process_id for which to measure memory Returns - `memory`: (`int`) consumed memory in Bytes """ process = psutil.Process(process_id) try: meminfo_attr = "memory_info" if hasattr(process, "memory_info") else "get_memory_info" memory = getattr(process, meminfo_attr)()[0] except psutil.AccessDenied: raise ValueError("Error with Psutil.") return memory if not is_psutil_available(): logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install Psutil (pip install psutil) to use CPU memory tracing." ) max_memory = "N/A" else: class MemoryMeasureProcess(Process): """ `MemoryMeasureProcess` inherits from `Process` and overwrites its `run()` method. Used to measure the memory usage of a process """ def __init__(self, process_id: int, child_connection: Connection, interval: float): super().__init__() self.process_id = process_id self.interval = interval self.connection = child_connection self.num_measurements = 1 self.mem_usage = get_cpu_memory(self.process_id) def run(self): self.connection.send(0) stop = False while True: self.mem_usage = max(self.mem_usage, get_cpu_memory(self.process_id)) self.num_measurements += 1 if stop: break stop = self.connection.poll(self.interval) # send results to parent pipe self.connection.send(self.mem_usage) self.connection.send(self.num_measurements) while True: # create child, parent connection child_connection, parent_connection = Pipe() # instantiate process mem_process = MemoryMeasureProcess(os.getpid(), child_connection, interval) mem_process.start() # wait until we get memory parent_connection.recv() try: # execute function function() # start parent connection parent_connection.send(0) # receive memory and num measurements max_memory = parent_connection.recv() num_measurements = parent_connection.recv() except Exception: # kill process in a clean way parent = psutil.Process(os.getpid()) for child in parent.children(recursive=True): os.kill(child.pid, SIGKILL) mem_process.join(0) raise RuntimeError("Process killed. Error in Process") # run process at least 20 * interval or until it finishes mem_process.join(20 * interval) if (num_measurements > 4) or (interval < 1e-6): break # reduce interval interval /= 10 return max_memory def start_memory_tracing( modules_to_trace: Optional[Union[str, Iterable[str]]] = None, modules_not_to_trace: Optional[Union[str, Iterable[str]]] = None, events_to_trace: str = "line", gpus_to_trace: Optional[List[int]] = None, ) -> MemoryTrace: """ Setup line-by-line tracing to record rss mem (RAM) at each line of a module or sub-module. See `./benchmark.py` for usage examples. Current memory consumption is returned using psutil and in particular is the RSS memory "Resident Set Size” (the non-swapped physical memory the process is using). See https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info Args: - `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or 'transformers.models.gpt2.modeling_gpt2') - `modules_not_to_trace`: (None, string, list/tuple of string) if None, no module is avoided if string or list of strings: events from the listed module/sub-module will not be recorded (e.g. 'torch') - `events_to_trace`: string or list of string of events to be recorded (see official python doc for `sys.settrace` for the list of events) default to line - `gpus_to_trace`: (optional list, default None) list of GPUs to trace. Default to tracing all GPUs Return: - `memory_trace` is a list of `UsedMemoryState` for each event (default each line of the traced script). - `UsedMemoryState` are named tuples with the following fields: - 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file, location in current file) - 'cpu_memory': CPU RSS memory state *before* executing the line - 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if provided) `Frame` is a namedtuple used by `UsedMemoryState` to list the current frame state. `Frame` has the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script """ if is_psutil_available(): process = psutil.Process(os.getpid()) else: logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install psutil (pip install psutil) to use CPU memory tracing." ) process = None if is_py3nvml_available(): try: nvml.nvmlInit() devices = list(range(nvml.nvmlDeviceGetCount())) if gpus_to_trace is None else gpus_to_trace nvml.nvmlShutdown() except (OSError, nvml.NVMLError): logger.warning("Error while initializing communication with GPU. We won't perform GPU memory tracing.") log_gpu = False else: log_gpu = is_torch_available() or is_tf_available() else: logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to use GPU memory tracing." ) log_gpu = False memory_trace = [] def traceit(frame, event, args): """ Tracing method executed before running each line in a module or sub-module Record memory allocated in a list with debugging information """ global _is_memory_tracing_enabled if not _is_memory_tracing_enabled: return traceit # Filter events if events_to_trace is not None: if isinstance(events_to_trace, str) and event != events_to_trace: return traceit elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace: return traceit if "__name__" not in frame.f_globals: return traceit # Filter modules name = frame.f_globals["__name__"] if not isinstance(name, str): return traceit else: # Filter whitelist of modules to trace if modules_to_trace is not None: if isinstance(modules_to_trace, str) and modules_to_trace not in name: return traceit elif isinstance(modules_to_trace, (list, tuple)) and all(m not in name for m in modules_to_trace): return traceit # Filter blacklist of modules not to trace if modules_not_to_trace is not None: if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name: return traceit elif isinstance(modules_not_to_trace, (list, tuple)) and any(m in name for m in modules_not_to_trace): return traceit # Record current tracing state (file, location in file...) lineno = frame.f_lineno filename = frame.f_globals["__file__"] if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] line = linecache.getline(filename, lineno).rstrip() traced_state = Frame(filename, name, lineno, event, line) # Record current memory state (rss memory) and compute difference with previous memory state cpu_mem = 0 if process is not None: mem = process.memory_info() cpu_mem = mem.rss gpu_mem = 0 if log_gpu: # Clear GPU caches if is_torch_available(): torch_empty_cache() if is_tf_available(): tf_context.context()._clear_caches() # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802 # Sum used memory for all GPUs nvml.nvmlInit() for i in devices: handle = nvml.nvmlDeviceGetHandleByIndex(i) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem += meminfo.used nvml.nvmlShutdown() mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem) memory_trace.append(mem_state) return traceit sys.settrace(traceit) global _is_memory_tracing_enabled _is_memory_tracing_enabled = True return memory_trace def stop_memory_tracing( memory_trace: Optional[MemoryTrace] = None, ignore_released_memory: bool = True ) -> Optional[MemorySummary]: """ Stop memory tracing cleanly and return a summary of the memory trace if a trace is given. Args: `memory_trace` (optional output of start_memory_tracing, default: None): memory trace to convert in summary `ignore_released_memory` (boolean, default: None): if True we only sum memory increase to compute total memory Return: - None if `memory_trace` is None - `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by subtracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). `Memory` named tuple have fields - `byte` (integer): number of bytes, - `string` (string): same as human readable string (ex: "3.5MB") `Frame` are namedtuple used to list the current frame state and have the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple """ global _is_memory_tracing_enabled _is_memory_tracing_enabled = False if memory_trace is not None and len(memory_trace) > 1: memory_diff_trace = [] memory_curr_trace = [] cumulative_memory_dict = defaultdict(lambda: [0, 0, 0]) for ( (frame, cpu_mem, gpu_mem), (next_frame, next_cpu_mem, next_gpu_mem), ) in zip(memory_trace[:-1], memory_trace[1:]): cpu_mem_inc = next_cpu_mem - cpu_mem gpu_mem_inc = next_gpu_mem - gpu_mem cpu_gpu_mem_inc = cpu_mem_inc + gpu_mem_inc memory_diff_trace.append( MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) ) memory_curr_trace.append( MemoryState( frame=frame, cpu=Memory(next_cpu_mem), gpu=Memory(next_gpu_mem), cpu_gpu=Memory(next_gpu_mem + next_cpu_mem), ) ) cumulative_memory_dict[frame][0] += cpu_mem_inc cumulative_memory_dict[frame][1] += gpu_mem_inc cumulative_memory_dict[frame][2] += cpu_gpu_mem_inc cumulative_memory = sorted( cumulative_memory_dict.items(), key=lambda x: x[1][2], reverse=True ) # order by the total CPU + GPU memory increase cumulative_memory = [ MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) for frame, (cpu_mem_inc, gpu_mem_inc, cpu_gpu_mem_inc) in cumulative_memory ] memory_curr_trace = sorted(memory_curr_trace, key=lambda x: x.cpu_gpu.bytes, reverse=True) if ignore_released_memory: total_memory = sum(max(0, step_trace.cpu_gpu.bytes) for step_trace in memory_diff_trace) else: total_memory = sum(step_trace.cpu_gpu.bytes for step_trace in memory_diff_trace) total_memory = Memory(total_memory) return MemorySummary( sequential=memory_diff_trace, cumulative=cumulative_memory, current=memory_curr_trace, total=total_memory, ) return None def bytes_to_mega_bytes(memory_amount: int) -> int: """Utility to convert a number of bytes (int) into a number of mega bytes (int)""" return memory_amount >> 20 class Benchmark(ABC): """ Benchmarks is a simple but feature-complete benchmarking script to compare memory and time performance of models in Transformers. """ args: BenchmarkArguments configs: PretrainedConfig framework: str def __init__(self, args: BenchmarkArguments = None, configs: PretrainedConfig = None): self.args = args if configs is None: self.config_dict = { model_name: AutoConfig.from_pretrained(model_name) for model_name in self.args.model_names } else: self.config_dict = dict(zip(self.args.model_names, configs)) warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models.", FutureWarning, ) if self.args.memory and os.getenv("TRANSFORMERS_USE_MULTIPROCESSING") == 0: logger.warning( "Memory consumption will not be measured accurately if `args.multi_process` is set to `False.` The" " flag 'TRANSFORMERS_USE_MULTIPROCESSING' should only be disabled for debugging / testing." ) self._print_fn = None self._framework_version = None self._environment_info = None @property def print_fn(self): if self._print_fn is None: if self.args.log_print: def print_and_log(*args): with open(self.args.log_filename, "a") as log_file: log_file.write("".join(args) + "\n") print(*args) self._print_fn = print_and_log else: self._print_fn = print return self._print_fn @property @abstractmethod def framework_version(self): pass @abstractmethod def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: pass @abstractmethod def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: pass @abstractmethod def _inference_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: pass @abstractmethod def _train_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: pass def inference_speed(self, *args, **kwargs) -> float: return separate_process_wrapper_fn(self._inference_speed, self.args.do_multi_processing)(*args, **kwargs) def train_speed(self, *args, **kwargs) -> float: return separate_process_wrapper_fn(self._train_speed, self.args.do_multi_processing)(*args, **kwargs) def inference_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]: return separate_process_wrapper_fn(self._inference_memory, self.args.do_multi_processing)(*args, **kwargs) def train_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]: return separate_process_wrapper_fn(self._train_memory, self.args.do_multi_processing)(*args, **kwargs) def run(self): result_dict = {model_name: {} for model_name in self.args.model_names} inference_result_time = copy.deepcopy(result_dict) inference_result_memory = copy.deepcopy(result_dict) train_result_time = copy.deepcopy(result_dict) train_result_memory = copy.deepcopy(result_dict) for c, model_name in enumerate(self.args.model_names): self.print_fn(f"{c + 1} / {len(self.args.model_names)}") model_dict = { "bs": self.args.batch_sizes, "ss": self.args.sequence_lengths, "result": {i: {} for i in self.args.batch_sizes}, } inference_result_time[model_name] = copy.deepcopy(model_dict) inference_result_memory[model_name] = copy.deepcopy(model_dict) train_result_time[model_name] = copy.deepcopy(model_dict) train_result_memory[model_name] = copy.deepcopy(model_dict) inference_summary = train_summary = None for batch_size in self.args.batch_sizes: for sequence_length in self.args.sequence_lengths: if self.args.inference: if self.args.memory: memory, inference_summary = self.inference_memory(model_name, batch_size, sequence_length) inference_result_memory[model_name]["result"][batch_size][sequence_length] = memory if self.args.speed: time = self.inference_speed(model_name, batch_size, sequence_length) inference_result_time[model_name]["result"][batch_size][sequence_length] = time if self.args.training: if self.args.memory: memory, train_summary = self.train_memory(model_name, batch_size, sequence_length) train_result_memory[model_name]["result"][batch_size][sequence_length] = memory if self.args.speed: time = self.train_speed(model_name, batch_size, sequence_length) train_result_time[model_name]["result"][batch_size][sequence_length] = time if self.args.inference: if self.args.speed: self.print_fn("\n" + 20 * "=" + ("INFERENCE - SPEED - RESULT").center(40) + 20 * "=") self.print_results(inference_result_time, type_label="Time in s") self.save_to_csv(inference_result_time, self.args.inference_time_csv_file) if self.args.is_tpu: self.print_fn( "TPU was used for inference. Note that the time after compilation stabilized (after ~10" " inferences model.forward(..) calls) was measured." ) if self.args.memory: self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMORY - RESULT").center(40) + 20 * "=") self.print_results(inference_result_memory, type_label="Memory in MB") self.save_to_csv(inference_result_memory, self.args.inference_memory_csv_file) if self.args.trace_memory_line_by_line: self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=") self.print_memory_trace_statistics(inference_summary) if self.args.training: if self.args.speed: self.print_fn("\n" + 20 * "=" + ("TRAIN - SPEED - RESULTS").center(40) + 20 * "=") self.print_results(train_result_time, "Time in s") self.save_to_csv(train_result_time, self.args.train_time_csv_file) if self.args.is_tpu: self.print_fn( "TPU was used for training. Note that the time after compilation stabilized (after ~10 train" " loss=model.forward(...) + loss.backward() calls) was measured." ) if self.args.memory: self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMORY - RESULTS").center(40) + 20 * "=") self.print_results(train_result_memory, type_label="Memory in MB") self.save_to_csv(train_result_memory, self.args.train_memory_csv_file) if self.args.trace_memory_line_by_line: self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=") self.print_memory_trace_statistics(train_summary) if self.args.env_print: self.print_fn("\n" + 20 * "=" + ("ENVIRONMENT INFORMATION").center(40) + 20 * "=") self.print_fn("\n".join([f"- {prop}: {val}" for prop, val in self.environment_info.items()]) + "\n") if self.args.save_to_csv: with open(self.args.env_info_csv_file, mode="w", newline="") as csv_file: writer = csv.writer(csv_file) for key, value in self.environment_info.items(): writer.writerow([key, value]) return BenchmarkOutput( inference_result_time, inference_result_memory, train_result_time, train_result_memory, inference_summary, train_summary, ) @property def environment_info(self): if self._environment_info is None: info = {} info["transformers_version"] = version info["framework"] = self.framework if self.framework == "PyTorch": info["use_torchscript"] = self.args.torchscript if self.framework == "TensorFlow": info["eager_mode"] = self.args.eager_mode info["use_xla"] = self.args.use_xla info["framework_version"] = self.framework_version info["python_version"] = platform.python_version() info["system"] = platform.system() info["cpu"] = platform.processor() info["architecture"] = platform.architecture()[0] info["date"] = datetime.date(datetime.now()) info["time"] = datetime.time(datetime.now()) info["fp16"] = self.args.fp16 info["use_multiprocessing"] = self.args.do_multi_processing info["only_pretrain_model"] = self.args.only_pretrain_model if is_psutil_available(): info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total) else: logger.warning( "Psutil not installed, we won't log available CPU memory. " "Install psutil (pip install psutil) to log available CPU memory." ) info["cpu_ram_mb"] = "N/A" info["use_gpu"] = self.args.is_gpu if self.args.is_gpu: info["num_gpus"] = 1 # TODO(PVP) Currently only single GPU is supported if is_py3nvml_available(): nvml.nvmlInit() handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) info["gpu"] = nvml.nvmlDeviceGetName(handle) info["gpu_ram_mb"] = bytes_to_mega_bytes(nvml.nvmlDeviceGetMemoryInfo(handle).total) info["gpu_power_watts"] = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000 info["gpu_performance_state"] = nvml.nvmlDeviceGetPerformanceState(handle) nvml.nvmlShutdown() else: logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) info["gpu"] = "N/A" info["gpu_ram_mb"] = "N/A" info["gpu_power_watts"] = "N/A" info["gpu_performance_state"] = "N/A" info["use_tpu"] = self.args.is_tpu # TODO(PVP): See if we can add more information about TPU # see: https://github.com/pytorch/xla/issues/2180 self._environment_info = info return self._environment_info def print_results(self, result_dict, type_label): self.print_fn(80 * "-") self.print_fn( "Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15) ) self.print_fn(80 * "-") for model_name in self.args.model_names: for batch_size in result_dict[model_name]["bs"]: for sequence_length in result_dict[model_name]["ss"]: result = result_dict[model_name]["result"][batch_size][sequence_length] if isinstance(result, float): result = round(1000 * result) / 1000 result = "< 0.001" if result == 0.0 else str(result) else: result = str(result) self.print_fn( model_name[:30].center(30) + str(batch_size).center(15), str(sequence_length).center(15), result.center(15), ) self.print_fn(80 * "-") def print_memory_trace_statistics(self, summary: MemorySummary): self.print_fn( "\nLine by line memory consumption:\n" + "\n".join( f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.sequential ) ) self.print_fn( "\nLines with top memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[:6] ) ) self.print_fn( "\nLines with lowest memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[-6:] ) ) self.print_fn(f"\nTotal memory increase: {summary.total}") def save_to_csv(self, result_dict, filename): if not self.args.save_to_csv: return self.print_fn("Saving results to csv.") with open(filename, mode="w") as csv_file: if len(self.args.model_names) <= 0: raise ValueError(f"At least 1 model should be defined, but got {self.model_names}") fieldnames = ["model", "batch_size", "sequence_length"] writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"]) writer.writeheader() for model_name in self.args.model_names: result_dict_model = result_dict[model_name]["result"] for bs in result_dict_model: for ss in result_dict_model[bs]: result_model = result_dict_model[bs][ss] writer.writerow( { "model": model_name, "batch_size": bs, "sequence_length": ss, "result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format( result_model ), } )
transformers/src/transformers/benchmark/benchmark_utils.py/0
{ "file_path": "transformers/src/transformers/benchmark/benchmark_utils.py", "repo_id": "transformers", "token_count": 16506 }
60
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from argparse import ArgumentParser from os import listdir, makedirs from pathlib import Path from typing import Dict, List, Optional, Tuple from packaging.version import Version, parse from transformers.pipelines import Pipeline, pipeline from transformers.tokenization_utils import BatchEncoding from transformers.utils import ModelOutput, is_tf_available, is_torch_available # This is the minimal required version to # support some ONNX Runtime features ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0") SUPPORTED_PIPELINES = [ "feature-extraction", "ner", "sentiment-analysis", "fill-mask", "question-answering", "text-generation", "translation_en_to_fr", "translation_en_to_de", "translation_en_to_ro", ] class OnnxConverterArgumentParser(ArgumentParser): """ Wraps all the script arguments supported to export transformers models to ONNX IR """ def __init__(self): super().__init__("ONNX Converter") self.add_argument( "--pipeline", type=str, choices=SUPPORTED_PIPELINES, default="feature-extraction", ) self.add_argument( "--model", type=str, required=True, help="Model's id or path (ex: google-bert/bert-base-cased)", ) self.add_argument("--tokenizer", type=str, help="Tokenizer's id or path (ex: google-bert/bert-base-cased)") self.add_argument( "--framework", type=str, choices=["pt", "tf"], help="Framework for loading the model", ) self.add_argument("--opset", type=int, default=11, help="ONNX opset to use") self.add_argument( "--check-loading", action="store_true", help="Check ONNX is able to load the model", ) self.add_argument( "--use-external-format", action="store_true", help="Allow exporting model >= than 2Gb", ) self.add_argument( "--quantize", action="store_true", help="Quantize the neural network to be run with int8", ) self.add_argument("output") def generate_identified_filename(filename: Path, identifier: str) -> Path: """ Append a string-identifier at the end (before the extension, if any) to the provided filepath Args: filename: pathlib.Path The actual path object we would like to add an identifier suffix identifier: The suffix to add Returns: String with concatenated identifier at the end of the filename """ return filename.parent.joinpath(filename.stem + identifier).with_suffix(filename.suffix) def check_onnxruntime_requirements(minimum_version: Version): """ Check onnxruntime is installed and if the installed version match is recent enough Raises: ImportError: If onnxruntime is not installed or too old version is found """ try: import onnxruntime # Parse the version of the installed onnxruntime ort_version = parse(onnxruntime.__version__) # We require 1.4.0 minimum if ort_version < ORT_QUANTIZE_MINIMUM_VERSION: raise ImportError( f"We found an older version of onnxruntime ({onnxruntime.__version__}) " f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n" "Please update onnxruntime by running `pip install --upgrade onnxruntime`" ) except ImportError: raise ImportError( "onnxruntime doesn't seem to be currently installed. " "Please install the onnxruntime by running `pip install onnxruntime`" " and relaunch the conversion." ) def ensure_valid_input(model, tokens, input_names): """ Ensure inputs are presented in the correct order, without any Non Args: model: The model used to forward the input data tokens: BatchEncoding holding the input data input_names: The name of the inputs Returns: Tuple """ print("Ensuring inputs are in correct order") model_args_name = model.forward.__code__.co_varnames model_args, ordered_input_names = [], [] for arg_name in model_args_name[1:]: # start at index 1 to skip "self" argument if arg_name in input_names: ordered_input_names.append(arg_name) model_args.append(tokens[arg_name]) else: print(f"{arg_name} is not present in the generated input list.") break print(f"Generated inputs order: {ordered_input_names}") return ordered_input_names, tuple(model_args) def infer_shapes(nlp: Pipeline, framework: str) -> Tuple[List[str], List[str], Dict, BatchEncoding]: """ Attempt to infer the static vs dynamic axes for each input and output tensors for a specific model Args: nlp: The pipeline object holding the model to be exported framework: The framework identifier to dispatch to the correct inference scheme (pt/tf) Returns: - List of the inferred input variable names - List of the inferred output variable names - Dictionary with input/output variables names as key and shape tensor as value - a BatchEncoding reference which was used to infer all the above information """ def build_shape_dict(name: str, tensor, is_input: bool, seq_len: int): if isinstance(tensor, (tuple, list)): return [build_shape_dict(name, t, is_input, seq_len) for t in tensor] else: # Let's assume batch is the first axis with only 1 element (~~ might not be always true ...) axes = {[axis for axis, numel in enumerate(tensor.shape) if numel == 1][0]: "batch"} if is_input: if len(tensor.shape) == 2: axes[1] = "sequence" else: raise ValueError(f"Unable to infer tensor axes ({len(tensor.shape)})") else: seq_axes = [dim for dim, shape in enumerate(tensor.shape) if shape == seq_len] axes.update({dim: "sequence" for dim in seq_axes}) print(f"Found {'input' if is_input else 'output'} {name} with shape: {axes}") return axes tokens = nlp.tokenizer("This is a sample output", return_tensors=framework) seq_len = tokens.input_ids.shape[-1] outputs = nlp.model(**tokens) if framework == "pt" else nlp.model(tokens) if isinstance(outputs, ModelOutput): outputs = outputs.to_tuple() if not isinstance(outputs, (list, tuple)): outputs = (outputs,) # Generate input names & axes input_vars = list(tokens.keys()) input_dynamic_axes = {k: build_shape_dict(k, v, True, seq_len) for k, v in tokens.items()} # flatten potentially grouped outputs (past for gpt2, attentions) outputs_flat = [] for output in outputs: if isinstance(output, (tuple, list)): outputs_flat.extend(output) else: outputs_flat.append(output) # Generate output names & axes output_names = [f"output_{i}" for i in range(len(outputs_flat))] output_dynamic_axes = {k: build_shape_dict(k, v, False, seq_len) for k, v in zip(output_names, outputs_flat)} # Create the aggregated axes representation dynamic_axes = dict(input_dynamic_axes, **output_dynamic_axes) return input_vars, output_names, dynamic_axes, tokens def load_graph_from_args( pipeline_name: str, framework: str, model: str, tokenizer: Optional[str] = None, **models_kwargs ) -> Pipeline: """ Convert the set of arguments provided through the CLI to an actual pipeline reference (tokenizer + model Args: pipeline_name: The kind of pipeline to use (ner, question-answering, etc.) framework: The actual model to convert the pipeline from ("pt" or "tf") model: The model name which will be loaded by the pipeline tokenizer: The tokenizer name which will be loaded by the pipeline, default to the model's value Returns: Pipeline object """ # If no tokenizer provided if tokenizer is None: tokenizer = model # Check the wanted framework is available if framework == "pt" and not is_torch_available(): raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.") if framework == "tf" and not is_tf_available(): raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.") print(f"Loading pipeline (model: {model}, tokenizer: {tokenizer})") # Allocate tokenizer and model return pipeline(pipeline_name, model=model, tokenizer=tokenizer, framework=framework, model_kwargs=models_kwargs) def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format: bool): """ Export a PyTorch backed pipeline to ONNX Intermediate Representation (IR Args: nlp: The pipeline to be exported opset: The actual version of the ONNX operator set to use output: Path where will be stored the generated ONNX model use_external_format: Split the model definition from its parameters to allow model bigger than 2GB Returns: """ if not is_torch_available(): raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.") import torch from torch.onnx import export print(f"Using framework PyTorch: {torch.__version__}") with torch.no_grad(): input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "pt") ordered_input_names, model_args = ensure_valid_input(nlp.model, tokens, input_names) export( nlp.model, model_args, f=output.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, opset_version=opset, ) def convert_tensorflow(nlp: Pipeline, opset: int, output: Path): """ Export a TensorFlow backed pipeline to ONNX Intermediate Representation (IR) Args: nlp: The pipeline to be exported opset: The actual version of the ONNX operator set to use output: Path where will be stored the generated ONNX model Notes: TensorFlow cannot export model bigger than 2GB due to internal constraint from TensorFlow """ if not is_tf_available(): raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.") print("/!\\ Please note TensorFlow doesn't support exporting model > 2Gb /!\\") try: import tensorflow as tf import tf2onnx from tf2onnx import __version__ as t2ov print(f"Using framework TensorFlow: {tf.version.VERSION}, tf2onnx: {t2ov}") # Build input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "tf") # Forward nlp.model.predict(tokens.data) input_signature = [tf.TensorSpec.from_tensor(tensor, name=key) for key, tensor in tokens.items()] model_proto, _ = tf2onnx.convert.from_keras( nlp.model, input_signature, opset=opset, output_path=output.as_posix() ) except ImportError as e: raise Exception( f"Cannot import {e.name} required to convert TF model to ONNX. Please install {e.name} first. {e}" ) def convert( framework: str, model: str, output: Path, opset: int, tokenizer: Optional[str] = None, use_external_format: bool = False, pipeline_name: str = "feature-extraction", **model_kwargs, ): """ Convert the pipeline object to the ONNX Intermediate Representation (IR) format Args: framework: The framework the pipeline is backed by ("pt" or "tf") model: The name of the model to load for the pipeline output: The path where the ONNX graph will be stored opset: The actual version of the ONNX operator set to use tokenizer: The name of the model to load for the pipeline, default to the model's name if not provided use_external_format: Split the model definition from its parameters to allow model bigger than 2GB (PyTorch only) pipeline_name: The kind of pipeline to instantiate (ner, question-answering, etc.) model_kwargs: Keyword arguments to be forwarded to the model constructor Returns: """ warnings.warn( "The `transformers.convert_graph_to_onnx` package is deprecated and will be removed in version 5 of" " Transformers", FutureWarning, ) print(f"ONNX opset version set to: {opset}") # Load the pipeline nlp = load_graph_from_args(pipeline_name, framework, model, tokenizer, **model_kwargs) if not output.parent.exists(): print(f"Creating folder {output.parent}") makedirs(output.parent.as_posix()) elif len(listdir(output.parent.as_posix())) > 0: raise Exception(f"Folder {output.parent.as_posix()} is not empty, aborting conversion") # Export the graph if framework == "pt": convert_pytorch(nlp, opset, output, use_external_format) else: convert_tensorflow(nlp, opset, output) def optimize(onnx_model_path: Path) -> Path: """ Load the model at the specified path and let onnxruntime look at transformations on the graph to enable all the optimizations possible Args: onnx_model_path: filepath where the model binary description is stored Returns: Path where the optimized model binary description has been saved """ from onnxruntime import InferenceSession, SessionOptions # Generate model name with suffix "optimized" opt_model_path = generate_identified_filename(onnx_model_path, "-optimized") sess_option = SessionOptions() sess_option.optimized_model_filepath = opt_model_path.as_posix() _ = InferenceSession(onnx_model_path.as_posix(), sess_option) print(f"Optimized model has been written at {opt_model_path}: \N{heavy check mark}") print("/!\\ Optimized model contains hardware specific operators which might not be portable. /!\\") return opt_model_path def quantize(onnx_model_path: Path) -> Path: """ Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU Args: onnx_model_path: Path to location the exported ONNX model is stored Returns: The Path generated for the quantized """ import onnx import onnxruntime from onnx.onnx_pb import ModelProto from onnxruntime.quantization import QuantizationMode from onnxruntime.quantization.onnx_quantizer import ONNXQuantizer from onnxruntime.quantization.registry import IntegerOpsRegistry # Load the ONNX model onnx_model = onnx.load(onnx_model_path.as_posix()) if parse(onnx.__version__) < parse("1.5.0"): print( "Models larger than 2GB will fail to quantize due to protobuf constraint.\n" "Please upgrade to onnxruntime >= 1.5.0." ) # Copy it copy_model = ModelProto() copy_model.CopyFrom(onnx_model) # Construct quantizer # onnxruntime renamed input_qType to activation_qType in v1.13.1, so we # check the onnxruntime version to ensure backward compatibility. # See also: https://github.com/microsoft/onnxruntime/pull/12873 if parse(onnxruntime.__version__) < parse("1.13.1"): quantizer = ONNXQuantizer( model=copy_model, per_channel=False, reduce_range=False, mode=QuantizationMode.IntegerOps, static=False, weight_qType=True, input_qType=False, tensors_range=None, nodes_to_quantize=None, nodes_to_exclude=None, op_types_to_quantize=list(IntegerOpsRegistry), ) else: quantizer = ONNXQuantizer( model=copy_model, per_channel=False, reduce_range=False, mode=QuantizationMode.IntegerOps, static=False, weight_qType=True, activation_qType=False, tensors_range=None, nodes_to_quantize=None, nodes_to_exclude=None, op_types_to_quantize=list(IntegerOpsRegistry), ) # Quantize and export quantizer.quantize_model() # Append "-quantized" at the end of the model's name quantized_model_path = generate_identified_filename(onnx_model_path, "-quantized") # Save model print(f"Quantized model has been written at {quantized_model_path}: \N{heavy check mark}") onnx.save_model(quantizer.model.model, quantized_model_path.as_posix()) return quantized_model_path def verify(path: Path): from onnxruntime import InferenceSession, SessionOptions from onnxruntime.capi.onnxruntime_pybind11_state import RuntimeException print(f"Checking ONNX model loading from: {path} ...") try: onnx_options = SessionOptions() _ = InferenceSession(path.as_posix(), onnx_options, providers=["CPUExecutionProvider"]) print(f"Model {path} correctly loaded: \N{heavy check mark}") except RuntimeException as re: print(f"Error while loading the model {re}: \N{heavy ballot x}") if __name__ == "__main__": parser = OnnxConverterArgumentParser() args = parser.parse_args() # Make sure output is absolute path args.output = Path(args.output).absolute() try: print("\n====== Converting model to ONNX ======") # Convert convert( args.framework, args.model, args.output, args.opset, args.tokenizer, args.use_external_format, args.pipeline, ) if args.quantize: # Ensure requirements for quantization on onnxruntime is met check_onnxruntime_requirements(ORT_QUANTIZE_MINIMUM_VERSION) # onnxruntime optimizations doesn't provide the same level of performances on TensorFlow than PyTorch if args.framework == "tf": print( "\t Using TensorFlow might not provide the same optimization level compared to PyTorch.\n" "\t For TensorFlow users you can try optimizing the model directly through onnxruntime_tools.\n" "\t For more information, please refer to the onnxruntime documentation:\n" "\t\thttps://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers\n" ) print("\n====== Optimizing ONNX model ======") # Quantization works best when using the optimized version of the model args.optimized_output = optimize(args.output) # Do the quantization on the right graph args.quantized_output = quantize(args.optimized_output) # And verify if args.check_loading: print("\n====== Check exported ONNX model(s) ======") verify(args.output) if hasattr(args, "optimized_output"): verify(args.optimized_output) if hasattr(args, "quantized_output"): verify(args.quantized_output) except Exception as e: print(f"Error while converting the model: {e}") exit(1)
transformers/src/transformers/convert_graph_to_onnx.py/0
{ "file_path": "transformers/src/transformers/convert_graph_to_onnx.py", "repo_id": "transformers", "token_count": 7910 }
61
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import dataclasses import json from dataclasses import dataclass from typing import List, Optional, Union from ...utils import is_tf_available, is_torch_available, logging logger = logging.get_logger(__name__) @dataclass class InputExample: """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ guid: str text_a: str text_b: Optional[str] = None label: Optional[str] = None def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(dataclasses.asdict(self), indent=2) + "\n" @dataclass(frozen=True) class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded) tokens. token_type_ids: (Optional) Segment token indices to indicate first and second portions of the inputs. Only some models use them. label: (Optional) Label corresponding to the input. Int for classification problems, float for regression problems. """ input_ids: List[int] attention_mask: Optional[List[int]] = None token_type_ids: Optional[List[int]] = None label: Optional[Union[int, float]] = None def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(dataclasses.asdict(self)) + "\n" class DataProcessor: """Base class for data converters for sequence classification data sets.""" def get_example_from_tensor_dict(self, tensor_dict): """ Gets an example from a dict with tensorflow tensors. Args: tensor_dict: Keys and values should match the corresponding Glue tensorflow_dataset examples. """ raise NotImplementedError() def get_train_examples(self, data_dir): """Gets a collection of [`InputExample`] for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of [`InputExample`] for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of [`InputExample`] for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() def tfds_map(self, example): """ Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts examples to the correct format. """ if len(self.get_labels()) > 1: example.label = self.get_labels()[int(example.label)] return example @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: return list(csv.reader(f, delimiter="\t", quotechar=quotechar)) class SingleSentenceClassificationProcessor(DataProcessor): """Generic processor for a single sentence classification data set.""" def __init__(self, labels=None, examples=None, mode="classification", verbose=False): self.labels = [] if labels is None else labels self.examples = [] if examples is None else examples self.mode = mode self.verbose = verbose def __len__(self): return len(self.examples) def __getitem__(self, idx): if isinstance(idx, slice): return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx]) return self.examples[idx] @classmethod def create_from_csv( cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs ): processor = cls(**kwargs) processor.add_examples_from_csv( file_name, split_name=split_name, column_label=column_label, column_text=column_text, column_id=column_id, skip_first_row=skip_first_row, overwrite_labels=True, overwrite_examples=True, ) return processor @classmethod def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs): processor = cls(**kwargs) processor.add_examples(texts_or_text_and_labels, labels=labels) return processor def add_examples_from_csv( self, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, overwrite_labels=False, overwrite_examples=False, ): lines = self._read_tsv(file_name) if skip_first_row: lines = lines[1:] texts = [] labels = [] ids = [] for i, line in enumerate(lines): texts.append(line[column_text]) labels.append(line[column_label]) if column_id is not None: ids.append(line[column_id]) else: guid = f"{split_name}-{i}" if split_name else str(i) ids.append(guid) return self.add_examples( texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples ) def add_examples( self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False ): if labels is not None and len(texts_or_text_and_labels) != len(labels): raise ValueError( f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}" ) if ids is not None and len(texts_or_text_and_labels) != len(ids): raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}") if ids is None: ids = [None] * len(texts_or_text_and_labels) if labels is None: labels = [None] * len(texts_or_text_and_labels) examples = [] added_labels = set() for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids): if isinstance(text_or_text_and_label, (tuple, list)) and label is None: text, label = text_or_text_and_label else: text = text_or_text_and_label added_labels.add(label) examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label)) # Update examples if overwrite_examples: self.examples = examples else: self.examples.extend(examples) # Update labels if overwrite_labels: self.labels = list(added_labels) else: self.labels = list(set(self.labels).union(added_labels)) return self.examples def get_features( self, tokenizer, max_length=None, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, return_tensors=None, ): """ Convert examples in a list of `InputFeatures` Args: tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default) pad_token: Padding token mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual values) Returns: If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which can be fed to the model. """ if max_length is None: max_length = tokenizer.max_len label_map = {label: i for i, label in enumerate(self.labels)} all_input_ids = [] for ex_index, example in enumerate(self.examples): if ex_index % 10000 == 0: logger.info(f"Tokenizing example {ex_index}") input_ids = tokenizer.encode( example.text_a, add_special_tokens=True, max_length=min(max_length, tokenizer.max_len), ) all_input_ids.append(input_ids) batch_length = max(len(input_ids) for input_ids in all_input_ids) features = [] for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)): if ex_index % 10000 == 0: logger.info(f"Writing example {ex_index}/{len(self.examples)}") # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = batch_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) if len(input_ids) != batch_length: raise ValueError(f"Error with input length {len(input_ids)} vs {batch_length}") if len(attention_mask) != batch_length: raise ValueError(f"Error with input length {len(attention_mask)} vs {batch_length}") if self.mode == "classification": label = label_map[example.label] elif self.mode == "regression": label = float(example.label) else: raise ValueError(self.mode) if ex_index < 5 and self.verbose: logger.info("*** Example ***") logger.info(f"guid: {example.guid}") logger.info(f"input_ids: {' '.join([str(x) for x in input_ids])}") logger.info(f"attention_mask: {' '.join([str(x) for x in attention_mask])}") logger.info(f"label: {example.label} (id = {label})") features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label)) if return_tensors is None: return features elif return_tensors == "tf": if not is_tf_available(): raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported") import tensorflow as tf def gen(): for ex in features: yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label) dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), ({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])), ) return dataset elif return_tensors == "pt": if not is_torch_available(): raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported") import torch from torch.utils.data import TensorDataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if self.mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif self.mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels) return dataset else: raise ValueError("return_tensors should be one of 'tf' or 'pt'")
transformers/src/transformers/data/processors/utils.py/0
{ "file_path": "transformers/src/transformers/data/processors/utils.py", "repo_id": "transformers", "token_count": 5994 }
62
# coding=utf-8 # Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import warnings from functools import partial from typing import Any, Dict, Optional, Union import flax import jax import jax.numpy as jnp import numpy as np from jax import lax from ..models.auto import ( FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, ) from ..utils import ModelOutput, logging from .configuration_utils import GenerationConfig from .flax_logits_process import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxForceTokensLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxSuppressTokensAtBeginLogitsProcessor, FlaxSuppressTokensLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) logger = logging.get_logger(__name__) @flax.struct.dataclass class FlaxGreedySearchOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. """ sequences: jnp.ndarray = None @flax.struct.dataclass class FlaxSampleOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using sampling. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. """ sequences: jnp.ndarray = None @flax.struct.dataclass class FlaxBeamSearchOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. scores (`jnp.ndarray` of shape `(batch_size,)`): The scores (log probabilities) of the generated sequences. """ sequences: jnp.ndarray = None scores: jnp.ndarray = None @flax.struct.dataclass class GreedyState: cur_len: jnp.ndarray sequences: jnp.ndarray running_token: jnp.ndarray is_sent_finished: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] @flax.struct.dataclass class SampleState: cur_len: jnp.ndarray sequences: jnp.ndarray running_token: jnp.ndarray is_sent_finished: jnp.ndarray prng_key: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] @flax.struct.dataclass class BeamSearchState: cur_len: jnp.ndarray running_sequences: jnp.ndarray running_scores: jnp.ndarray sequences: jnp.ndarray scores: jnp.ndarray is_sent_finished: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] class FlaxGenerationMixin: """ A class containing all functions for auto-regressive text generation, to be used as a mixin in [`FlaxPreTrainedModel`]. The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for: - *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and `do_sample=False` - *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and `do_sample=True` - *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and `do_sample=False` You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). """ def prepare_inputs_for_generation(self, *args, **kwargs): raise NotImplementedError( "A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`." ) @staticmethod def _run_loop_in_debug(cond_fn, body_fn, init_state): """ Run generation in untraced mode. This should only be used for debugging purposes. """ state = init_state while cond_fn(state): state = body_fn(state) return state def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs): encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not (argument.startswith("decoder_") or argument.startswith("cross_attn")) } model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs) return model_kwargs def _prepare_decoder_input_ids_for_generation( self, batch_size: int, decoder_start_token_id: int = None, bos_token_id: int = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ) -> jnp.ndarray: if model_kwargs is not None and "decoder_input_ids" in model_kwargs: # Only use this arg if not None, otherwise just remove from model_kwargs decoder_input_ids = model_kwargs.pop("decoder_input_ids") if decoder_input_ids is not None: return decoder_input_ids decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0) def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int: # retrieve decoder_start_token_id for encoder-decoder models # fall back to bos_token_id if necessary decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif ( hasattr(self.config, "decoder") and hasattr(self.config.decoder, "decoder_start_token_id") and self.config.decoder.decoder_start_token_id is not None ): return self.config.decoder.decoder_start_token_id elif bos_token_id is not None: return bos_token_id elif ( hasattr(self.config, "decoder") and hasattr(self.config.decoder, "bos_token_id") and self.config.decoder.bos_token_id is not None ): return self.config.decoder.bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @staticmethod def _expand_to_num_beams(tensor, num_beams): return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]) def _adapt_logits_for_beam_search(self, logits): """ This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`]. """ return logits def _validate_model_class(self): """ Confirms that the model class is compatible with generation. If not, raises an exception that points to the right class to use. """ if not self.can_generate(): generate_compatible_mappings = [ FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, ] generate_compatible_classes = set() for model_mapping in generate_compatible_mappings: supported_models = model_mapping.get(type(self.config), default=None) if supported_models is not None: generate_compatible_classes.add(supported_models.__name__) exception_message = ( f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " "it doesn't have a language model head." ) if generate_compatible_classes: exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" raise TypeError(exception_message) def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): """Validates model kwargs for generation. Generate argument typos will also be caught here.""" unused_model_args = [] model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) if "kwargs" in model_args or "model_kwargs" in model_args: model_args |= set(inspect.signature(self.__call__).parameters) for key, value in model_kwargs.items(): if value is not None and key not in model_args: unused_model_args.append(key) if unused_model_args: raise ValueError( f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" " generate arguments will also show up in this list)" ) def generate( self, input_ids: jnp.ndarray, generation_config: Optional[GenerationConfig] = None, prng_key: Optional[jnp.ndarray] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, **kwargs, ): r""" Generates sequences of token ids for models with a language modeling head. Parameters: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. trace (`bool`, *optional*, defaults to `True`): Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a considerably slower runtime. params (`Dict[str, jnp.ndarray]`, *optional*): Optionally the model parameters can be passed. Can be useful for parallelized generation. logits_processor (`FlaxLogitsProcessorList `, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`]. """ # Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call self._validate_model_class() # priority: `generation_config` argument > `model.generation_config` (the default generation config) if generation_config is None: # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, # two conditions must be met # 1) the generation config must have been created from the model config (`_from_model_config` field); # 2) the generation config must have seen no modification since its creation (the hash is the same). if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash( self.generation_config ): new_generation_config = GenerationConfig.from_model_config(self.config) if new_generation_config != self.generation_config: warnings.warn( "You have modified the pretrained model configuration to control generation. This is a" " deprecated strategy to control generation and will be removed soon, in a future version." " Please use and modify the model generation configuration (see" " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" ) self.generation_config = new_generation_config generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs self._validate_model_kwargs(model_kwargs.copy()) logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList() # set init values prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask") is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder: raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.") # decoder-only models should use left-padding for generation (can't be checked with `trace=True`) if not self.config.is_encoder_decoder and not trace: if ( generation_config.pad_token_id is not None and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0 ): logger.warning( "A decoder-only architecture is being used, but right-padding was detected! For correct " "generation results, please set `padding_side='left'` when initializing the tokenizer." ) batch_size = input_ids.shape[0] if self.config.is_encoder_decoder: # add encoder_outputs to model_kwargs if model_kwargs.get("encoder_outputs") is None: model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs) # prepare decoder_input_ids for generation input_ids = self._prepare_decoder_input_ids_for_generation( batch_size, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, model_kwargs=model_kwargs, ) # Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: # 20 is the default max_length of the generation config warnings.warn( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: if not has_default_max_length and generation_config.max_length is not None: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing`max_new_tokens`." ) logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, logits_processor=logits_processor, ) if not generation_config.do_sample and generation_config.num_beams == 1: return self._greedy_search( input_ids, generation_config.max_length, generation_config.pad_token_id, generation_config.eos_token_id, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif generation_config.do_sample and generation_config.num_beams == 1: logits_warper = self._get_logits_warper(generation_config=generation_config) return self._sample( input_ids, generation_config.max_length, generation_config.pad_token_id, generation_config.eos_token_id, prng_key, logits_warper=logits_warper, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif not generation_config.do_sample and generation_config.num_beams > 1: # broadcast input_ids & encoder_outputs input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams) if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams( model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams ) for kwarg in ["attention_mask", "decoder_attention_mask"]: if kwarg in model_kwargs: model_kwargs[kwarg] = self._expand_to_num_beams( model_kwargs[kwarg], num_beams=generation_config.num_beams ) return self._beam_search( input_ids, generation_config.max_length, generation_config.pad_token_id, generation_config.eos_token_id, length_penalty=generation_config.length_penalty, early_stopping=generation_config.early_stopping, logits_processor=logits_processor, trace=trace, params=params, num_return_sequences=generation_config.num_return_sequences, model_kwargs=model_kwargs, ) else: raise NotImplementedError("`Beam sampling is currently not implemented.") def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList: """ This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`] instances used for multinomial sampling. """ warpers = FlaxLogitsProcessorList() if generation_config.temperature is not None and generation_config.temperature != 1.0: warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature)) if generation_config.top_k is not None and generation_config.top_k != 0: warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1)) if generation_config.top_p is not None and generation_config.top_p < 1.0: warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1)) return warpers def _get_logits_processor( self, generation_config: GenerationConfig, input_ids_seq_length: int, logits_processor: Optional[FlaxLogitsProcessorList], ) -> FlaxLogitsProcessorList: """ This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`] instances used to modify the scores of the language model head. """ processors = FlaxLogitsProcessorList() if ( generation_config.min_length is not None and generation_config.eos_token_id is not None and generation_config.min_length > -1 ): processors.append( FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id) ) if generation_config.forced_bos_token_id is not None: processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id)) if generation_config.forced_eos_token_id is not None: processors.append( FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id) ) if generation_config.suppress_tokens is not None: processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens)) if generation_config.begin_suppress_tokens is not None: begin_index = input_ids_seq_length begin_index = ( begin_index if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) else begin_index + 1 ) if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0: # generation starts after the last token that is forced begin_index += generation_config.forced_decoder_ids[-1][0] processors.append( FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index) ) if generation_config.forced_decoder_ids is not None: forced_decoder_ids = [ [input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids ] processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids)) processors = self._merge_criteria_processor_list(processors, logits_processor) return processors def _merge_criteria_processor_list( self, default_list: FlaxLogitsProcessorList, custom_list: FlaxLogitsProcessorList, ) -> FlaxLogitsProcessorList: if len(custom_list) == 0: return default_list for default in default_list: for custom in custom_list: if type(custom) is type(default): object_type = "logits processor" raise ValueError( f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" f" `generate`, but it has already been created with the values {default}. {default} has been" " created by passing the corresponding arguments to generate or by the model's config default" f" values. If you just want to change the default values of {object_type} consider passing" f" them as arguments to `generate` instead of using a custom {object_type}." ) default_list.extend(custom_list) return default_list def _greedy_search( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) # initialize state state = GreedyState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, model_kwargs=model_kwargs, ) def greedy_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) return ~finish_generation def greedy_search_body_fn(state): """state update fn.""" model_outputs = model(state.running_token, params=params, **state.model_kwargs) logits = model_outputs.logits[:, -1] # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) next_token = jnp.argmax(logits, axis=-1) next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return GreedyState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = greedy_search_body_fn(state) if not trace: state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state) else: state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state) return FlaxGreedySearchOutput(sequences=state.sequences) def _sample( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, prng_key: Optional[jnp.ndarray] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, logits_warper: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) # initialize state state = SampleState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, prng_key=prng_key, model_kwargs=model_kwargs, ) def sample_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) return ~finish_generation def sample_search_body_fn(state): """state update fn.""" prng_key, prng_key_next = jax.random.split(state.prng_key) model_outputs = model(state.running_token, params=params, **state.model_kwargs) logits = model_outputs.logits[:, -1] # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) # apply top_p, top_k, temperature logits = logits_warper(logits, logits, state.cur_len) next_token = jax.random.categorical(prng_key, logits, axis=-1) next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return SampleState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, prng_key=prng_key_next, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = sample_search_body_fn(state) if not trace: state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state) else: state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) return FlaxSampleOutput(sequences=state.sequences) def _beam_search( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[Union[bool, str]] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, num_return_sequences: Optional[int] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): """ This beam search function is heavily inspired by Flax's official example: https://github.com/google/flax/blob/main/examples/wmt/decode.py """ def flatten_beam_dim(tensor): """Flattens the first two dimensions of a non-scalar array.""" # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) def unflatten_beam_dim(tensor, batch_size, num_beams): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor return tensor.reshape((batch_size, num_beams) + tensor.shape[1:]) def gather_beams(nested, beam_indices, batch_size, new_num_beams): """ Gathers the beam slices indexed by beam_indices into new beam array. """ batch_indices = jnp.reshape( jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams) ) def gather_fn(tensor): # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor else: return tensor[batch_indices, beam_indices] return jax.tree_util.tree_map(gather_fn, nested) # init values max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences ) batch_size, num_beams, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) cur_len = jnp.array(cur_len) # record the prompt length of decoder decoder_prompt_len = input_ids.shape[-1] # per batch,beam-item holding current token in loop. sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0)) # per batch,beam-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_) # per batch,beam-item score, logprobs running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]) scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # flatten beam dim if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) for kwarg in ["attention_mask", "decoder_attention_mask"]: if kwarg in model_kwargs: model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg]) # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs) # initialize state state = BeamSearchState( cur_len=cur_len, running_sequences=running_sequences, running_scores=running_scores, sequences=sequences, scores=scores, is_sent_finished=is_sent_finished, model_kwargs=model_kwargs, ) def beam_search_cond_fn(state): """beam search state termination condition fn.""" # 1. is less than max length? not_max_length_yet = state.cur_len < max_length # 2. can the new beams still improve? # early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion # below for more details. # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565 # early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of # length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there. if early_stopping == "never" and length_penalty > 0.0: best_running_score = state.running_scores[:, :1] / ( (max_length - decoder_prompt_len) ** length_penalty ) else: best_running_score = state.running_scores[:, :1] / ( (state.cur_len - decoder_prompt_len) ** length_penalty ) worst_finished_score = jnp.where( state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7) ) improvement_still_possible = jnp.any(best_running_score > worst_finished_score) # 3. is there still a beam that has not finished? still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True)) return not_max_length_yet & still_open_beam & improvement_still_possible def beam_search_body_fn(state, input_ids_length=1): """beam search state update fn.""" # 1. Forward current tokens # Collect the current position slice along length to feed the fast # autoregressive decoder model. Flatten the beam dimension into batch # dimension for feeding into the model. # unflatten beam dimension # Unflatten beam dimension in attention cache arrays input_token = flatten_beam_dim( lax.dynamic_slice( state.running_sequences, (0, 0, state.cur_len - input_ids_length), (batch_size, num_beams, input_ids_length), ) ) model_outputs = model(input_token, params=params, **state.model_kwargs) logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams) cache = jax.tree_util.tree_map( lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values ) # adapt logits for FlaxMarianMTModel logits = self._adapt_logits_for_beam_search(logits) # 2. Compute log probs # get log probabilities from logits, # process logits with processors (*e.g.* min_length, ...), and # add new logprobs to existing running logprobs scores. log_probs = jax.nn.log_softmax(logits) log_probs = logits_processor( flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len ) log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams) log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2) vocab_size = log_probs.shape[2] log_probs = log_probs.reshape((batch_size, num_beams * vocab_size)) # 3. Retrieve top-K # Each item in batch has num_beams * vocab_size candidate sequences. # For each item, get the top 2*k candidates with the highest log- # probabilities. We gather the top 2*K beams here so that even if the best # K sequences reach EOS simultaneously, we have another K sequences # remaining to continue the live beam search. # Gather the top 2*K scores from _all_ beams. # Gather 2*k top beams. # Recover the beam index by floor division. # Recover token id by modulo division and expand Id array for broadcasting. # Update sequences for the 2*K top-k new sequences. beams_to_keep = 2 * num_beams topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep) topk_beam_indices = topk_indices // vocab_size topk_running_sequences = gather_beams( state.running_sequences, topk_beam_indices, batch_size, beams_to_keep ) topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len)) # 4. Check which sequences have ended # Update current sequences: # Did any of these sequences reach an end marker? # To prevent these just finished sequences from being added to the current sequences # set of active beam search sequences, set their log probs to a very large # negative value. did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7) # 5. Get running sequences scores for next # Determine the top k beam indices (from top 2*k beams) from log probs # and gather top k beams (from top 2*k beams). next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1] next_running_sequences, next_running_scores = gather_beams( [topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams ) # 6. Process topk logits # Further process log probs: # - add length penalty # - make sure no scores can be added anymore if beam is full # - make sure still running sequences cannot be chosen as finalized beam topk_log_probs = topk_log_probs / ((state.cur_len + 1 - decoder_prompt_len) ** length_penalty) beams_in_batch_are_full = jnp.broadcast_to( state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape ) & (early_stopping is True) add_penalty = ~did_topk_just_finished | beams_in_batch_are_full topk_log_probs += add_penalty * np.array(-1.0e7) # 7. Get scores, sequences, is sentence finished for next. # Combine sequences, scores, and flags along the beam dimension and compare # new finished sequence scores to existing finished scores and select the # best from the new set of beams merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1) merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1) merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1) topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1] next_sequences, next_scores, next_is_sent_finished = gather_beams( [merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams ) # 8. Update model kwargs. # Determine the top k beam indices from the original set of all beams. # With these, gather the top k beam-associated caches. next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams) next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams) model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return BeamSearchState( cur_len=state.cur_len + 1, running_scores=next_running_scores, running_sequences=next_running_sequences, scores=next_scores, sequences=next_sequences, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, ) # Always run first iteration outside of `lax.while_loop` to avoid calling `beam_search_cond_fn` # when `state.cur_len` equals `decoder_prompt_len`. This also helps to comply with TPU when # the very first prompt has sequence length > 1. state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state) if not trace: state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state) else: state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state) # Account for the edge-case where there are no finished sequences for a # particular batch item. If so, return running sequences for that batch item. none_finished = jnp.any(state.is_sent_finished, axis=1) sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences) scores = jnp.where(none_finished[:, None], state.scores, state.running_scores) # Take best beams for each batch (the score is sorted in descending order) sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :]) scores = flatten_beam_dim(scores[:, :num_return_sequences]) return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
transformers/src/transformers/generation/flax_utils.py/0
{ "file_path": "transformers/src/transformers/generation/flax_utils.py", "repo_id": "transformers", "token_count": 21734 }
63
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "AQLM (Additive Quantization of Language Model) integration file" from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available if is_torch_available(): import torch.nn as nn def replace_with_aqlm_linear( model, quantization_config=None, linear_weights_not_to_quantize=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`AqlmConfig`): The quantization config object that contains the quantization parameters. linear_weights_not_to_quantize (`list[str]`, *optional*): A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be converted. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ if not is_aqlm_available(): raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") if not is_accelerate_available(): raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`") if linear_weights_not_to_quantize is None: linear_weights_not_to_quantize = [] from accelerate import init_empty_weights from aqlm import QuantizedLinear for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear): # Check if the current key is not in the `linear_weights_not_to_quantize` if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = QuantizedLinear( in_features, out_features, bias=module.bias is not None, in_group_size=quantization_config.in_group_size, out_group_size=quantization_config.out_group_size, num_codebooks=quantization_config.num_codebooks, nbits_per_codebook=quantization_config.nbits_per_codebook, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_aqlm_linear( module, quantization_config=quantization_config, linear_weights_not_to_quantize=linear_weights_not_to_quantize, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced
transformers/src/transformers/integrations/aqlm.py/0
{ "file_path": "transformers/src/transformers/integrations/aqlm.py", "repo_id": "transformers", "token_count": 1821 }
64
#define min(a, b) ((a)<(b)?(a):(b)) #define max(a, b) ((a)>(b)?(a):(b)) #define ceil_divide(a, b) ((a)/(b)+((a)%(b)!=0)) #define select(cond, a, b) ((cond)?(a):(b)) #define PI 3.141592 #define EPSILON 1e-8 #define MAX_VAL 1e12 #define MIN_VAL -1e12 #define EMPTY_VALUE -1
transformers/src/transformers/kernels/yoso/common.h/0
{ "file_path": "transformers/src/transformers/kernels/yoso/common.h", "repo_id": "transformers", "token_count": 140 }
65
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF general model utils.""" from __future__ import annotations import functools import gc import inspect import json import os import pickle import re import warnings from collections.abc import Mapping from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union import h5py import numpy as np import tensorflow as tf from packaging.version import parse from . import DataCollatorWithPadding, DefaultDataCollator from .activations_tf import get_tf_activation from .configuration_utils import PretrainedConfig from .dynamic_module_utils import custom_object_save from .generation import GenerationConfig, TFGenerationMixin from .tf_utils import ( convert_batch_encoding, expand_1d, load_attributes_from_hdf5_group, save_attributes_to_hdf5_group, shape_list, ) from .utils import ( SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ModelOutput, PushToHubMixin, cached_file, download_url, find_labels, has_file, is_offline_mode, is_remote_url, is_safetensors_available, is_tf_symbolic_tensor, logging, requires_backends, working_or_temp_dir, ) from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files if is_safetensors_available(): from safetensors import safe_open from safetensors.tensorflow import save_file as safe_save_file if TYPE_CHECKING: from . import PreTrainedTokenizerBase try: import tf_keras as keras from tf_keras import backend as K except (ModuleNotFoundError, ImportError): import keras from keras import backend as K if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) logger = logging.get_logger(__name__) tf_logger = tf.get_logger() TFModelInputType = Union[ List[tf.Tensor], List[np.ndarray], Dict[str, tf.Tensor], Dict[str, np.ndarray], tf.Tensor, np.ndarray, ] def dummy_loss(y_true, y_pred): if y_pred.shape.rank <= 1: return y_pred else: reduction_axes = list(range(1, y_pred.shape.rank)) return tf.reduce_mean(y_pred, axis=reduction_axes) class TFModelUtilsMixin: """ A few utilities for `keras.Model`, to be used as a mixin. """ def num_parameters(self, only_trainable: bool = False) -> int: """ Get the number of (optionally, trainable) parameters in the model. Args: only_trainable (`bool`, *optional*, defaults to `False`): Whether or not to return only the number of trainable parameters Returns: `int`: The number of parameters. """ if only_trainable: return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables)) else: return self.count_params() def keras_serializable(cls): """ Decorate a Keras Layer class to support Keras serialization. This is done by: 1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at serialization time. 2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and convert it to a config object for the actual layer initializer. 3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not need to be supplied in `custom_objects` in the call to `keras.models.load_model`. Args: cls (a `keras.layers.Layers subclass`): Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its initializer. Returns: The same class object, with modifications for Keras deserialization. """ initializer = cls.__init__ config_class = getattr(cls, "config_class", None) if config_class is None: raise AttributeError("Must set `config_class` to use @keras_serializable") @functools.wraps(initializer) def wrapped_init(self, *args, **kwargs): config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None) if isinstance(config, dict): config = config_class.from_dict(config) initializer(self, config, *args, **kwargs) elif isinstance(config, PretrainedConfig): if len(args) > 0: initializer(self, *args, **kwargs) else: initializer(self, config, *args, **kwargs) else: raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)") self._config = config self._kwargs = kwargs cls.__init__ = wrapped_init if not hasattr(cls, "get_config"): raise TypeError("Only use @keras_serializable on keras.layers.Layer subclasses") if hasattr(cls.get_config, "_is_default"): def get_config(self): cfg = super(cls, self).get_config() cfg["config"] = self._config.to_dict() cfg.update(self._kwargs) return cfg cls.get_config = get_config cls._keras_serializable = True if hasattr(keras.utils, "register_keras_serializable"): cls = keras.utils.register_keras_serializable()(cls) return cls class TFCausalLanguageModelingLoss: """ Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token. <Tip> Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. </Tip> """ def hf_compute_loss(self, labels, logits): loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) if self.config.tf_legacy_loss: # make sure only labels that are not equal to -100 affect the loss active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) return loss_fn(labels, reduced_logits) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_loss = loss_fn(tf.nn.relu(labels), logits) # make sure only labels that are not equal to -100 affect the loss loss_mask = tf.cast(labels != -100, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * loss_mask reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) return tf.reshape(reduced_masked_loss, (1,)) class TFQuestionAnsweringLoss: """ Loss function suitable for question answering. """ def hf_compute_loss(self, labels, logits): loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) start_loss = loss_fn(labels["start_position"], logits[0]) end_loss = loss_fn(labels["end_position"], logits[1]) return (start_loss + end_loss) / 2.0 class TFTokenClassificationLoss: """ Loss function suitable for token classification. <Tip> Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. </Tip> """ def hf_compute_loss(self, labels, logits): loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) if tf.executing_eagerly(): # Data-dependent conditionals are forbidden in XLA if tf.math.reduce_any(labels == -1): tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.") if self.config.tf_legacy_loss: # make sure only labels that are not equal to -100 # are taken into account as loss if tf.math.reduce_any(labels == -1): tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.") active_loss = tf.reshape(labels, (-1,)) != -1 else: active_loss = tf.reshape(labels, (-1,)) != -100 reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) return loss_fn(labels, reduced_logits) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_loss = loss_fn(tf.nn.relu(labels), logits) # make sure only labels that are not equal to -100 or -1 # are taken into account as loss loss_mask = tf.cast(labels >= 0, dtype=unmasked_loss.dtype) # Avoid possible division by zero later # Masked positions will have a loss of NaN because -100 and -1 are not valid labels masked_loss = unmasked_loss * loss_mask reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) return tf.reshape(reduced_masked_loss, (1,)) class TFSequenceClassificationLoss: """ Loss function suitable for sequence classification. """ def hf_compute_loss(self, labels, logits): if logits.shape.rank == 1 or logits.shape[1] == 1: loss_fn = keras.losses.MeanSquaredError(reduction=keras.losses.Reduction.NONE) if labels.shape.rank == 1: # MeanSquaredError returns a scalar loss if the labels are 1D, so avoid that labels = tf.expand_dims(labels, axis=-1) else: loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE ) return loss_fn(labels, logits) class TFMultipleChoiceLoss: """Loss function suitable for multiple choice tasks.""" def hf_compute_loss(self, labels, logits): loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) return loss_fn(labels, logits) class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss): """ Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens. <Tip> Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. </Tip> """ class TFNextSentencePredictionLoss: """ Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence. <Tip> Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. </Tip> """ def hf_compute_loss(self, labels, logits): loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) if self.config.tf_legacy_loss: # make sure only labels that are not equal to -100 # are taken into account as loss next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100) next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss) next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss) return loss_fn(next_sentence_label, next_sentence_reduced_logits) # make sure only labels that are not equal to -100 # are taken into account as loss # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels), y_pred=logits) ns_loss_mask = tf.cast(labels != -100, dtype=unmasked_ns_loss.dtype) # Just zero out samples where label is -100, no reduction masked_ns_loss = unmasked_ns_loss * ns_loss_mask return masked_ns_loss def booleans_processing(config, **kwargs): """ Process the input booleans of each model. Args: config ([`PretrainedConfig`]): The config of the running model. **kwargs: The boolean parameters Returns: A dictionary with the proper values for each boolean """ final_booleans = {} # Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has # `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`) if "output_attentions" in kwargs: final_booleans["output_attentions"] = ( kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions ) final_booleans["output_hidden_states"] = ( kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states ) final_booleans["return_dict"] = kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict if "use_cache" in kwargs: final_booleans["use_cache"] = ( kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None) ) return final_booleans def unpack_inputs(func): """ Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input (common case in Keras). Args: func (`callable`): The callable function of the TensorFlow model. Returns: A callable that wraps the original `func` with the behavior described above. """ original_signature = inspect.signature(func) @functools.wraps(func) def run_call_with_unpacked_inputs(self, *args, **kwargs): # isolates the actual `**kwargs` for the decorated function kwargs_call = {key: val for key, val in kwargs.items() if key not in dict(original_signature.parameters)} fn_args_and_kwargs = {key: val for key, val in kwargs.items() if key not in kwargs_call} fn_args_and_kwargs.update({"kwargs_call": kwargs_call}) # move any arg into kwargs, if they exist fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args))) # Encoder Decoder models delegate the application of the configuration options to their inner models. if "EncoderDecoder" in self.__class__.__name__: config = None else: config = self.config unpacked_inputs = input_processing(func, config, **fn_args_and_kwargs) return func(self, **unpacked_inputs) # Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This # function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below # Keras would attempt to check the first argument against the literal signature of the wrapper. run_call_with_unpacked_inputs.__signature__ = original_signature return run_call_with_unpacked_inputs def input_processing(func, config, **kwargs): """ Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input has to be named accordingly to the parameters name, i.e. `input_ids = keras.Input(shape=(128,), dtype='int32', name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training. Args: func (`callable`): The callable function of the TensorFlow model. config ([`PretrainedConfig`]): The config of the running model. **kwargs: The inputs of the model. Returns: Two lists, one for the missing layers, and another one for the unexpected layers. """ signature = dict(inspect.signature(func).parameters) has_kwargs = bool(signature.pop("kwargs", None)) signature.pop("self", None) parameter_names = list(signature.keys()) main_input_name = parameter_names[0] main_input = kwargs.pop(main_input_name, None) output = {} allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray) if "inputs" in kwargs["kwargs_call"]: warnings.warn( "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.", FutureWarning, ) output["input_ids"] = kwargs["kwargs_call"].pop("inputs") if "decoder_cached_states" in kwargs["kwargs_call"]: warnings.warn( "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use" " `past_key_values` instead.", FutureWarning, ) output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states") if "past" in kwargs["kwargs_call"] and "past_key_values" in parameter_names: warnings.warn( "The `past` argument is deprecated and will be removed in a future version, use `past_key_values`" " instead.", FutureWarning, ) kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past") elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names: kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values") if has_kwargs: output["kwargs"] = kwargs.pop("kwargs_call", {}) else: if len(kwargs["kwargs_call"]) > 0: raise ValueError( "The following keyword arguments are not supported by this model:" f" {list(kwargs['kwargs_call'].keys())}." ) kwargs.pop("kwargs_call") for k, v in kwargs.items(): if isinstance(v, allowed_types) or tf.is_tensor(v) or v is None: output[k] = v else: raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.") if isinstance(main_input, (tuple, list)): for i, input in enumerate(main_input): # EagerTensors don't allow to use the .name property so we check for a real Tensor if is_tf_symbolic_tensor(input): # Tensor names have always the pattern `name:id` then we check only the # `name` part tensor_name = input.name.split(":")[0] if tensor_name in parameter_names: output[tensor_name] = input else: output[parameter_names[i]] = input elif isinstance(input, allowed_types) or input is None: output[parameter_names[i]] = input else: raise ValueError( f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for" f" {parameter_names[i]}." ) elif isinstance(main_input, Mapping): if "inputs" in main_input: warnings.warn( "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids`" " instead.", FutureWarning, ) output["input_ids"] = main_input.pop("inputs") if "decoder_cached_states" in main_input: warnings.warn( "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use" " `past_key_values` instead.", FutureWarning, ) output["past_key_values"] = main_input.pop("decoder_cached_states") for k, v in dict(main_input).items(): if isinstance(v, allowed_types) or v is None: output[k] = v elif k not in parameter_names and "args" not in parameter_names: logger.warning( f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored." ) continue else: raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.") else: if tf.is_tensor(main_input) or main_input is None: output[main_input_name] = main_input else: raise ValueError( f"Data of type {type(main_input)} is not allowed only {allowed_types} is accepted for" f" {main_input_name}." ) # Populates any unspecified argument with their default value, according to the signature. for name in parameter_names: if name not in list(output.keys()) and name != "args": output[name] = kwargs.pop(name, signature[name].default) # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs) # So to respect the proper output we have to add this exception if "args" in output: if output["args"] is not None and is_tf_symbolic_tensor(output["args"]): tensor_name = output["args"].name.split(":")[0] output[tensor_name] = output["args"] else: # `args` in this case is always the first parameter, then `input_ids` output["input_ids"] = output["args"] del output["args"] if "kwargs" in output: del output["kwargs"] cast_output = {} for key, val in output.items(): if isinstance(val, tf.Tensor) and val.dtype == tf.int64: cast_output[key] = tf.cast(val, tf.int32) elif isinstance(val, np.ndarray) and val.dtype == np.int64: cast_output[key] = val.astype(np.int32) else: cast_output[key] = val output = cast_output del cast_output if config is not None: boolean_dict = { k: v for k, v in output.items() if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"] } output.update( booleans_processing( config=config, **boolean_dict, ) ) return output def dtype_byte_size(dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(tf.float32) 4 ``` """ if dtype == tf.bool: return 1 / 8 bit_search = re.search(r"[^\d](\d+)$", dtype.name) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def strip_model_name_and_prefix(name, _prefix=None): if _prefix is not None and name.startswith(_prefix): name = name[len(_prefix) :] if name.startswith("/"): name = name[1:] if "model." not in name and len(name.split("/")) > 1: name = "/".join(name.split("/")[1:]) return name def tf_shard_checkpoint(weights, max_shard_size="10GB"): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. <Tip warning={true}> If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. </Tip> Args: weights (`Dict[str, tf.RessourceVariable]`): The list of tf.RessourceVariable of a model to save. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [] current_block = [] current_block_size = 0 total_size = 0 for item in weights: weight_size = item.numpy().size * dtype_byte_size(item.dtype) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: sharded_state_dicts.append(current_block) current_block = [] current_block_size = 0 current_block.append(item) current_block_size += weight_size total_size += weight_size # Add the last block sharded_state_dicts.append(current_block) # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {TF2_WEIGHTS_NAME: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = TF2_WEIGHTS_NAME.replace(".h5", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.h5") shards[shard_file] = shard for weight in shard: weight_name = weight.name weight_map[weight_name] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index def load_tf_sharded_weights(model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None): """ This is the same as `load_tf_weights` but for a sharded checkpoint. Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and shapes. This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being loaded in the model. Args: model (`keras.models.Model`): The model in which to load the checkpoint. shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names. ignore_mismatched_sizes`bool`, *optional`, defaults to `True`): Whether or not to ignore the mismatch between the sizes strict (`bool`, *optional*, defaults to `True`): Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint. Returns: Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the mismatched layers. """ # Load the index unexpected_keys = set() saved_keys = set() mismatched_keys = set() # Since TF adds the name of the class to its weights, and uses the index and not the name of the layer to load # the weight, we have to get rid of the first prefix of the name of the layer. model_keys = set() model_layer_map = {} for i, k in enumerate(model.weights): layer_name = k.name if _prefix is not None and layer_name.startswith(_prefix): layer_name = layer_name[len(_prefix) :] layer_name = layer_name.lstrip("/") if not ("model." in layer_name or len(layer_name.split("/")) == 1): layer_name = "/".join(layer_name.split("/")[1:]) model_keys.add(layer_name) model_layer_map[layer_name] = i for shard_file in shard_files: saved_weight_names_set, unexpected_keys_set, mismatched_keys_set = load_tf_shard( model, model_layer_map, shard_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix, ) saved_keys.update(saved_weight_names_set) unexpected_keys.update(unexpected_keys_set) mismatched_keys.update(mismatched_keys_set) gc.collect() missing_keys = model_keys - saved_keys if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0): error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}" if len(missing_keys) > 0: str_missing_keys = ",".join([f'"{k}"' for k in missing_keys]) error_message += f"\nMissing key(s): {str_missing_keys}." if len(unexpected_keys) > 0: str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys]) error_message += f"\nMissing key(s): {str_unexpected_keys}." raise RuntimeError(error_message) return missing_keys, unexpected_keys, mismatched_keys def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): """ Loads a shard from a sharded checkpoint file. Handles the missing keys and unexpected keys. Args: model (`keras.models.Model`): Model in which the weights are loaded model_layer_map (`Dict`): A dictionary mapping the layer name to the index of the layer in the model. resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether to ignore the mismatched keys Returns: `keras.models.Model`: Three lists, one for the layers that were found and succesfully restored (from the shard file), one for the mismatched layers, and another one for the unexpected layers. """ saved_weight_names_set = set() saved_weights = {} mismatched_keys = set() unexpected_keys = set() # Read the H5 file try: with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file: # Retrieve the name of each layer from the H5 file saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names")) weight_value_tuples = [] # Compute missing and unexpected sub layers # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] for layer_name in saved_h5_model_layers_name: h5_layer_object = sharded_checkpoint_file[layer_name] saved_weights[layer_name] = np.asarray(h5_layer_object) saved_weight_names_set.add(layer_name) if layer_name not in model_layer_map: unexpected_keys.add(layer_name) else: symbolic_weight = model.weights[model_layer_map[layer_name]] saved_weight_value = saved_weights[layer_name] # If the current weight is found if saved_weight_value is not None: # Check if the shape of the current weight and the one from the H5 file are different if K.int_shape(symbolic_weight) != saved_weight_value.shape: # If yes we reshape the weight from the H5 file accordingly to the current weight # If the two shapes are not compatible we raise an issue try: array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) except ValueError as e: if ignore_mismatched_sizes: mismatched_keys.add( (layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) ) continue else: raise e else: array = saved_weight_value # We create the tuple that will be loaded and add it to the final list weight_value_tuples.append((symbolic_weight, array)) K.batch_set_value(weight_value_tuples) return saved_weight_names_set, unexpected_keys, mismatched_keys except Exception as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please install " "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " "you cloned." ) else: raise ValueError( f"Unable to locate the file {resolved_archive_file} which is necessary to load this pretrained" " model. Make sure you have saved the model properly." ) from e except (UnicodeDecodeError, ValueError): raise OSError( f"Unable to load weights from TF checkpoint file for '{resolved_archive_file}' " f"at '{resolved_archive_file}'. " "If you tried to load a TF model from a sharded checkpoint, you should try converting the model " "by loading it in pytorch and saving it localy. A convertion script should be realeased soon." ) def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): """ Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and shapes. Args: model (`keras.models.Model`): The model to load the weights into. resolved_archive_file (`str`): The location of the H5 file. ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether or not to ignore weights with shapes that don't match between the checkpoint of the model. Returns: Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the mismatched layers. """ if resolved_archive_file.endswith(".safetensors"): load_function = load_tf_weights_from_safetensors else: load_function = load_tf_weights_from_h5 return load_function( model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix ) def load_tf_weights_from_h5(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): mismatched_layers = [] # Read the H5 file with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file: # Retrieve the name of each layer from the H5 file saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names")) # Find the missing layers from the high level list of layers missing_layers = list({layer.name for layer in model.layers} - saved_h5_model_layers_name) # Find the unexpected layers from the high level list of layers unexpected_layers = list(saved_h5_model_layers_name - {layer.name for layer in model.layers}) saved_weight_names_set = set() symbolic_weights_names = set() weight_value_tuples = [] # Compute missing and unexpected sub layers # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] for layer in model.layers: # if layer_name from the H5 file belongs to the layers from the instantiated model if layer.name in saved_h5_model_layers_name: # Get the H5 layer object from its name h5_layer_object = sharded_checkpoint_file[layer.name] # Get all the weights as a list from the layer object symbolic_weights = layer.trainable_weights + layer.non_trainable_weights saved_weights = {} # Create a dict from the H5 saved model that looks like {"weight_name": weight_value} # And a set with only the names for weight_name in load_attributes_from_hdf5_group(h5_layer_object, "weight_names"): # TF names always start with the model name so we ignore it name = "/".join(weight_name.split("/")[1:]) if _prefix is not None: name = _prefix + "/" + name saved_weights[name] = np.asarray(h5_layer_object[weight_name]) # Add the updated name to the final list for computing missing/unexpected values saved_weight_names_set.add(name) # Loop over each weights from the instantiated model and compare with the weights from the H5 file for symbolic_weight in symbolic_weights: # TF names always start with the model name so we ignore it if _prefix is not None: delimeter = len(_prefix.split("/")) symbolic_weight_name = "/".join( symbolic_weight.name.split("/")[:delimeter] + symbolic_weight.name.split("/")[delimeter + 1 :] ) else: symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:]) # here we check if the current weight is among the weights from the H5 file # If yes, get the weight_value of the corresponding weight from the H5 file # If not, make the value to None saved_weight_value = saved_weights.get(symbolic_weight_name, None) # Retrocompatibility patch: some embeddings are stored with the weights name (e.g. Bart's # `model.shared/embeddings:0` are stored as `model.shared/weights:0`) if saved_weight_value is None and symbolic_weight_name.endswith("embeddings:0"): symbolic_weight_name = symbolic_weight_name[:-12] + "weight:0" saved_weight_value = saved_weights.get(symbolic_weight_name, None) # Add the updated name to the final list for computing missing/unexpected values symbolic_weights_names.add(symbolic_weight_name) # If the current weight is found if saved_weight_value is not None: # Check if the shape of the current weight and the one from the H5 file are different if K.int_shape(symbolic_weight) != saved_weight_value.shape: # If yes we reshape the weight from the H5 file accordingly to the current weight # If the two shapes are not compatible we raise an issue try: array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) except ValueError as e: if ignore_mismatched_sizes: mismatched_layers.append( (symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) ) continue else: raise e else: array = saved_weight_value # We create the tuple that will be loaded and add it to the final list weight_value_tuples.append((symbolic_weight, array)) # Load all the weights K.batch_set_value(weight_value_tuples) # Compute the missing and unexpected layers missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set)) unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names)) return missing_layers, unexpected_layers, mismatched_layers def load_tf_weights_from_safetensors(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): # Read the safetensors file with safe_open(resolved_archive_file, framework="tf") as safetensors_archive: mismatched_layers = [] weight_names = [strip_model_name_and_prefix(w.name, _prefix=_prefix) for w in model.weights] loaded_weight_names = list(safetensors_archive.keys()) # Find the missing layers from the high level list of layers missing_layers = list(set(weight_names) - set(loaded_weight_names)) # Find the unexpected layers from the high level list of layers unexpected_layers = list(set(loaded_weight_names) - set(weight_names)) for weight in model.weights: weight_name = strip_model_name_and_prefix(weight.name, _prefix=_prefix) if weight_name in loaded_weight_names: weight_value = safetensors_archive.get_tensor(weight_name) # Check if the shape of the current weight and the one from the H5 file are different if K.int_shape(weight) != weight_value.shape: # If yes we reshape the weight from the H5 file accordingly to the current weight # If the two shapes are not compatible we raise an issue try: weight_value = tf.reshape(weight_value, K.int_shape(weight)) except (ValueError, tf.errors.InvalidArgumentError) as e: if ignore_mismatched_sizes: mismatched_layers.append((weight_name, weight_value.shape, K.int_shape(weight))) continue else: raise e K.set_value(weight, weight_value) # weight.assign() might break if weight is a DTensor return missing_layers, unexpected_layers, mismatched_layers def init_copy_embeddings(old_embeddings, new_num_tokens): r""" This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be kept or not. Example: - if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4] - mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1] - if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5] - mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4] """ old_num_tokens, old_embedding_dim = shape_list(old_embeddings) size_diff = new_num_tokens - old_num_tokens # initialize new embeddings # Copy token embeddings from the previous ones if tf.math.greater(size_diff, 0): # if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size # and we create a mask to properly identify the padded values and be replaced by the values of the newly created # embeddings current_weights = tf.pad( old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1 ) num_tokens_to_copy = min(old_num_tokens, new_num_tokens) mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True) mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False) else: # if the new size if lower than the old one, we take the current embeddings until the new size current_weights = tf.slice( old_embeddings.value(), tf.convert_to_tensor([0, 0]), tf.convert_to_tensor([new_num_tokens, old_embedding_dim]), ) mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True) return mask, current_weights class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin): r""" Base class for all TF models. [`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, downloading and saving models as well as a few methods common to all models to: - resize the input embeddings, - prune heads in the self-attention heads. Class attributes (overridden by derived classes): - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class for this model architecture. - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP models, `pixel_values` for vision models and `input_values` for speech models). """ config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _using_dummy_loss = None _label_to_output_map = None # a list of re pattern of tensor names to ignore from the model when loading the model weights # (and avoid unnecessary warnings). _keys_to_ignore_on_load_missing = None # a list of re pattern of tensor names to ignore from the weights when loading the model weights # (and avoid unnecessary warnings). _keys_to_ignore_on_load_unexpected = None _requires_load_weight_prefix = False @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ dummies = {} for key, spec in self.input_signature.items(): # 2 is the most correct arbitrary size. I will not be taking questions dummy_shape = [dim if dim is not None else 2 for dim in spec.shape] if spec.shape[0] is None: # But let's make the batch size 1 to save memory anyway dummy_shape[0] = 1 dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype) if key == "token_type_ids": # Some models have token_type_ids but with a vocab_size of 1 dummies[key] = tf.zeros_like(dummies[key]) if self.config.add_cross_attention and "encoder_hidden_states" in inspect.signature(self.call).parameters: if "encoder_hidden_states" not in dummies: if self.main_input_name == "input_ids": dummies["encoder_hidden_states"] = tf.ones( shape=(1, 2, self.config.hidden_size), dtype=tf.float32, name="encoder_hidden_states" ) else: raise NotImplementedError( "Model has cross-attention but we couldn't infer the shape for the encoder hidden states. Please manually override dummy_inputs!" ) return dummies def build_in_name_scope(self): with tf.name_scope(self.name): self.build(input_shape=None) @property def framework(self) -> str: """ :str: Identifies that this is a TensorFlow model. """ return "tf" def build(self, input_shape=None): pass # This is just here to make sure we don't call the superclass build() def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) if not isinstance(config, PretrainedConfig): raise ValueError( f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " "`PretrainedConfig`. To create a model from a pretrained model use " f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" ) # Save config and origin of the pretrained weights if given in model self.config = config self.name_or_path = config.name_or_path self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None self._set_save_spec(self.input_signature) def get_config(self): return self.config.to_dict() @functools.wraps(keras.Model.fit) def fit(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().fit(*args, **kwargs) @functools.wraps(keras.Model.train_on_batch) def train_on_batch(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().train_on_batch(*args, **kwargs) @functools.wraps(keras.Model.test_on_batch) def test_on_batch(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().test_on_batch(*args, **kwargs) @functools.wraps(keras.Model.predict_on_batch) def predict_on_batch(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().predict_on_batch(*args, **kwargs) @functools.wraps(keras.Model.predict) def predict(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().predict(*args, **kwargs) @functools.wraps(keras.Model.evaluate) def evaluate(self, *args, **kwargs): args, kwargs = convert_batch_encoding(*args, **kwargs) return super().evaluate(*args, **kwargs) @classmethod def from_config(cls, config, **kwargs): if isinstance(config, PretrainedConfig): return cls._from_config(config, **kwargs) return cls._from_config(cls.config_class.from_dict(config, **kwargs)) @classmethod def _from_config(cls, config, **kwargs): """ All context managers that the model should be initialized under go here. """ return cls(config, **kwargs) def get_head_mask(self, head_mask: tf.Tensor | None, num_hidden_layers: int) -> tf.Tensor: """ Prepare the head mask if needed. Args: head_mask (`tf.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). num_hidden_layers (`int`): The number of hidden layers in the model. Returns: `tf.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with `[None]` for each layer. """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.shape.rank == 1: head_mask = head_mask[None, None, :, None, None] head_mask = tf.repeat(head_mask, repeats=num_hidden_layers, axis=0) elif head_mask.shape.rank == 2: head_mask = head_mask[:, None, :, None, None] assert head_mask.shape.rank == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = tf.cast(head_mask, tf.float32) # switch to float if need + fp16 compatibility return head_mask @tf.function def serving(self, inputs): """ Args: Method used for serving the model. Does not have a specific signature, but will be specialized as concrete functions when saving with `save_pretrained`. inputs (`Dict[str, tf.Tensor]`): The input of the saved model as a dictionary of tensors. """ output = self.call(inputs) return self.serving_output(output) @property def input_signature(self) -> Dict[str, tf.TensorSpec]: """ This property should return a dict mapping input names to tf.TensorSpec objects, representing the expected shape and dtype for model inputs. It is used for both serving and for generating dummy inputs. """ model_inputs = list(inspect.signature(self.call).parameters) sig = {} if "input_ids" in model_inputs: if self.__class__.__name__.endswith("ForMultipleChoice"): text_dims = 3 else: text_dims = 2 for input_name in ( "input_ids", "attention_mask", "token_type_ids", "decoder_input_ids", "decoder_attention_mask", ): if input_name in model_inputs: sig[input_name] = tf.TensorSpec([None] * text_dims, tf.int32, name=input_name) if "pixel_values" in model_inputs: pixel_values_shape = [None, None, None, None] if hasattr(self.config, "vision_config"): vision_config = self.config.vision_config else: vision_config = self.config if hasattr(vision_config, "num_channels"): pixel_values_shape[1] = vision_config.num_channels else: raise NotImplementedError( "Could not infer number of channels from config, please override input_signature to specify input shapes." ) if hasattr(vision_config, "image_size"): pixel_values_shape[2] = pixel_values_shape[3] = vision_config.image_size elif hasattr(vision_config, "input_size"): pixel_values_shape[2] = pixel_values_shape[3] = vision_config.input_size else: raise NotImplementedError( "Could not infer input image shape from config, please override input_signature to specify input shapes." ) sig["pixel_values"] = tf.TensorSpec(pixel_values_shape, tf.float32, name="pixel_values") if "input_features" in model_inputs: raise NotImplementedError("Audio models need a manually defined input_signature") return sig def serving_output(self, output): """ Prepare the output of the saved model. Can be overridden if specific serving modifications are required. """ if not isinstance(output, ModelOutput): return output for key in output: if key.endswith("hidden_states") and not getattr(self.config, "output_hidden_states", False): output[key] = None elif key.endswith("attentions") and not getattr(self.config, "output_attentions", False): output[key] = None elif key == "past_key_values" and not getattr(self.config, "use_cache", False): output[key] = None elif key == "cross_attentions" and not ( getattr(self.config, "output_attentions", False) and getattr(self.config, "add_cross_attention", False) ): output[key] = None if isinstance(output[key], (tuple, list)): try: output[key] = tf.convert_to_tensor(output[key]) except (ValueError, tf.errors.InvalidArgumentError): pass # Layers may not have the same dimensions return output @classmethod def can_generate(cls) -> bool: """ Returns whether this model can generate sequences with `.generate()`. Returns: `bool`: Whether this model can generate sequences with `.generate()`. """ # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation. # Alternativelly, the model can also have a custom `generate` function. if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate): return False return True def get_input_embeddings(self) -> keras.layers.Layer: """ Returns the model's input embeddings layer. Returns: `tf.Variable`: The embeddings layer mapping vocabulary to hidden states. """ main_layer = getattr(self, self.base_model_prefix, self) if main_layer is not self: return main_layer.get_input_embeddings() else: raise NotImplementedError def _save_checkpoint(self, checkpoint_dir, epoch): if not os.path.isdir(checkpoint_dir): os.mkdir(checkpoint_dir) # We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer # state for us, because it requires special handling for objects like custom losses, which we use # internally and which users are likely to use too weights_path = os.path.join(checkpoint_dir, "weights.h5") self.save_weights(weights_path) extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()} extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle") with open(extra_data_path, "wb") as f: pickle.dump(extra_data, f) def prepare_tf_dataset( self, dataset: "datasets.Dataset", # noqa:F821 batch_size: int = 8, shuffle: bool = True, tokenizer: Optional["PreTrainedTokenizerBase"] = None, collate_fn: Optional[Callable] = None, collate_fn_args: Optional[Dict[str, Any]] = None, drop_remainder: Optional[bool] = None, prefetch: bool = True, ): """ Wraps a HuggingFace [`~datasets.Dataset`] as a `tf.data.Dataset` with collation and batching. This method is designed to create a "ready-to-use" dataset that can be passed directly to Keras methods like `fit()` without further modification. The method will drop columns from the dataset if they don't match input names for the model. If you want to specify the column names to return rather than using the names that match this model, we recommend using `Dataset.to_tf_dataset()` instead. Args: dataset (`Any`): A [~`datasets.Dataset`] to be wrapped as a `tf.data.Dataset`. batch_size (`int`, defaults to 8): The size of batches to return. shuffle (`bool`, defaults to `True`): Whether to return samples from the dataset in random order. Usually `True` for training datasets and `False` for validation/test datasets. tokenizer ([`PreTrainedTokenizerBase`], *optional*): A `PreTrainedTokenizer` that will be used to pad samples to create batches. Has no effect if a specific `collate_fn` is passed instead. collate_fn (`Callable`, *optional*): A function that collates samples from the dataset into a single batch. Defaults to `DefaultDataCollator` if no `tokenizer` is supplied or `DataCollatorWithPadding` if a `tokenizer` is passed. collate_fn_args (`Dict[str, Any]`, *optional*): A dict of arguments to pass to the `collate_fn` alongside the list of samples. drop_remainder (`bool`, *optional*): Whether to drop the final batch, if the batch_size does not evenly divide the dataset length. Defaults to the same setting as `shuffle`. prefetch (`bool`, defaults to `True`): Whether to add prefetching to the end of the `tf.data` pipeline. This is almost always beneficial for performance, but can be disabled in edge cases. Returns: `Dataset`: A `tf.data.Dataset` which is ready to pass to the Keras API. """ requires_backends(self, ["datasets"]) import datasets if collate_fn is None: if tokenizer is None: collate_fn = DefaultDataCollator(return_tensors="np") else: collate_fn = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="np") if collate_fn_args is None: collate_fn_args = {} if not isinstance(dataset, datasets.Dataset): raise TypeError("Dataset argument should be a datasets.Dataset!") model_inputs = list(inspect.signature(self.call).parameters) model_labels = find_labels(self.__class__) if "cols_to_retain" in list(inspect.signature(dataset._get_output_signature).parameters.keys()): output_signature, _ = dataset._get_output_signature( dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args, cols_to_retain=model_inputs, ) else: # TODO Matt: This is a workaround for older versions of datasets that are missing the `cols_to_retain` # argument. We should remove this once the minimum supported version of datasets is > 2.3.2 unwanted_columns = [ feature for feature in dataset.features if feature not in model_inputs and feature not in ("label_ids", "label") ] dataset = dataset.remove_columns(unwanted_columns) output_signature, _ = dataset._get_output_signature( dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args ) output_columns = list(output_signature.keys()) feature_cols = [col for col in output_columns if col in model_inputs and col not in model_labels] label_cols = [col for col in output_columns if col in model_labels] # Backwards compatibility for older versions of datasets. Previously, if `columns` or `label_cols` # were a single element list, the returned element spec would be a single element. Now, passing [feature] # will return a dict structure {"feature": feature}, and passing a single string will return a single element. feature_cols = feature_cols[0] if len(feature_cols) == 1 else feature_cols label_cols = label_cols[0] if len(label_cols) == 1 else label_cols if drop_remainder is None: drop_remainder = shuffle tf_dataset = dataset.to_tf_dataset( columns=feature_cols, label_cols=label_cols, batch_size=batch_size, shuffle=shuffle, drop_remainder=drop_remainder, collate_fn=collate_fn, collate_fn_args=collate_fn_args, prefetch=prefetch, ) return tf_dataset def compile( self, optimizer="rmsprop", loss="auto_with_warning", metrics=None, loss_weights=None, weighted_metrics=None, run_eagerly=None, steps_per_execution=None, **kwargs, ): """ This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss function themselves. """ if loss in ("auto_with_warning", "passthrough"): # "passthrough" for workflow backward compatibility logger.info( "No loss specified in compile() - the model's internal loss computation will be used as the " "loss. Don't panic - this is a common way to train TensorFlow models in Transformers! " "To disable this behaviour please pass a loss argument, or explicitly pass " "`loss=None` if you do not want your model to compute a loss. You can also specify `loss='auto'` to " "get the internal loss without printing this info string." ) loss = "auto" if loss == "auto": loss = dummy_loss self._using_dummy_loss = True else: self._using_dummy_loss = False parent_args = list(inspect.signature(keras.Model.compile).parameters.keys()) # This argument got renamed, we need to support both versions if "steps_per_execution" in parent_args: super().compile( optimizer=optimizer, loss=loss, metrics=metrics, loss_weights=loss_weights, weighted_metrics=weighted_metrics, run_eagerly=run_eagerly, steps_per_execution=steps_per_execution, **kwargs, ) else: super().compile( optimizer=optimizer, loss=loss, metrics=metrics, loss_weights=loss_weights, weighted_metrics=weighted_metrics, run_eagerly=run_eagerly, experimental_steps_per_execution=steps_per_execution, **kwargs, ) def compute_loss(self, *args, **kwargs): if hasattr(keras.Model, "compute_loss"): # This will be true in TF 2.8 or greater return super().compute_loss(*args, **kwargs) else: warnings.warn( "The old compute_loss method is deprecated as it conflicts with the Keras compute_loss " "method added in TF 2.8. If you want the original HF compute_loss, please call " "hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, " "calling compute_loss() will get the Keras method instead.", FutureWarning, ) return self.hf_compute_loss(*args, **kwargs) def get_label_to_output_name_mapping(self): arg_names = list(inspect.signature(self.call).parameters) if self._label_to_output_map is not None: return self._label_to_output_map elif "start_positions" in arg_names: return {"start_positions": "start_logits", "end_positions": "end_logits"} elif "sentence_order_label" in arg_names: return {"labels": "prediction_logits", "sentence_order_label": "sop_logits"} elif "next_sentence_label" in arg_names: return {"labels": "prediction_logits", "next_sentence_label": "seq_relationship_logits"} elif "mc_labels" in arg_names: return {"labels": "logits", "mc_labels": "mc_logits"} else: return {} def train_step(self, data): """ A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models and supports directly training on the loss output head. In addition, it ensures input keys are copied to the labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure that they are available to the model during the forward pass. """ # We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map` arg_names = list(inspect.signature(self.call).parameters) label_kwargs = find_labels(self.__class__) label_to_output = self.get_label_to_output_name_mapping() output_to_label = {val: key for key, val in label_to_output.items()} if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"): # Newer TF train steps leave this out data = expand_1d(data) x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data) # If the inputs are mutable dictionaries, make a shallow copy of them because we will modify # them during input/label pre-processing. This avoids surprising the user by wrecking their data. # In addition, modifying mutable Python inputs makes XLA compilation impossible. if isinstance(x, dict): x = x.copy() if isinstance(y, dict): y = y.copy() # When using a dummy loss, we ensure that separate labels are copied to the correct model arguments, # if those keys are not already present in the input dict if self._using_dummy_loss and y is not None: # If y is a tensor and the model only has one label-like input, map y to that input if len(label_kwargs) == 1 and isinstance(y, tf.Tensor): if isinstance(x, tf.Tensor): x = {arg_names[0]: x} label_kwarg = next(iter(label_kwargs)) if label_kwarg not in x: x[label_kwarg] = y # Otherwise, copy keys from y to x as long as they weren't already present in x elif isinstance(y, dict): if isinstance(x, tf.Tensor): x = {arg_names[0]: x} for key, val in y.items(): if key in arg_names and key not in x: x[key] = val elif output_to_label.get(key, None) in arg_names and key not in x: x[output_to_label[key]] = val if y is None: y = {key: val for key, val in x.items() if key in label_kwargs} if not y and not self._using_dummy_loss: raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!") if isinstance(y, dict): # Rename labels at this point to match output heads y = {label_to_output.get(key, key): val for key, val in y.items()} # Run forward pass. with tf.GradientTape() as tape: if self._using_dummy_loss and "return_loss" in arg_names: y_pred = self(x, training=True, return_loss=True) else: y_pred = self(x, training=True) if self._using_dummy_loss: loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses) else: loss = None # This next block matches outputs to label keys. Tensorflow's standard method for doing this # can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors) if isinstance(y, dict) and len(y) == 1: if list(y.keys())[0] in y_pred.keys(): y_pred = y_pred[list(y.keys())[0]] elif list(y_pred.keys())[0] == "loss": y_pred = y_pred[1] else: y_pred = y_pred[0] _, y = y.popitem() elif isinstance(y, dict): # If the labels are a dict, match keys from the output by name y_pred = {key: val for key, val in y_pred.items() if key in y} elif isinstance(y, tuple) or isinstance(y, list): # If the labels are a tuple/list, match keys to the output by order, skipping the loss. if list(y_pred.keys())[0] == "loss": y_pred = y_pred.to_tuple()[1:] else: y_pred = y_pred.to_tuple() y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems else: # If the labels are a single tensor, match them to the first non-loss tensor in the output if list(y_pred.keys())[0] == "loss": y_pred = y_pred[1] else: y_pred = y_pred[0] if loss is None: loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses) # Run backwards pass. self.optimizer.minimize(loss, self.trainable_variables, tape=tape) self.compiled_metrics.update_state(y, y_pred, sample_weight) # Collect metrics to return return_metrics = {} for metric in self.metrics: result = metric.result() if isinstance(result, dict): return_metrics.update(result) else: return_metrics[metric.name] = result return return_metrics def test_step(self, data): """ A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models and supports directly training on the loss output head. In addition, it ensures input keys are copied to the labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure that they are available to the model during the forward pass. """ # We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map` arg_names = list(inspect.signature(self.call).parameters) label_kwargs = find_labels(self.__class__) label_to_output = self.get_label_to_output_name_mapping() output_to_label = {val: key for key, val in label_to_output.items()} if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"): # Newer versions leave this out data = expand_1d(data) x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data) # If the inputs are mutable dictionaries, make a shallow copy of them because we will modify # them during input/label pre-processing. This avoids surprising the user by wrecking their data. # In addition, modifying mutable Python inputs makes XLA compilation impossible. if isinstance(x, dict): x = x.copy() if isinstance(y, dict): y = y.copy() # When using a dummy loss, we ensure that separate labels are copied to the correct model arguments, # if those keys are not already present in the input dict if self._using_dummy_loss and y is not None: arg_names = list(inspect.signature(self.call).parameters) # If y is a tensor and the model only has one label-like input, map y to that input if len(label_kwargs) == 1 and isinstance(y, tf.Tensor): if isinstance(x, tf.Tensor): x = {arg_names[0]: x} label_kwarg = next(iter(label_kwargs)) if label_kwarg not in x: x[label_kwarg] = y # Otherwise, copy keys from y to x as long as they weren't already present in x elif isinstance(y, dict): if isinstance(x, tf.Tensor): x = {arg_names[0]: x} for key, val in y.items(): if key in arg_names and key not in x: x[key] = val elif output_to_label.get(key, None) in arg_names and key not in x: x[output_to_label[key]] = val if y is None: y = {key: val for key, val in x.items() if key in label_kwargs} if not y and not self._using_dummy_loss: raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!") if isinstance(y, dict): # Rename labels at this point to match output heads y = {label_to_output.get(key, key): val for key, val in y.items()} # Run forward pass. if self._using_dummy_loss and "return_loss" in arg_names: y_pred = self(x, return_loss=True, training=False) else: y_pred = self(x, training=False) if self._using_dummy_loss: loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses) else: loss = None # This next block matches outputs to label keys. Tensorflow's standard method for doing this # can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors) if isinstance(y, dict) and len(y) == 1: if list(y.keys())[0] in y_pred.keys(): y_pred = y_pred[list(y.keys())[0]] elif list(y_pred.keys())[0] == "loss": y_pred = y_pred[1] else: y_pred = y_pred[0] _, y = y.popitem() elif isinstance(y, dict): # If the labels are a dict, match keys from the output by name y_pred = {key: val for key, val in y_pred.items() if key in y} elif isinstance(y, tuple) or isinstance(y, list): # If the labels are a tuple/list, match keys to the output by order, skipping the loss. if list(y_pred.keys())[0] == "loss": y_pred = y_pred.to_tuple()[1:] else: y_pred = y_pred.to_tuple() y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems else: # If the labels are a single tensor, match them to the first non-loss tensor in the output if list(y_pred.keys())[0] == "loss": y_pred = y_pred[1] else: y_pred = y_pred[0] if loss is None: loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses) self.compiled_metrics.update_state(y, y_pred, sample_weight) # Collect metrics to return return_metrics = {} for metric in self.metrics: result = metric.result() if isinstance(result, dict): return_metrics.update(result) else: return_metrics[metric.name] = result return return_metrics def create_model_card( self, output_dir, model_name: str, language: Optional[str] = None, license: Optional[str] = None, tags: Optional[str] = None, finetuned_from: Optional[str] = None, tasks: Optional[str] = None, dataset_tags: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, dataset_args: Optional[Union[str, List[str]]] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: output_dir (`str` or `os.PathLike`): The folder in which to create the model card. model_name (`str`, *optional*): The name of the model. language (`str`, *optional*): The language of the model (if applicable) license (`str`, *optional*): The license of the model. Will default to the license of the pretrained model used, if the original model given to the `Trainer` comes from a repo on the Hub. tags (`str` or `List[str]`, *optional*): Some tags to be included in the metadata of the model card. finetuned_from (`str`, *optional*): The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo of the original model given to the `Trainer` (if it comes from the Hub). tasks (`str` or `List[str]`, *optional*): One or several task identifiers, to be included in the metadata of the model card. dataset_tags (`str` or `List[str]`, *optional*): One or several dataset tags, to be included in the metadata of the model card. dataset (`str` or `List[str]`, *optional*): One or several dataset identifiers, to be included in the metadata of the model card. dataset_args (`str` or `List[str]`, *optional*): One or several dataset arguments, to be included in the metadata of the model card. """ # Avoids a circular import by doing this when necessary. from .modelcard import TrainingSummary # tests_ignore training_summary = TrainingSummary.from_keras( self, keras_history=self.history, language=language, license=license, tags=tags, model_name=model_name, finetuned_from=finetuned_from, tasks=tasks, dataset_tags=dataset_tags, dataset=dataset, dataset_args=dataset_args, ) model_card = training_summary.to_model_card() with open(os.path.join(output_dir, "README.md"), "w") as f: f.write(model_card) def set_input_embeddings(self, value): """ Set model's input embeddings Args: value (`tf.Variable`): The new weights mapping hidden states to vocabulary. """ main_layer = getattr(self, self.base_model_prefix) if main_layer is None: raise NotImplementedError("The model does not implements the base_model_prefix attribute.") try: main_layer.set_input_embeddings(value) except AttributeError: logger.info("Building the model") self.build_in_name_scope() main_layer.set_input_embeddings(value) def get_output_embeddings(self) -> Union[None, keras.layers.Layer]: """ Returns the model's output embeddings Returns: `tf.Variable`: The new weights mapping vocabulary to hidden states. """ if self.get_lm_head() is not None: lm_head = self.get_lm_head() try: return lm_head.get_output_embeddings() except AttributeError: logger.info("Building the model") self.build_in_name_scope() return lm_head().get_output_embeddings() return None # Overwrite for models with output embeddings def set_output_embeddings(self, value): """ Set model's output embeddings Args: value (`tf.Variable`): The new weights mapping hidden states to vocabulary. """ if self.get_lm_head() is not None: lm_head = self.get_lm_head() try: lm_head.set_output_embeddings(value) except AttributeError: logger.info("Building the model") self.build_in_name_scope() lm_head.set_output_embeddings(value) def get_output_layer_with_bias(self) -> Union[None, keras.layers.Layer]: """ Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the embeddings Return: `keras.layers.Layer`: The layer that handles the bias, None if not an LM model. """ warnings.warn( "The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning ) return self.get_lm_head() def get_prefix_bias_name(self) -> Union[None, str]: """ Get the concatenated _prefix name of the bias from the model name to the parent layer Return: `str`: The _prefix name of the bias. """ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return None def get_bias(self) -> Union[None, Dict[str, tf.Variable]]: """ Dict of bias attached to an LM head. The key represents the name of the bias attribute. Return: `tf.Variable`: The weights representing the bias, None if not an LM model. """ if self.get_lm_head() is not None: lm_head = self.get_lm_head() try: return lm_head.get_bias() except AttributeError: self.build_in_name_scope() return lm_head.get_bias() return None def set_bias(self, value): """ Set all the bias in the LM head. Args: value (`Dict[tf.Variable]`): All the new bias attached to an LM head. """ if self.get_lm_head() is not None: lm_head = self.get_lm_head() try: lm_head.set_bias(value) except AttributeError: self.build_in_name_scope() lm_head.set_bias(value) def get_lm_head(self) -> keras.layers.Layer: """ The LM Head layer. This method must be overwritten by all the models that have a lm head. Return: `keras.layers.Layer`: The LM head layer if the model has one, None if not. """ return None def resize_token_embeddings( self, new_num_tokens: Optional[int] = None ) -> Union[keras.layers.Embedding, tf.Variable]: """ Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens (`int`, *optional*): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens without doing anything. Return: `tf.Variable` or `keras.layers.Embedding`: Pointer to the input tokens of the model. """ # TODO (joao): flagged for replacement (by `_v2_resized_token_embeddings`) due to embeddings refactor # Run the new code path if the model has a keras embeddings layer if isinstance(self.get_input_embeddings(), keras.layers.Embedding): return self._v2_resized_token_embeddings(new_num_tokens) if new_num_tokens is None or new_num_tokens == self.config.vocab_size: return self._get_word_embedding_weight(self.get_input_embeddings()) model_embeds = self._resize_token_embeddings(new_num_tokens) # Update base model and current model config self.config.vocab_size = new_num_tokens return model_embeds def _v2_resized_token_embeddings(self, new_num_tokens: Optional[int] = None) -> keras.layers.Embedding: """ Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. Arguments: new_num_tokens (`int`, *optional*): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens without doing anything. Return: `keras.layers.Embedding`: Pointer to the input tokens of the model. """ if new_num_tokens is None or new_num_tokens == self.config.vocab_size: return self.get_input_embeddings() model_embeds = self._v2_resize_token_embeddings(new_num_tokens) # Update base model and current model config self.config.vocab_size = new_num_tokens return model_embeds def _get_word_embedding_weight(model, embedding_layer): # TODO (joao): flagged for delection due to embeddings refactor # If the variable holds the weights themselves, return them if isinstance(embedding_layer, tf.Tensor): return embedding_layer # Otherwise, try to get them from the layer's attributes embeds = getattr(embedding_layer, "weight", None) if embeds is not None: return embeds embeds = getattr(embedding_layer, "decoder", None) if embeds is not None: return embeds # The reason why the attributes don't exist might be # because the model is not built, so retry getting # the argument after building the model model.build_in_name_scope() embeds = getattr(embedding_layer, "weight", None) if embeds is not None: return embeds embeds = getattr(embedding_layer, "decoder", None) if embeds is not None: return embeds return None def _resize_token_embeddings(self, new_num_tokens): # TODO (joao): flagged for replacement (by `_v2_resize_token_embeddings`) due to embeddings refactor old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings()) new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) # if word embeddings are not tied, make sure that lm head bias is resized as well if self.get_bias() is not None: old_lm_head_bias = self.get_bias() new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens) self.set_bias(new_lm_head_bias) # if word embeddings are not tied, make sure that lm head decoder is resized as well if self.get_output_embeddings() is not None: old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings()) new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens) self.set_output_embeddings(new_lm_head_decoder) self.set_input_embeddings(new_embeddings) return self.get_input_embeddings() def _v2_resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._v2_get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) # If word embeddings are not tied, make sure that lm head bias is resized as well if self.get_bias() is not None: old_lm_head_bias = self.get_bias() new_lm_head_bias = self._v2_get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens) self.set_bias(new_lm_head_bias) # If word embeddings are not tied, make sure that lm head decoder is resized as well. tied_weights = self.get_input_embeddings() == self.get_output_embeddings() if self.get_output_embeddings() is not None and not tied_weights: old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings()) # TODO (joao): this one probably needs a v2 version with other models new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens) self.set_output_embeddings(new_lm_head_decoder) return self.get_input_embeddings() def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens): """ Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_lm_head_bias (`tf.Variable`): Old lm head bias to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns None Return: `tf.Variable`: Pointer to the resized bias. """ # TODO (joao): flagged for replacement (by `_v2_get_resized_lm_head_bias`) due to embeddings refactor new_lm_head_bias = {} for attr, weight in old_lm_head_bias.items(): first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight) size_diff = new_num_tokens - old_num_tokens final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens] # initialize new bias if tf.math.greater(size_diff, 0): padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]] current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1) num_tokens_to_copy = min(old_num_tokens, new_num_tokens) mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy] bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True) bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False) else: slice_from = [0] if first_dim is None else [0, 0] current_bias = tf.slice( weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape) ) bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True) new_bias = self.add_weight( shape=final_shape, initializer="zeros", trainable=True, name=weight.name.split(":")[0], ) init_bias = tf.where(bias_mask, current_bias, new_bias.value()) new_bias.assign(init_bias) new_lm_head_bias[attr] = new_bias return new_lm_head_bias def _v2_get_resized_lm_head_bias( self, old_lm_head_bias: Dict[str, tf.Variable], new_num_tokens: int ) -> Dict[str, tf.Tensor]: """ Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_lm_head_bias (`Dict[str, tf.Variable]`): Old lm head bias to be resized. new_num_tokens (`int`): New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. Return: `tf.Tensor`: Values for the resized bias. """ new_lm_head_bias = {} for attr, weight in old_lm_head_bias.items(): # Determine the size difference (depending on the shape) first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight) size_diff = new_num_tokens - old_num_tokens # Copy the old bias values to the new bias if old_num_tokens > new_num_tokens: new_bias = weight.value()[..., :new_num_tokens] else: padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]] new_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape)) new_lm_head_bias[attr] = new_bias return new_lm_head_bias def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens): """ Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_lm_head_decoder (`tf.Variable`): Old lm head decoder to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns None Return: `tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input ones. """ new_lm_head_decoder = old_lm_head_decoder is_input_output_equals = tf.reduce_any( self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder ) if old_lm_head_decoder is not None and not is_input_output_equals: old_embedding_dim = shape_list(old_lm_head_decoder)[1] decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens) new_lm_head_decoder = self.add_weight( shape=(new_num_tokens, old_embedding_dim), initializer="zeros", trainable=True, name=old_lm_head_decoder.name.split(":")[0], ) init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value()) new_lm_head_decoder.assign(init_decoder) return new_lm_head_decoder def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable: """ Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_embeddings (`tf.Variable`): Old embeddings to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens `tf.Variable` module of the model without doing anything. Return: `tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is `None` """ # TODO (joao): flagged for replacement (by `_v2_get_resized_embeddings`) due to embeddings refactor old_embedding_dim = shape_list(old_embeddings)[1] init_range = getattr(self.config, "initializer_range", 0.02) embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens) new_embeddings = self.add_weight( name=old_embeddings.name.split(":")[0], shape=[new_num_tokens, old_embedding_dim], initializer=get_initializer(init_range), dtype=tf.float32, ) init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value()) new_embeddings.assign(init_embeddings) return new_embeddings def _v2_get_resized_embeddings( self, old_embeddings: keras.layers.Embedding, new_num_tokens: int ) -> keras.layers.Embedding: """ Build a resized Embedding layer from a provided Embedding layer. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. Args: old_embeddings (`keras.layers.Embedding`): Old embeddings to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the embedding matrix. Return: `keras.layers.Embedding`: Resized Embedding layer. """ # Get the initialization range for the embeddings init_range = 0.02 # default value potential_initialization_variable_names = [ "initializer_range", # most common "initializer_factor", # e.g. T5 "init_std", # e.g BART ] for var_name in potential_initialization_variable_names: if hasattr(self.config, var_name): init_range = getattr(self.config, var_name) # Get a new (initialized) embeddings layer new_embeddings = keras.layers.Embedding( input_dim=new_num_tokens, output_dim=old_embeddings.output_dim, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=init_range), name=old_embeddings.embeddings.name[:-13], # exact same scoped name except "/embeddings:0" ) new_embeddings(tf.constant([[0]])) # Copy the old embeddings to the new embeddings if old_embeddings.input_dim >= new_num_tokens: init_embeddings = old_embeddings.embeddings[:new_num_tokens] else: init_embeddings = tf.concat( [old_embeddings.embeddings, new_embeddings.embeddings[old_embeddings.input_dim :]], axis=0 ) new_embeddings.embeddings.assign(init_embeddings) return new_embeddings def prune_heads(self, heads_to_prune): """ Prunes heads of the base model. Arguments: heads_to_prune (`Dict[int, List[int]]`): Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ raise NotImplementedError def save_pretrained( self, save_directory, saved_model=False, version=1, push_to_hub=False, signatures=None, max_shard_size: Union[int, str] = "10GB", create_pr: bool = False, safe_serialization: bool = False, token: Optional[Union[str, bool]] = None, **kwargs, ): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the [`~TFPreTrainedModel.from_pretrained`] class method. Arguments: save_directory (`str`): Directory to which to save. Will be created if it doesn't exist. saved_model (`bool`, *optional*, defaults to `False`): If the model has to be saved in saved model format as well or not. version (`int`, *optional*, defaults to 1): The version of the saved model. A saved model needs to be versioned in order to be properly loaded by TensorFlow Serving as detailed in the official documentation https://www.tensorflow.org/tfx/serving/serving_basic push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). signatures (`dict` or `tf.function`, *optional*): Model's signature used for serving. This will be passed to the `signatures` argument of model.save(). max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). <Tip warning={true}> If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. </Tip> create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save the model using `safetensors` or the traditional TensorFlow way (that uses `h5`). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) if saved_model: # If `torch_dtype` is in the config with a torch dtype class as the value, we need to change it to string. # (Although TF doesn't care about this attribute, we can't just remove it or set it to `None`.) if getattr(self.config, "torch_dtype", None) is not None and not isinstance(self.config.torch_dtype, str): self.config.torch_dtype = str(self.config.torch_dtype).split(".")[1] if signatures is None: serving_default = self.serving.get_concrete_function(self.input_signature) if any(spec.dtype == tf.int32 for spec in self.input_signature.values()): int64_spec = { key: tf.TensorSpec( shape=spec.shape, dtype=tf.int64 if spec.dtype == tf.int32 else spec.dtype, name=spec.name ) for key, spec in self.input_signature.items() } int64_serving = self.serving.get_concrete_function(int64_spec) signatures = {"serving_default": serving_default, "int64_serving": int64_serving} else: signatures = serving_default saved_model_dir = os.path.join(save_directory, "saved_model", str(version)) self.save(saved_model_dir, include_optimizer=False, signatures=signatures) logger.info(f"Saved model created in {saved_model_dir}") # Save configuration file self.config.architectures = [self.__class__.__name__[2:]] # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self.config) self.config.save_pretrained(save_directory) if self.can_generate(): self.generation_config.save_pretrained(save_directory) # If we save using the predefined names, we can load using `from_pretrained` weights_name = SAFE_WEIGHTS_NAME if safe_serialization else TF2_WEIGHTS_NAME output_model_file = os.path.join(save_directory, weights_name) shards, index = tf_shard_checkpoint(self.weights, max_shard_size) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) # If we have a shard file that is not going to be replaced, we delete it, but only from the main process # in distributed settings to avoid race conditions. weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") if ( filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and filename not in shards.keys() ): os.remove(full_filename) if index is None: if safe_serialization: state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in self.weights} safe_save_file(state_dict, output_model_file, metadata={"format": "tf"}) else: self.save_weights(output_model_file) logger.info(f"Model weights saved in {output_model_file}") else: save_index_file = os.path.join(save_directory, TF2_WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as index_file: content = json.dumps(index, indent=2, sort_keys=True) + "\n" index_file.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) for shard_file, shard in shards.items(): with h5py.File(os.path.join(save_directory, shard_file), mode="w") as shard_file: layers = [] for layer in sorted(shard, key=lambda x: x.name): if "model." in layer.name or len(layer.name.split("/")) == 1: layer_name = layer.name else: layer_name = "/".join(layer.name.split("/")[1:]) param_dset = shard_file.create_dataset( layer_name, layer.numpy().shape, dtype=layer.numpy().dtype ) param_dset[:] = layer.numpy() layers.append(layer_name.encode("utf8")) save_attributes_to_hdf5_group(shard_file, "layer_names", layers) if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token, ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", use_safetensors: bool = None, **kwargs, ): r""" Instantiate a pretrained TF 2.0 model from a pre-trained model configuration. The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (`str`, *optional*): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this case, `from_pt` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. - `None` if you are both providing the configuration and state dictionary (resp. with keyword arguments `config` and `state_dict`). model_args (sequence of positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. config (`Union[PretrainedConfig, str]`, *optional*): Can be either: - an instance of a class derived from [`PretrainedConfig`], - a string valid as input to [`~PretrainedConfig.from_pretrained`]. Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch state_dict save file (see docstring of `pretrained_model_name_or_path` argument). ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model (if for instance, you are instantiating a model with 10 labels from a checkpoint with 3 labels). cache_dir (`str`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies: (`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (e.g., not try downloading the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> mirror (`str`, *optional*): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. tf_to_pt_weight_rename (`Callable`, *optional*): A function that is called to transform the names of weights during the PyTorch to TensorFlow crossloading process. This is not necessary for most models, but is useful to allow composite models to be crossloaded correctly. use_safetensors (`bool`, *optional*, defaults to `None`): Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors` is not installed, it will be set to `False`. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import BertConfig, TFBertModel >>> # Download model and configuration from huggingface.co and cache. >>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased") >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> model = TFBertModel.from_pretrained("./test/saved_model/") >>> # Update configuration during loading. >>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True) >>> assert model.config.output_attentions == True >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json") >>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config) ```""" from_pt = kwargs.pop("from_pt", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) use_auth_token = kwargs.pop("use_auth_token", None) trust_remote_code = kwargs.pop("trust_remote_code", None) _ = kwargs.pop("mirror", None) load_weight_prefix = kwargs.pop("load_weight_prefix", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) subfolder = kwargs.pop("subfolder", "") commit_hash = kwargs.pop("_commit_hash", None) tf_to_pt_weight_rename = kwargs.pop("tf_to_pt_weight_rename", None) # Not relevant for TF models _ = kwargs.pop("adapter_kwargs", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if trust_remote_code is True: logger.warning( "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" " ignored." ) user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True if use_safetensors is None and not is_safetensors_available(): use_safetensors = False # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, _from_auto=from_auto_class, _from_pipeline=from_pipeline, _commit_hash=commit_hash, **kwargs, ) else: model_kwargs = kwargs if commit_hash is None: commit_hash = getattr(config, "_commit_hash", None) # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the # index of the files. is_sharded = False # Load model if pretrained_model_name_or_path is not None: pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if is_local: if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint in priority if from_pt archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)): # Load from a sharded PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME) is_sharded = True elif use_safetensors is not False and os.path.isfile( os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) ): # Load from a safetensors checkpoint archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)): # Load from a sharded TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME) is_sharded = True elif use_safetensors is not False and os.path.isfile( os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) ): # Load from a sharded safetensors checkpoint archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) is_sharded = True raise NotImplementedError("Support for sharded checkpoints using safetensors is coming soon!") # At this stage we don't have a weight file so we will raise an error. elif use_safetensors: raise EnvironmentError( f"Error no file named {SAFE_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}. " f"Please make sure that the model has been saved with `safe_serialization=True` or do not " f"set `use_safetensors=True`." ) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)) or os.path.isfile( os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME) ): raise EnvironmentError( f"Error no file named {TF2_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} " "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those " "weights." ) else: raise EnvironmentError( f"Error no file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " f"{pretrained_model_name_or_path}." ) elif os.path.isfile(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path is_local = True elif os.path.isfile(pretrained_model_name_or_path + ".index"): archive_file = pretrained_model_name_or_path + ".index" is_local = True elif is_remote_url(pretrained_model_name_or_path): filename = pretrained_model_name_or_path resolved_archive_file = download_url(pretrained_model_name_or_path) else: # set correct filename if from_pt: filename = WEIGHTS_NAME elif use_safetensors is not False: filename = SAFE_WEIGHTS_NAME else: filename = TF2_WEIGHTS_NAME try: # Load from URL or cache if already cached cached_file_kwargs = { "cache_dir": cache_dir, "force_download": force_download, "proxies": proxies, "resume_download": resume_download, "local_files_only": local_files_only, "token": token, "user_agent": user_agent, "revision": revision, "subfolder": subfolder, "_raise_exceptions_for_gated_repo": False, "_raise_exceptions_for_missing_entries": False, "_commit_hash": commit_hash, } resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None # result when internet is up, the repo and revision exist, but the file does not. if resolved_archive_file is None and filename == SAFE_WEIGHTS_NAME: # Did not find the safetensors file, let's fallback to TF. # No support for sharded safetensors yet, so we'll raise an error if that's all we find. filename = TF2_WEIGHTS_NAME resolved_archive_file = cached_file( pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **cached_file_kwargs ) if resolved_archive_file is None and filename == TF2_WEIGHTS_NAME: # Maybe the checkpoint is sharded, we try to grab the index name in this case. resolved_archive_file = cached_file( pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME, **cached_file_kwargs ) if resolved_archive_file is not None: is_sharded = True if resolved_archive_file is None and filename == WEIGHTS_NAME: # Maybe the checkpoint is sharded, we try to grab the index name in this case. resolved_archive_file = cached_file( pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs ) if resolved_archive_file is not None: is_sharded = True if resolved_archive_file is None: # Otherwise, maybe there is a PyTorch or Flax model file. We try those to give a helpful error # message. has_file_kwargs = { "revision": revision, "proxies": proxies, "token": token, } if has_file(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **has_file_kwargs): is_sharded = True raise NotImplementedError( "Support for sharded checkpoints using safetensors is coming soon!" ) elif has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {TF2_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to" " load this model from those weights." ) else: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}," f" {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}" ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}" ) if is_local: logger.info(f"loading weights file {archive_file}") resolved_archive_file = archive_file filename = resolved_archive_file.split(os.path.sep)[-1] else: logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") else: resolved_archive_file = None # We'll need to download and cache each checkpoint shard if the checkpoint is sharded. if is_sharded: # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. resolved_archive_file, _ = get_checkpoint_shard_files( pretrained_model_name_or_path, resolved_archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, _commit_hash=commit_hash, ) safetensors_from_pt = False if filename == SAFE_WEIGHTS_NAME: with safe_open(resolved_archive_file, framework="tf") as f: safetensors_metadata = f.metadata() if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax"]: raise OSError( f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata." " Make sure you save your model with the `save_pretrained` method." ) safetensors_from_pt = safetensors_metadata.get("format") == "pt" config.name_or_path = pretrained_model_name_or_path # composed models, *e.g.* TFRag, require special treatment when it comes to loading # pre-trained weights. if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None: model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name") # Instantiate model. model = cls(config, *model_args, **model_kwargs) if tf_to_pt_weight_rename is None and hasattr(model, "tf_to_pt_weight_rename"): # TODO Matt: This is a temporary workaround to allow weight renaming, but requires a method # to be defined for each class that requires a rename. We can probably just have a class-level # dict and a single top-level method or something and cut down a lot of boilerplate code tf_to_pt_weight_rename = model.tf_to_pt_weight_rename if from_pt: from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model # Load from a PyTorch checkpoint return load_pytorch_checkpoint_in_tf2_model( model, resolved_archive_file, allow_missing_keys=True, output_loading_info=output_loading_info, _prefix=load_weight_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) # we might need to extend the variable scope for composite models if load_weight_prefix is not None: with tf.compat.v1.variable_scope(load_weight_prefix): model.build_in_name_scope() # build the network with dummy inputs else: model.build_in_name_scope() # build the network with dummy inputs if safetensors_from_pt: from .modeling_tf_pytorch_utils import load_pytorch_state_dict_in_tf2_model with safe_open(resolved_archive_file, framework="tf") as safetensors_archive: # Load from a PyTorch checkpoint # We load in TF format here because PT weights often need to be transposed, and this is much # faster on GPU. Loading as numpy and transposing on CPU adds several seconds to load times. return load_pytorch_state_dict_in_tf2_model( model, safetensors_archive, tf_inputs=False, # No need to build the model again allow_missing_keys=True, output_loading_info=output_loading_info, _prefix=load_weight_prefix, ignore_mismatched_sizes=ignore_mismatched_sizes, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) # 'by_name' allow us to do transfer learning by skipping/adding layers # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357 try: if is_sharded: for file in resolved_archive_file: os.path.isfile(file), f"Error retrieving files {file}" missing_keys, unexpected_keys, mismatched_keys = load_tf_sharded_weights( model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=load_weight_prefix, ) else: missing_keys, unexpected_keys, mismatched_keys = load_tf_weights( model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=load_weight_prefix, ) except OSError as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please install " "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " "you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise OSError( "Unable to load weights from h5 file. " "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. " ) if cls._keys_to_ignore_on_load_missing is not None: for pat in cls._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if cls._keys_to_ignore_on_load_unexpected is not None: for pat in cls._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.warning( f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) # If it is a model with generation capabilities, attempt to load the generation config if model.can_generate(): try: model.generation_config = GenerationConfig.from_pretrained( pretrained_model_name_or_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) except OSError: logger.info( "Generation config file not found, using a generation config created from the model config." ) pass if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, } return model, loading_info return model def push_to_hub( self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, max_shard_size: Optional[Union[int, str]] = "10GB", token: Optional[Union[bool, str]] = None, # (`use_auth_token` is deprecated: we have to keep it here as we don't have **kwargs) use_auth_token: Optional[Union[bool, str]] = None, create_pr: bool = False, **base_model_card_args, ) -> str: """ Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`. Parameters: repo_id (`str`): The name of the repository you want to push your model to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload model"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. Examples: ```python from transformers import TFAutoModel model = TFAutoModel.from_pretrained("google-bert/bert-base-cased") # Push the model to your namespace with the name "my-finetuned-bert". model.push_to_hub("my-finetuned-bert") # Push the model to an organization with the name "my-finetuned-bert". model.push_to_hub("huggingface/my-finetuned-bert") ``` """ if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if "repo_path_or_name" in base_model_card_args: warnings.warn( "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " "`repo_id` instead." ) repo_id = base_model_card_args.pop("repo_path_or_name") # Deprecation warning will be sent after for repo_url and organization repo_url = base_model_card_args.pop("repo_url", None) organization = base_model_card_args.pop("organization", None) if os.path.isdir(repo_id): working_dir = repo_id repo_id = repo_id.split(os.path.sep)[-1] else: working_dir = repo_id.split("/")[-1] repo_id = self._create_repo( repo_id, private=private, token=token, repo_url=repo_url, organization=organization ) if use_temp_dir is None: use_temp_dir = not os.path.isdir(working_dir) with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: files_timestamps = self._get_files_timestamps(work_dir) # Save all files. self.save_pretrained(work_dir, max_shard_size=max_shard_size) if hasattr(self, "history") and hasattr(self, "create_model_card"): # This is a Keras model and we might be able to fish out its History and make a model card out of it base_model_card_args = { "output_dir": work_dir, "model_name": Path(repo_id).name, } base_model_card_args.update(base_model_card_args) self.create_model_card(**base_model_card_args) self._upload_modified_files( work_dir, repo_id, files_timestamps, commit_message=commit_message, token=token, create_pr=create_pr, ) @classmethod def register_for_auto_class(cls, auto_class="TFAutoModel"): """ Register this class with a given auto class. This should only be used for custom models as the ones in the library are already mapped with an auto class. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`): The auto class to register this new model with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class class TFConv1D(keras.layers.Layer): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (`int`): The number of output features. nx (`int`): The number of input features. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation to use to initialize the weights. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`. """ def __init__(self, nf, nx, initializer_range=0.02, **kwargs): super().__init__(**kwargs) self.nf = nf self.nx = nx self.initializer_range = initializer_range def build(self, input_shape): if self.built: return self.built = True self.weight = self.add_weight( "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range) ) self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer()) def call(self, x): bz, sl = shape_list(x)[:2] x = tf.reshape(x, [-1, self.nx]) x = tf.matmul(x, self.weight) + self.bias x = tf.reshape(x, [bz, sl, self.nf]) return x class TFSharedEmbeddings(keras.layers.Layer): r""" Construct shared token embeddings. The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language modeling. Args: vocab_size (`int`): The size of the vocabulary, e.g., the number of unique tokens. hidden_size (`int`): The size of the embedding vectors. initializer_range (`float`, *optional*): The standard deviation to use when initializing the weights. If no value is provided, it will default to \\(1/\sqrt{hidden\_size}\\). kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`. """ # TODO (joao): flagged for delection due to embeddings refactor def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range warnings.warn( "`TFSharedEmbeddings` is scheduled for deletion in v4.32, use `keras.layers.Embedding` instead.", DeprecationWarning, ) def build(self, input_shape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ self.weight = self.add_weight( "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range) ) super().build(input_shape) def get_config(self): config = { "vocab_size": self.vocab_size, "hidden_size": self.hidden_size, "initializer_range": self.initializer_range, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor: """ Get token embeddings of inputs or decode final hidden state. Args: inputs (`tf.Tensor`): In embedding mode, should be an int64 tensor with shape `[batch_size, length]`. In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`. mode (`str`, defaults to `"embedding"`): A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be used as an embedding layer, the second one that the layer should be used as a linear decoder. Returns: `tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length, embedding_size]`. In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`. Raises: ValueError: if `mode` is not valid. Shared weights logic is adapted from [here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24). """ if mode == "embedding": return self._embedding(inputs) elif mode == "linear": return self._linear(inputs) else: raise ValueError(f"mode {mode} is not valid.") def _embedding(self, input_ids): """Applies embedding based on inputs tensor.""" return tf.gather(self.weight, input_ids) def _linear(self, inputs): """ Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [..., hidden_size] Returns: float32 tensor with shape [..., vocab_size]. """ first_dims = shape_list(inputs)[:-1] x = tf.reshape(inputs, [-1, self.hidden_size]) logits = tf.matmul(x, self.weight, transpose_b=True) return tf.reshape(logits, first_dims + [self.vocab_size]) class TFSequenceSummary(keras.layers.Layer): """ Compute a single vector summary of a sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: - `"last"` -- Take the last token hidden state (like XLNet) - `"first"` -- Take the first token hidden state (like Bert) - `"mean"` -- Take the mean of all tokens hidden states - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - `"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes (otherwise to `config.hidden_size`). - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, another string or `None` will add no activation. - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`. """ def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs): super().__init__(**kwargs) self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last" if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj if self.has_summary: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = keras.layers.Dense( num_classes, kernel_initializer=get_initializer(initializer_range), name="summary" ) self.has_activation = False activation_string = getattr(config, "summary_activation", None) if activation_string is not None: self.has_activation = True self.activation = get_tf_activation(activation_string) self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0 if self.has_first_dropout: self.first_dropout = keras.layers.Dropout(config.summary_first_dropout) self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0 if self.has_last_dropout: self.last_dropout = keras.layers.Dropout(config.summary_last_dropout) self.hidden_size = config.hidden_size def call(self, inputs, cls_index=None, training=False): if not isinstance(inputs, (dict, tuple, list)): hidden_states = inputs elif isinstance(inputs, (tuple, list)): hidden_states = inputs[0] cls_index = inputs[1] if len(inputs) > 1 else None assert len(inputs) <= 2, "Too many inputs." else: hidden_states = inputs.get("hidden_states") cls_index = inputs.get("cls_index", None) if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = tf.reduce_mean(hidden_states, axis=1) elif self.summary_type == "cls_index": hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims] if cls_index is None: cls_index = tf.fill( hidden_shape[:-2], hidden_shape[-2] - 1 ) # A tensor full of shape [batch] or [batch, num choices] full of sequence length cls_shape = shape_list(cls_index) if len(cls_shape) <= len(hidden_shape) - 2: cls_index = tf.expand_dims(cls_index, axis=-1) # else: # cls_index = cls_index[..., tf.newaxis] # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2) output = tf.squeeze( output, axis=len(hidden_shape) - 2 ) # shape of output: (batch, num choices, hidden_size) elif self.summary_type == "attn": raise NotImplementedError if self.has_first_dropout: output = self.first_dropout(output, training=training) if self.has_summary: output = self.summary(output) if self.has_activation: output = self.activation(output) if self.has_last_dropout: output = self.last_dropout(output, training=training) return output def build(self, input_shape): if self.built: return self.built = True if getattr(self, "summary", None) is not None: with tf.name_scope("summary"): self.summary.build(self.hidden_size) def get_initializer(initializer_range: float = 0.02) -> keras.initializers.TruncatedNormal: """ Creates a `keras.initializers.TruncatedNormal` with the given range. Args: initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range. Returns: `keras.initializers.TruncatedNormal`: The truncated normal initializer. """ return keras.initializers.TruncatedNormal(stddev=initializer_range)
transformers/src/transformers/modeling_tf_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_tf_utils.py", "repo_id": "transformers", "token_count": 72151 }
66
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class.""" import warnings from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES logger = logging.get_logger(__name__) TF_MODEL_MAPPING_NAMES = OrderedDict( [ # Base model mapping ("albert", "TFAlbertModel"), ("bart", "TFBartModel"), ("bert", "TFBertModel"), ("blenderbot", "TFBlenderbotModel"), ("blenderbot-small", "TFBlenderbotSmallModel"), ("blip", "TFBlipModel"), ("camembert", "TFCamembertModel"), ("clip", "TFCLIPModel"), ("convbert", "TFConvBertModel"), ("convnext", "TFConvNextModel"), ("convnextv2", "TFConvNextV2Model"), ("ctrl", "TFCTRLModel"), ("cvt", "TFCvtModel"), ("data2vec-vision", "TFData2VecVisionModel"), ("deberta", "TFDebertaModel"), ("deberta-v2", "TFDebertaV2Model"), ("deit", "TFDeiTModel"), ("distilbert", "TFDistilBertModel"), ("dpr", "TFDPRQuestionEncoder"), ("efficientformer", "TFEfficientFormerModel"), ("electra", "TFElectraModel"), ("esm", "TFEsmModel"), ("flaubert", "TFFlaubertModel"), ("funnel", ("TFFunnelModel", "TFFunnelBaseModel")), ("gpt-sw3", "TFGPT2Model"), ("gpt2", "TFGPT2Model"), ("gptj", "TFGPTJModel"), ("groupvit", "TFGroupViTModel"), ("hubert", "TFHubertModel"), ("layoutlm", "TFLayoutLMModel"), ("layoutlmv3", "TFLayoutLMv3Model"), ("led", "TFLEDModel"), ("longformer", "TFLongformerModel"), ("lxmert", "TFLxmertModel"), ("marian", "TFMarianModel"), ("mbart", "TFMBartModel"), ("mobilebert", "TFMobileBertModel"), ("mobilevit", "TFMobileViTModel"), ("mpnet", "TFMPNetModel"), ("mt5", "TFMT5Model"), ("openai-gpt", "TFOpenAIGPTModel"), ("opt", "TFOPTModel"), ("pegasus", "TFPegasusModel"), ("regnet", "TFRegNetModel"), ("rembert", "TFRemBertModel"), ("resnet", "TFResNetModel"), ("roberta", "TFRobertaModel"), ("roberta-prelayernorm", "TFRobertaPreLayerNormModel"), ("roformer", "TFRoFormerModel"), ("sam", "TFSamModel"), ("segformer", "TFSegformerModel"), ("speech_to_text", "TFSpeech2TextModel"), ("swin", "TFSwinModel"), ("t5", "TFT5Model"), ("tapas", "TFTapasModel"), ("transfo-xl", "TFTransfoXLModel"), ("vision-text-dual-encoder", "TFVisionTextDualEncoderModel"), ("vit", "TFViTModel"), ("vit_mae", "TFViTMAEModel"), ("wav2vec2", "TFWav2Vec2Model"), ("whisper", "TFWhisperModel"), ("xglm", "TFXGLMModel"), ("xlm", "TFXLMModel"), ("xlm-roberta", "TFXLMRobertaModel"), ("xlnet", "TFXLNetModel"), ] ) TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( [ # Model for pre-training mapping ("albert", "TFAlbertForPreTraining"), ("bart", "TFBartForConditionalGeneration"), ("bert", "TFBertForPreTraining"), ("camembert", "TFCamembertForMaskedLM"), ("ctrl", "TFCTRLLMHeadModel"), ("distilbert", "TFDistilBertForMaskedLM"), ("electra", "TFElectraForPreTraining"), ("flaubert", "TFFlaubertWithLMHeadModel"), ("funnel", "TFFunnelForPreTraining"), ("gpt-sw3", "TFGPT2LMHeadModel"), ("gpt2", "TFGPT2LMHeadModel"), ("layoutlm", "TFLayoutLMForMaskedLM"), ("lxmert", "TFLxmertForPreTraining"), ("mobilebert", "TFMobileBertForPreTraining"), ("mpnet", "TFMPNetForMaskedLM"), ("openai-gpt", "TFOpenAIGPTLMHeadModel"), ("roberta", "TFRobertaForMaskedLM"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"), ("t5", "TFT5ForConditionalGeneration"), ("tapas", "TFTapasForMaskedLM"), ("transfo-xl", "TFTransfoXLLMHeadModel"), ("vit_mae", "TFViTMAEForPreTraining"), ("xlm", "TFXLMWithLMHeadModel"), ("xlm-roberta", "TFXLMRobertaForMaskedLM"), ("xlnet", "TFXLNetLMHeadModel"), ] ) TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict( [ # Model with LM heads mapping ("albert", "TFAlbertForMaskedLM"), ("bart", "TFBartForConditionalGeneration"), ("bert", "TFBertForMaskedLM"), ("camembert", "TFCamembertForMaskedLM"), ("convbert", "TFConvBertForMaskedLM"), ("ctrl", "TFCTRLLMHeadModel"), ("distilbert", "TFDistilBertForMaskedLM"), ("electra", "TFElectraForMaskedLM"), ("esm", "TFEsmForMaskedLM"), ("flaubert", "TFFlaubertWithLMHeadModel"), ("funnel", "TFFunnelForMaskedLM"), ("gpt-sw3", "TFGPT2LMHeadModel"), ("gpt2", "TFGPT2LMHeadModel"), ("gptj", "TFGPTJForCausalLM"), ("layoutlm", "TFLayoutLMForMaskedLM"), ("led", "TFLEDForConditionalGeneration"), ("longformer", "TFLongformerForMaskedLM"), ("marian", "TFMarianMTModel"), ("mobilebert", "TFMobileBertForMaskedLM"), ("mpnet", "TFMPNetForMaskedLM"), ("openai-gpt", "TFOpenAIGPTLMHeadModel"), ("rembert", "TFRemBertForMaskedLM"), ("roberta", "TFRobertaForMaskedLM"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"), ("roformer", "TFRoFormerForMaskedLM"), ("speech_to_text", "TFSpeech2TextForConditionalGeneration"), ("t5", "TFT5ForConditionalGeneration"), ("tapas", "TFTapasForMaskedLM"), ("transfo-xl", "TFTransfoXLLMHeadModel"), ("whisper", "TFWhisperForConditionalGeneration"), ("xlm", "TFXLMWithLMHeadModel"), ("xlm-roberta", "TFXLMRobertaForMaskedLM"), ("xlnet", "TFXLNetLMHeadModel"), ] ) TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( [ # Model for Causal LM mapping ("bert", "TFBertLMHeadModel"), ("camembert", "TFCamembertForCausalLM"), ("ctrl", "TFCTRLLMHeadModel"), ("gpt-sw3", "TFGPT2LMHeadModel"), ("gpt2", "TFGPT2LMHeadModel"), ("gptj", "TFGPTJForCausalLM"), ("openai-gpt", "TFOpenAIGPTLMHeadModel"), ("opt", "TFOPTForCausalLM"), ("rembert", "TFRemBertForCausalLM"), ("roberta", "TFRobertaForCausalLM"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForCausalLM"), ("roformer", "TFRoFormerForCausalLM"), ("transfo-xl", "TFTransfoXLLMHeadModel"), ("xglm", "TFXGLMForCausalLM"), ("xlm", "TFXLMWithLMHeadModel"), ("xlm-roberta", "TFXLMRobertaForCausalLM"), ("xlnet", "TFXLNetLMHeadModel"), ] ) TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES = OrderedDict( [ ("deit", "TFDeiTForMaskedImageModeling"), ("swin", "TFSwinForMaskedImageModeling"), ] ) TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Image-classsification ("convnext", "TFConvNextForImageClassification"), ("convnextv2", "TFConvNextV2ForImageClassification"), ("cvt", "TFCvtForImageClassification"), ("data2vec-vision", "TFData2VecVisionForImageClassification"), ("deit", ("TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher")), ( "efficientformer", ("TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher"), ), ("mobilevit", "TFMobileViTForImageClassification"), ("regnet", "TFRegNetForImageClassification"), ("resnet", "TFResNetForImageClassification"), ("segformer", "TFSegformerForImageClassification"), ("swin", "TFSwinForImageClassification"), ("vit", "TFViTForImageClassification"), ] ) TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Zero Shot Image Classification mapping ("blip", "TFBlipModel"), ("clip", "TFCLIPModel"), ] ) TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES = OrderedDict( [ # Model for Semantic Segmentation mapping ("data2vec-vision", "TFData2VecVisionForSemanticSegmentation"), ("mobilevit", "TFMobileViTForSemanticSegmentation"), ("segformer", "TFSegformerForSemanticSegmentation"), ] ) TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict( [ ("blip", "TFBlipForConditionalGeneration"), ("vision-encoder-decoder", "TFVisionEncoderDecoderModel"), ] ) TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( [ # Model for Masked LM mapping ("albert", "TFAlbertForMaskedLM"), ("bert", "TFBertForMaskedLM"), ("camembert", "TFCamembertForMaskedLM"), ("convbert", "TFConvBertForMaskedLM"), ("deberta", "TFDebertaForMaskedLM"), ("deberta-v2", "TFDebertaV2ForMaskedLM"), ("distilbert", "TFDistilBertForMaskedLM"), ("electra", "TFElectraForMaskedLM"), ("esm", "TFEsmForMaskedLM"), ("flaubert", "TFFlaubertWithLMHeadModel"), ("funnel", "TFFunnelForMaskedLM"), ("layoutlm", "TFLayoutLMForMaskedLM"), ("longformer", "TFLongformerForMaskedLM"), ("mobilebert", "TFMobileBertForMaskedLM"), ("mpnet", "TFMPNetForMaskedLM"), ("rembert", "TFRemBertForMaskedLM"), ("roberta", "TFRobertaForMaskedLM"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"), ("roformer", "TFRoFormerForMaskedLM"), ("tapas", "TFTapasForMaskedLM"), ("xlm", "TFXLMWithLMHeadModel"), ("xlm-roberta", "TFXLMRobertaForMaskedLM"), ] ) TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "TFBartForConditionalGeneration"), ("blenderbot", "TFBlenderbotForConditionalGeneration"), ("blenderbot-small", "TFBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "TFEncoderDecoderModel"), ("led", "TFLEDForConditionalGeneration"), ("marian", "TFMarianMTModel"), ("mbart", "TFMBartForConditionalGeneration"), ("mt5", "TFMT5ForConditionalGeneration"), ("pegasus", "TFPegasusForConditionalGeneration"), ("t5", "TFT5ForConditionalGeneration"), ] ) TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict( [ ("speech_to_text", "TFSpeech2TextForConditionalGeneration"), ("whisper", "TFWhisperForConditionalGeneration"), ] ) TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "TFAlbertForSequenceClassification"), ("bart", "TFBartForSequenceClassification"), ("bert", "TFBertForSequenceClassification"), ("camembert", "TFCamembertForSequenceClassification"), ("convbert", "TFConvBertForSequenceClassification"), ("ctrl", "TFCTRLForSequenceClassification"), ("deberta", "TFDebertaForSequenceClassification"), ("deberta-v2", "TFDebertaV2ForSequenceClassification"), ("distilbert", "TFDistilBertForSequenceClassification"), ("electra", "TFElectraForSequenceClassification"), ("esm", "TFEsmForSequenceClassification"), ("flaubert", "TFFlaubertForSequenceClassification"), ("funnel", "TFFunnelForSequenceClassification"), ("gpt-sw3", "TFGPT2ForSequenceClassification"), ("gpt2", "TFGPT2ForSequenceClassification"), ("gptj", "TFGPTJForSequenceClassification"), ("layoutlm", "TFLayoutLMForSequenceClassification"), ("layoutlmv3", "TFLayoutLMv3ForSequenceClassification"), ("longformer", "TFLongformerForSequenceClassification"), ("mobilebert", "TFMobileBertForSequenceClassification"), ("mpnet", "TFMPNetForSequenceClassification"), ("openai-gpt", "TFOpenAIGPTForSequenceClassification"), ("rembert", "TFRemBertForSequenceClassification"), ("roberta", "TFRobertaForSequenceClassification"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForSequenceClassification"), ("roformer", "TFRoFormerForSequenceClassification"), ("tapas", "TFTapasForSequenceClassification"), ("transfo-xl", "TFTransfoXLForSequenceClassification"), ("xlm", "TFXLMForSequenceClassification"), ("xlm-roberta", "TFXLMRobertaForSequenceClassification"), ("xlnet", "TFXLNetForSequenceClassification"), ] ) TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( [ # Model for Question Answering mapping ("albert", "TFAlbertForQuestionAnswering"), ("bert", "TFBertForQuestionAnswering"), ("camembert", "TFCamembertForQuestionAnswering"), ("convbert", "TFConvBertForQuestionAnswering"), ("deberta", "TFDebertaForQuestionAnswering"), ("deberta-v2", "TFDebertaV2ForQuestionAnswering"), ("distilbert", "TFDistilBertForQuestionAnswering"), ("electra", "TFElectraForQuestionAnswering"), ("flaubert", "TFFlaubertForQuestionAnsweringSimple"), ("funnel", "TFFunnelForQuestionAnswering"), ("gptj", "TFGPTJForQuestionAnswering"), ("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"), ("longformer", "TFLongformerForQuestionAnswering"), ("mobilebert", "TFMobileBertForQuestionAnswering"), ("mpnet", "TFMPNetForQuestionAnswering"), ("rembert", "TFRemBertForQuestionAnswering"), ("roberta", "TFRobertaForQuestionAnswering"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForQuestionAnswering"), ("roformer", "TFRoFormerForQuestionAnswering"), ("xlm", "TFXLMForQuestionAnsweringSimple"), ("xlm-roberta", "TFXLMRobertaForQuestionAnswering"), ("xlnet", "TFXLNetForQuestionAnsweringSimple"), ] ) TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict([("wav2vec2", "TFWav2Vec2ForSequenceClassification")]) TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( [ ("layoutlm", "TFLayoutLMForQuestionAnswering"), ("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"), ] ) TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( [ # Model for Table Question Answering mapping ("tapas", "TFTapasForQuestionAnswering"), ] ) TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Token Classification mapping ("albert", "TFAlbertForTokenClassification"), ("bert", "TFBertForTokenClassification"), ("camembert", "TFCamembertForTokenClassification"), ("convbert", "TFConvBertForTokenClassification"), ("deberta", "TFDebertaForTokenClassification"), ("deberta-v2", "TFDebertaV2ForTokenClassification"), ("distilbert", "TFDistilBertForTokenClassification"), ("electra", "TFElectraForTokenClassification"), ("esm", "TFEsmForTokenClassification"), ("flaubert", "TFFlaubertForTokenClassification"), ("funnel", "TFFunnelForTokenClassification"), ("layoutlm", "TFLayoutLMForTokenClassification"), ("layoutlmv3", "TFLayoutLMv3ForTokenClassification"), ("longformer", "TFLongformerForTokenClassification"), ("mobilebert", "TFMobileBertForTokenClassification"), ("mpnet", "TFMPNetForTokenClassification"), ("rembert", "TFRemBertForTokenClassification"), ("roberta", "TFRobertaForTokenClassification"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForTokenClassification"), ("roformer", "TFRoFormerForTokenClassification"), ("xlm", "TFXLMForTokenClassification"), ("xlm-roberta", "TFXLMRobertaForTokenClassification"), ("xlnet", "TFXLNetForTokenClassification"), ] ) TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "TFAlbertForMultipleChoice"), ("bert", "TFBertForMultipleChoice"), ("camembert", "TFCamembertForMultipleChoice"), ("convbert", "TFConvBertForMultipleChoice"), ("deberta-v2", "TFDebertaV2ForMultipleChoice"), ("distilbert", "TFDistilBertForMultipleChoice"), ("electra", "TFElectraForMultipleChoice"), ("flaubert", "TFFlaubertForMultipleChoice"), ("funnel", "TFFunnelForMultipleChoice"), ("longformer", "TFLongformerForMultipleChoice"), ("mobilebert", "TFMobileBertForMultipleChoice"), ("mpnet", "TFMPNetForMultipleChoice"), ("rembert", "TFRemBertForMultipleChoice"), ("roberta", "TFRobertaForMultipleChoice"), ("roberta-prelayernorm", "TFRobertaPreLayerNormForMultipleChoice"), ("roformer", "TFRoFormerForMultipleChoice"), ("xlm", "TFXLMForMultipleChoice"), ("xlm-roberta", "TFXLMRobertaForMultipleChoice"), ("xlnet", "TFXLNetForMultipleChoice"), ] ) TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict( [ ("bert", "TFBertForNextSentencePrediction"), ("mobilebert", "TFMobileBertForNextSentencePrediction"), ] ) TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES = OrderedDict( [ ("sam", "TFSamModel"), ] ) TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict( [ ("albert", "TFAlbertModel"), ("bert", "TFBertModel"), ("convbert", "TFConvBertModel"), ("deberta", "TFDebertaModel"), ("deberta-v2", "TFDebertaV2Model"), ("distilbert", "TFDistilBertModel"), ("electra", "TFElectraModel"), ("flaubert", "TFFlaubertModel"), ("longformer", "TFLongformerModel"), ("mobilebert", "TFMobileBertModel"), ("mt5", "TFMT5EncoderModel"), ("rembert", "TFRemBertModel"), ("roberta", "TFRobertaModel"), ("roberta-prelayernorm", "TFRobertaPreLayerNormModel"), ("roformer", "TFRoFormerModel"), ("t5", "TFT5EncoderModel"), ("xlm", "TFXLMModel"), ("xlm-roberta", "TFXLMRobertaModel"), ] ) TF_MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_MAPPING_NAMES) TF_MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES) TF_MODEL_WITH_LM_HEAD_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES) TF_MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES ) TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES ) TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES ) TF_MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) TF_MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES) TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES ) TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES ) TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) TF_MODEL_FOR_MASK_GENERATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES ) TF_MODEL_FOR_TEXT_ENCODING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES) class TFAutoModelForMaskGeneration(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_MASK_GENERATION_MAPPING class TFAutoModelForTextEncoding(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_TEXT_ENCODING_MAPPING class TFAutoModel(_BaseAutoModelClass): _model_mapping = TF_MODEL_MAPPING TFAutoModel = auto_class_update(TFAutoModel) class TFAutoModelForAudioClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING TFAutoModelForAudioClassification = auto_class_update( TFAutoModelForAudioClassification, head_doc="audio classification" ) class TFAutoModelForPreTraining(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_PRETRAINING_MAPPING TFAutoModelForPreTraining = auto_class_update(TFAutoModelForPreTraining, head_doc="pretraining") # Private on purpose, the public class will add the deprecation warnings. class _TFAutoModelWithLMHead(_BaseAutoModelClass): _model_mapping = TF_MODEL_WITH_LM_HEAD_MAPPING _TFAutoModelWithLMHead = auto_class_update(_TFAutoModelWithLMHead, head_doc="language modeling") class TFAutoModelForCausalLM(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING TFAutoModelForCausalLM = auto_class_update(TFAutoModelForCausalLM, head_doc="causal language modeling") class TFAutoModelForMaskedImageModeling(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING TFAutoModelForMaskedImageModeling = auto_class_update( TFAutoModelForMaskedImageModeling, head_doc="masked image modeling" ) class TFAutoModelForImageClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING TFAutoModelForImageClassification = auto_class_update( TFAutoModelForImageClassification, head_doc="image classification" ) class TFAutoModelForZeroShotImageClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING TFAutoModelForZeroShotImageClassification = auto_class_update( TFAutoModelForZeroShotImageClassification, head_doc="zero-shot image classification" ) class TFAutoModelForSemanticSegmentation(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING TFAutoModelForSemanticSegmentation = auto_class_update( TFAutoModelForSemanticSegmentation, head_doc="semantic segmentation" ) class TFAutoModelForVision2Seq(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING TFAutoModelForVision2Seq = auto_class_update(TFAutoModelForVision2Seq, head_doc="vision-to-text modeling") class TFAutoModelForMaskedLM(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING TFAutoModelForMaskedLM = auto_class_update(TFAutoModelForMaskedLM, head_doc="masked language modeling") class TFAutoModelForSeq2SeqLM(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING TFAutoModelForSeq2SeqLM = auto_class_update( TFAutoModelForSeq2SeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="google-t5/t5-base", ) class TFAutoModelForSequenceClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING TFAutoModelForSequenceClassification = auto_class_update( TFAutoModelForSequenceClassification, head_doc="sequence classification" ) class TFAutoModelForQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING TFAutoModelForQuestionAnswering = auto_class_update(TFAutoModelForQuestionAnswering, head_doc="question answering") class TFAutoModelForDocumentQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING TFAutoModelForDocumentQuestionAnswering = auto_class_update( TFAutoModelForDocumentQuestionAnswering, head_doc="document question answering", checkpoint_for_example='impira/layoutlm-document-qa", revision="52e01b3', ) class TFAutoModelForTableQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING TFAutoModelForTableQuestionAnswering = auto_class_update( TFAutoModelForTableQuestionAnswering, head_doc="table question answering", checkpoint_for_example="google/tapas-base-finetuned-wtq", ) class TFAutoModelForTokenClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING TFAutoModelForTokenClassification = auto_class_update( TFAutoModelForTokenClassification, head_doc="token classification" ) class TFAutoModelForMultipleChoice(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING TFAutoModelForMultipleChoice = auto_class_update(TFAutoModelForMultipleChoice, head_doc="multiple choice") class TFAutoModelForNextSentencePrediction(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING TFAutoModelForNextSentencePrediction = auto_class_update( TFAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class TFAutoModelForSpeechSeq2Seq(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING TFAutoModelForSpeechSeq2Seq = auto_class_update( TFAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling" ) class TFAutoModelWithLMHead(_TFAutoModelWithLMHead): @classmethod def from_config(cls, config): warnings.warn( "The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use" " `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models" " and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_config(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): warnings.warn( "The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use" " `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models" " and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
transformers/src/transformers/models/auto/modeling_tf_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/modeling_tf_auto.py", "repo_id": "transformers", "token_count": 12162 }
67
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_bert"] = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_bert"] = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_bert"] = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/bert/__init__.py/0
{ "file_path": "transformers/src/transformers/models/bert/__init__.py", "repo_id": "transformers", "token_count": 2639 }
68
# coding=utf-8 # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for BridgeTower. """ from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class BridgeTowerProcessor(ProcessorMixin): r""" Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single processor. [`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and [`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and [`~BridgeTowerProcessor.decode`] for more information. Args: image_processor (`BridgeTowerImageProcessor`): An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input. tokenizer (`RobertaTokenizerFast`): An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BridgeTowerImageProcessor" tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, images, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and [`RobertaTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) # add pixel_values + pixel_mask encoding_image_processor = self.image_processor( images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs ) encoding.update(encoding_image_processor) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/bridgetower/processing_bridgetower.py/0
{ "file_path": "transformers/src/transformers/models/bridgetower/processing_bridgetower.py", "repo_id": "transformers", "token_count": 1929 }
69
# coding=utf-8 # Copyright Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CANINE model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class CanineConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CANINE [google/canine-s](https://huggingface.co/google/canine-s) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the deep Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoders. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoders, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 16384): The maximum sequence length that this model might ever be used with. type_vocab_size (`int`, *optional*, defaults to 16): The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 57344): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 57345): End of stream token id. downsampling_rate (`int`, *optional*, defaults to 4): The rate at which to downsample the original character sequence length before applying the deep Transformer encoder. upsampling_kernel_size (`int`, *optional*, defaults to 4): The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when projecting back from `hidden_size`*2 to `hidden_size`. num_hash_functions (`int`, *optional*, defaults to 8): The number of hash functions to use. Each hash function has its own embedding matrix. num_hash_buckets (`int`, *optional*, defaults to 16384): The number of hash buckets to use. local_transformer_stride (`int`, *optional*, defaults to 128): The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good TPU/XLA memory alignment. Example: ```python >>> from transformers import CanineConfig, CanineModel >>> # Initializing a CANINE google/canine-s style configuration >>> configuration = CanineConfig() >>> # Initializing a model (with random weights) from the google/canine-s style configuration >>> model = CanineModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "canine" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=16384, type_vocab_size=16, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=0xE000, eos_token_id=0xE001, downsampling_rate=4, upsampling_kernel_size=4, num_hash_functions=8, num_hash_buckets=16384, local_transformer_stride=128, # Good TPU/XLA memory alignment. **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps # Character config: self.downsampling_rate = downsampling_rate self.upsampling_kernel_size = upsampling_kernel_size self.num_hash_functions = num_hash_functions self.num_hash_buckets = num_hash_buckets self.local_transformer_stride = local_transformer_stride
transformers/src/transformers/models/canine/configuration_canine.py/0
{ "file_path": "transformers/src/transformers/models/canine/configuration_canine.py", "repo_id": "transformers", "token_count": 2532 }
70
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio/Text processor class for CLAP """ from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class ClapProcessor(ProcessorMixin): r""" Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. Args: feature_extractor ([`ClapFeatureExtractor`]): The audio processor is a required input. tokenizer ([`RobertaTokenizerFast`]): The tokenizer is a required input. """ feature_extractor_class = "ClapFeatureExtractor" tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. """ sampling_rate = kwargs.pop("sampling_rate", None) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if audios is not None: audio_features = self.feature_extractor( audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs ) if text is not None and audios is not None: encoding["input_features"] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
transformers/src/transformers/models/clap/processing_clap.py/0
{ "file_path": "transformers/src/transformers/models/clap/processing_clap.py", "repo_id": "transformers", "token_count": 2177 }
71
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for CLIPSeg """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class CLIPSegProcessor(ProcessorMixin): r""" Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor. [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information. Args: image_processor ([`ViTImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`CLIPTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "ViTImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images.") if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if visual_prompt is not None: prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) if visual_prompt is not None and images is not None: encoding = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: encoding = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
transformers/src/transformers/models/clipseg/processing_clipseg.py/0
{ "file_path": "transformers/src/transformers/models/clipseg/processing_clipseg.py", "repo_id": "transformers", "token_count": 3092 }
72
# coding=utf-8 # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/codegen-350M-mono": 2048, } class CodeGenTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import CodeGenTokenizerFast >>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = CodeGenTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) if kwargs.pop("add_bos_token", False): model_id = kwargs.pop("name_or_path", "") raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token. " "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ decoded_text = super().decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion
transformers/src/transformers/models/codegen/tokenization_codegen_fast.py/0
{ "file_path": "transformers/src/transformers/models/codegen/tokenization_codegen_fast.py", "repo_id": "transformers", "token_count": 4249 }
73
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ConvNext checkpoints from the original repository. URL: https://github.com/facebookresearch/ConvNeXt""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_convnext_config(checkpoint_url): config = ConvNextConfig() if "tiny" in checkpoint_url: depths = [3, 3, 9, 3] hidden_sizes = [96, 192, 384, 768] if "small" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [96, 192, 384, 768] if "base" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [128, 256, 512, 1024] if "large" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [192, 384, 768, 1536] if "xlarge" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [256, 512, 1024, 2048] if "1k" in checkpoint_url: num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) else: num_labels = 21841 filename = "imagenet-22k-id2label.json" expected_shape = (1, 21841) repo_id = "huggingface/label-files" config.num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} if "1k" not in checkpoint_url: # this dataset contains 21843 labels but the model only has 21841 # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 del id2label[9205] del id2label[15027] config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.hidden_sizes = hidden_sizes config.depths = depths return config, expected_shape def rename_key(name): if "downsample_layers.0.0" in name: name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") if "downsample_layers.0.1" in name: name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on if "downsample_layers.1.0" in name: name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") if "downsample_layers.1.1" in name: name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") if "downsample_layers.2.0" in name: name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") if "downsample_layers.2.1" in name: name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") if "downsample_layers.3.0" in name: name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") if "downsample_layers.3.1" in name: name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") if "stages" in name and "downsampling_layer" not in name: # stages.0.0. for instance should be renamed to stages.0.layers.0. name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] if "stages" in name: name = name.replace("stages", "encoder.stages") if "norm" in name: name = name.replace("norm", "layernorm") if "gamma" in name: name = name.replace("gamma", "layer_scale_parameter") if "head" in name: name = name.replace("head", "classifier") return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ConvNext structure. """ # define ConvNext configuration based on URL config, expected_shape = get_convnext_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # add prefix to all keys expect classifier head for key in state_dict.copy().keys(): val = state_dict.pop(key) if not key.startswith("classifier"): key = "convnext." + key state_dict[key] = val # load HuggingFace model model = ConvNextForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image, prepared by ConvNextImageProcessor size = 224 if "224" in checkpoint_url else 384 image_processor = ConvNextImageProcessor(size=size) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values logits = model(pixel_values).logits # note: the logits below were obtained without center cropping if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth": expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth": expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth": expected_logits = torch.tensor([0.4525, 0.7539, 0.0308]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth": expected_logits = torch.tensor([0.3561, 0.6350, -0.0384]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth": expected_logits = torch.tensor([0.4174, -0.0989, 0.1489]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth": expected_logits = torch.tensor([0.2513, -0.1349, -0.1613]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth": expected_logits = torch.tensor([1.2980, 0.3631, -0.1198]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth": expected_logits = torch.tensor([1.2963, 0.1227, 0.1723]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth": expected_logits = torch.tensor([1.7956, 0.8390, 0.2820]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth": expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth": expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth": expected_logits = torch.tensor([0.2681, 0.2365, 0.6246]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth": expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth": expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth": expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444]) else: raise ValueError(f"Unknown URL: {checkpoint_url}") assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3) assert logits.shape == expected_shape Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) print("Pushing model to the hub...") model_name = "convnext" if "tiny" in checkpoint_url: model_name += "-tiny" elif "small" in checkpoint_url: model_name += "-small" elif "base" in checkpoint_url: model_name += "-base" elif "xlarge" in checkpoint_url: model_name += "-xlarge" elif "large" in checkpoint_url: model_name += "-large" if "224" in checkpoint_url: model_name += "-224" elif "384" in checkpoint_url: model_name += "-384" if "22k" in checkpoint_url and "1k" not in checkpoint_url: model_name += "-22k" if "22k" in checkpoint_url and "1k" in checkpoint_url: model_name += "-22k-1k" model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add model", ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", type=str, help="URL of the original ConvNeXT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) args = parser.parse_args() convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py", "repo_id": "transformers", "token_count": 4224 }
74
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CPMAnt.""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openbmb/cpm-ant-10b": 1024, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class WordpieceTokenizer(object): def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, token): chars = list(token) if len(chars) > self.max_input_chars_per_word: return [self.unk_token] start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(cur_substr) start = end return sub_tokens class CpmAntTokenizer(PreTrainedTokenizer): """ Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. bod_token (`str`, *optional*, defaults to `"<d>"`): The beginning of document token. eod_token (`str`, *optional*, defaults to `"</d>"`): The end of document token. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. line_token (`str`, *optional*, defaults to `"</n>"`): The line token. space_token (`str`, *optional*, defaults to `"</_>"`): The space token. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] add_prefix_space = False def __init__( self, vocab_file, bod_token="<d>", eod_token="</d>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", unk_token="<unk>", line_token="</n>", space_token="</_>", padding_side="left", **kwargs, ): requires_backends(self, ["jieba"]) self.bod_token = bod_token self.eod_token = eod_token self.encoder = load_vocab(vocab_file) self.encoder[" "] = self.encoder[space_token] self.encoder["\n"] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) self.decoder = {v: k for k, v in self.encoder.items()} self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token) super().__init__( bod_token=bod_token, eod_token=eod_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, line_token=line_token, space_token=space_token, padding_side=padding_side, **kwargs, ) @property def bod_token_id(self): return self.encoder[self.bod_token] @property def eod_token_id(self): return self.encoder[self.eod_token] @property def newline_id(self): return self.encoder["\n"] @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def _tokenize(self, text): """Tokenize a string.""" output_tokens = [] for x in jieba.cut(text, cut_all=False): output_tokens.extend(self.wordpiece_tokenizer.tokenize(x)) return output_tokens def _decode(self, token_ids, **kwargs): """Decode ids into a string.""" token_ids = [i for i in token_ids if i >= 0] token_ids = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(token_ids, **kwargs) def check(self, token): return token in self.encoder def convert_tokens_to_string(self, tokens: List[str]) -> str: return "".join(tokens) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory index = 0 if " " in self.encoder: self.encoder["</_>"] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: self.encoder["</n>"] = self.encoder["\n"] del self.encoder["\n"] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CPMAnt sequence has the following format: - single sequence: `[BOS] Sequence`. Args: token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added. token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: return [self.bos_token_id] + token_ids_0 return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0))
transformers/src/transformers/models/cpmant/tokenization_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/tokenization_cpmant.py", "repo_id": "transformers", "token_count": 4580 }
75
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert data2vec checkpoint.""" import argparse import os import pathlib import fairseq import torch from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import ( Data2VecTextConfig, Data2VecTextForMaskedLM, Data2VecTextForSequenceClassification, Data2VecTextModel, ) from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) # IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz # File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" def convert_data2vec_checkpoint_to_pytorch( data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool ): """ Copy/paste/tweak data2vec's weights to our BERT structure. """ data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path) data2vec = Data2VecTextModel.from_pretrained( data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name ) data2vec.eval() # disable dropout data2vec_model = data2vec.models[0] data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder config = Data2VecTextConfig( vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings, hidden_size=data2vec_model.args.encoder_embed_dim, num_hidden_layers=data2vec_model.args.encoder_layers, num_attention_heads=data2vec_model.args.encoder_attention_heads, intermediate_size=data2vec_model.args.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) if classification_head: config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our BERT config:", config) model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config) model.eval() # Now let's copy all the weights. # Embeddings model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like( model.data2vec_text.embeddings.token_type_embeddings.weight ) # just zero them out b/c data2vec doesn't use them. model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: BertLayer = model.data2vec_text.encoder.layer[i] data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i] # self attention self_attn: BertSelfAttention = layer.attention.self assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.k_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.q_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.v_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias # self-attention output self_output: BertSelfOutput = layer.attention.output assert ( self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape ), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}" self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias # intermediate intermediate: BertIntermediate = layer.intermediate assert ( intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape ), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}" intermediate.dense.weight = data2vec_layer.fc1.weight intermediate.dense.bias = data2vec_layer.fc1.bias # output bert_output: BertOutput = layer.output assert ( bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape ), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}" bert_output.dense.weight = data2vec_layer.fc2.weight bert_output.dense.bias = data2vec_layer.fc2.bias bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias # end of layer if classification_head: model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias else: # LM Head model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias # Let's check that we get the same results. input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1 our_output = model(input_ids)[0] if classification_head: their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids)) else: their_output = data2vec_model(input_ids)[0] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) args = parser.parse_args() convert_data2vec_checkpoint_to_pytorch( args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3894 }
76
# coding=utf-8 # Copyright 2020 Microsoft and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model DeBERTa.""" import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as sp from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/spm.model", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/spm.model", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/spm.model" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/spm.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/deberta-v2-xlarge": 512, "microsoft/deberta-v2-xxlarge": 512, "microsoft/deberta-v2-xlarge-mnli": 512, "microsoft/deberta-v2-xxlarge-mnli": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/deberta-v2-xlarge": {"do_lower_case": False}, "microsoft/deberta-v2-xxlarge": {"do_lower_case": False}, "microsoft/deberta-v2-xlarge-mnli": {"do_lower_case": False}, "microsoft/deberta-v2-xxlarge-mnli": {"do_lower_case": False}, } VOCAB_FILES_NAMES = {"vocab_file": "spm.model"} class DebertaV2Tokenizer(PreTrainedTokenizer): r""" Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. bos_token (`string`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. eos_token (`string`, *optional*, defaults to `"[SEP]"`): The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=False, split_by_punct=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_lower_case = do_lower_case self.split_by_punct = split_by_punct self.vocab_file = vocab_file self._tokenizer = SPMTokenizer( vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs ) unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token super().__init__( do_lower_case=do_lower_case, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._tokenizer.special_tokens = self.all_special_tokens @property def vocab_size(self): return len(self.vocab) @property def vocab(self): return self._tokenizer.vocab def get_vocab(self): vocab = self.vocab.copy() vocab.update(self.get_added_vocab()) return vocab def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" if self.do_lower_case: text = text.lower() return self._tokenizer.tokenize(text) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self._tokenizer.spm.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" return self._tokenizer.decode(tokens) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", False) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix) class SPMTokenizer: r""" Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ def __init__( self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None ): self.split_by_punct = split_by_punct self.vocab_file = vocab_file self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) if not os.path.exists(vocab_file): raise FileNotFoundError(f"{vocab_file} does not exist!") spm.load(vocab_file) bpe_vocab_size = spm.GetPieceSize() # Token map # <unk> 0+1 # <s> 1+1 # </s> 2+1 self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)} self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)] # self.vocab['[PAD]'] = 0 # self.vocab['[CLS]'] = 1 # self.vocab['[SEP]'] = 2 # self.vocab['[UNK]'] = 3 self.spm = spm self.special_tokens = special_tokens def __getstate__(self): state = self.__dict__.copy() state["spm"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) self.spm.Load(self.vocab_file) def tokenize(self, text): return self._encode_as_pieces(text) def convert_ids_to_tokens(self, ids): tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens def decode(self, tokens, start=-1, end=-1, raw_text=None): if raw_text is None: current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.special_tokens: if not prev_is_special: out_string += " " out_string += self.spm.decode_pieces(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.spm.decode_pieces(current_sub_tokens) return out_string.strip() else: words = self.split_to_words(raw_text) word_tokens = [self.tokenize(w) for w in words] token2words = [0] * len(tokens) tid = 0 for i, w in enumerate(word_tokens): for k, t in enumerate(w): token2words[tid] = i tid += 1 word_start = token2words[start] word_end = token2words[end] if end < len(tokens) else len(words) text = "".join(words[word_start:word_end]) return text # TODO add a deprecation cycle as this can have different behaviour from our API def add_special_token(self, token): if token not in self.special_tokens: self.special_tokens.append(token) if token not in self.vocab: self.vocab[token] = len(self.vocab) - 1 self.ids_to_tokens.append(token) return self.id(token) def part_of_whole_word(self, token, is_bos=False): logger.warning_once( "The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`" ) if is_bos: return True if ( len(token) == 1 and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0])) ) or token in self.special_tokens: return False word_start = b"\xe2\x96\x81".decode("utf-8") return not token.startswith(word_start) def pad(self): return "[PAD]" def bos(self): return "[CLS]" def eos(self): return "[SEP]" def unk(self): return "[UNK]" def mask(self): return "[MASK]" def sym(self, id): return self.ids_to_tokens[id] def id(self, sym): logger.warning_once( "The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`" ) return self.vocab[sym] if sym in self.vocab else 1 def _encode_as_pieces(self, text): text = convert_to_unicode(text) if self.split_by_punct: words = self._run_split_on_punc(text) pieces = [self.spm.encode(w, out_type=str) for w in words] return [p for w in pieces for p in w] else: return self.spm.encode(text, out_type=str) def split_to_words(self, text): pieces = self._encode_as_pieces(text) word_start = b"\xe2\x96\x81".decode("utf-8") words = [] offset = 0 prev_end = 0 for i, p in enumerate(pieces): if p.startswith(word_start): if offset > prev_end: words.append(text[prev_end:offset]) prev_end = offset w = p.replace(word_start, "") else: w = p try: s = text.index(w, offset) pn = "" k = i + 1 while k < len(pieces): pn = pieces[k].replace(word_start, "") if len(pn) > 0: break k += 1 if len(pn) > 0 and pn in text[offset:s]: offset = offset + 1 else: offset = s + len(w) except Exception: offset = offset + 1 if prev_end < offset: words.append(text[prev_end:offset]) return words def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def save_pretrained(self, path: str, filename_prefix: str = None): filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]] if filename_prefix is not None: filename = filename_prefix + "-" + filename full_path = os.path.join(path, filename) with open(full_path, "wb") as fs: fs.write(self.spm.serialized_model_proto()) return (full_path,) def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError(f"Unsupported string type: {type(text)}")
transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py/0
{ "file_path": "transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py", "repo_id": "transformers", "token_count": 9944 }
77
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A TF 2.0 Adaptive Softmax for Transformer XL model. """ import tensorflow as tf from ....modeling_tf_utils import keras from ....tf_utils import shape_list class TFAdaptiveSoftmaxMask(keras.layers.Layer): def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [vocab_size] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters self.keep_order = keep_order self.out_layers = [] self.out_projs = [] def build(self, input_shape): if self.n_clusters > 0: self.cluster_weight = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" ) self.cluster_bias = self.add_weight( shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: weight = self.add_weight( shape=(self.d_embed, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}", ) self.out_projs.append(weight) else: self.out_projs.append(None) weight = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(self.vocab_size,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = self.d_embed // (self.div_val**i) weight = self.add_weight( shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" ) self.out_projs.append(weight) weight = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(r_idx - l_idx,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) super().build(input_shape) @staticmethod def _logit(x, W, b, proj=None): y = x if proj is not None: y = tf.einsum("ibd,ed->ibe", y, proj) return tf.einsum("ibd,nd->ibn", y, W) + b @staticmethod def _gather_logprob(logprob, target): lp_size = shape_list(logprob) r = tf.range(lp_size[0], dtype=target.dtype) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) def call(self, hidden, target, return_mean=True, training=False): head_logprob = 0 if self.n_clusters == 0: output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) if target is not None: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) out = tf.nn.log_softmax(output, axis=-1) else: hidden_sizes = shape_list(hidden) out = [] loss = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx if self.div_val == 1: cur_W = self.out_layers[0][0][l_idx:r_idx] cur_b = self.out_layers[0][1][l_idx:r_idx] else: cur_W = self.out_layers[i][0] cur_b = self.out_layers[i][1] if i == 0: cur_W = tf.concat([cur_W, self.cluster_weight], 0) cur_b = tf.concat([cur_b, self.cluster_bias], 0) head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) head_logprob = tf.nn.log_softmax(head_logit) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) else: tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) tail_logprob = tf.nn.log_softmax(tail_logit) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(logprob_i) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) out = tf.concat(out, axis=-1) if target is not None: if return_mean: loss = tf.reduce_mean(loss) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(loss) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") return out
transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py", "repo_id": "transformers", "token_count": 4106 }
78
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Deformable DETR.""" import pathlib from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_processing_utils import BaseImageProcessor, get_size_dict from ...image_transforms import ( PaddingMode, center_to_corners_format, corners_to_center_format, pad, rescale, resize, rgb_to_id, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, AnnotationFormat, AnnotationType, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_batched, is_scaled_image, to_numpy_array, valid_images, validate_annotations, validate_preprocess_arguments, ) from ...utils import ( is_flax_available, is_jax_tensor, is_tf_available, is_tf_tensor, is_torch_available, is_torch_tensor, is_torchvision_available, is_vision_available, logging, ) from ...utils.generic import TensorType if is_torch_available(): import torch if is_torchvision_available(): from torchvision.ops.boxes import batched_nms if is_vision_available(): import PIL logger = logging.get_logger(__name__) # pylint: disable=invalid-name SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) # Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ height, width = image_size if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (height <= width and height == size) or (width <= height and width == size): return height, width if width < height: ow = size oh = int(size * height / width) else: oh = size ow = int(size * width / height) return (oh, ow) # Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. If the desired output size is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output image size is computed by keeping the aspect ratio of the input image size. Args: input_image (`np.ndarray`): The image to resize. size (`int` or `Tuple[int, int]` or `List[int]`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ image_size = get_image_size(input_image, input_data_format) if isinstance(size, (list, tuple)): return size return get_size_with_aspect_ratio(image_size, size, max_size) # Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn def get_numpy_to_framework_fn(arr) -> Callable: """ Returns a function that converts a numpy array to the framework of the input array. Args: arr (`np.ndarray`): The array to convert. """ if isinstance(arr, np.ndarray): return np.array if is_tf_available() and is_tf_tensor(arr): import tensorflow as tf return tf.convert_to_tensor if is_torch_available() and is_torch_tensor(arr): import torch return torch.tensor if is_flax_available() and is_jax_tensor(arr): import jax.numpy as jnp return jnp.array raise ValueError(f"Cannot convert arrays of type {type(arr)}") # Copied from transformers.models.detr.image_processing_detr.safe_squeeze def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: """ Squeezes an array, but only if the axis specified has dim 1. """ if axis is None: return arr.squeeze() try: return arr.squeeze(axis=axis) except ValueError: return arr # Copied from transformers.models.detr.image_processing_detr.normalize_annotation def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: """ Convert a COCO polygon annotation to a mask. Args: segmentations (`List[List[float]]`): List of polygons, each polygon represented by a list of x-y coordinates. height (`int`): Height of the mask. width (`int`): Width of the mask. """ try: from pycocotools import mask as coco_mask except ImportError: raise ImportError("Pycocotools is not installed in your environment.") masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = np.asarray(mask, dtype=np.uint8) mask = np.any(mask, axis=2) masks.append(mask) if masks: masks = np.stack(masks, axis=0) else: masks = np.zeros((0, height, width), dtype=np.uint8) return masks # Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DETA def prepare_coco_detection_annotation( image, target, return_segmentation_masks: bool = False, input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """ Convert the target in COCO format into the format expected by DETA. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) image_id = target["image_id"] image_id = np.asarray([image_id], dtype=np.int64) # Get all COCO annotations for the given image. annotations = target["annotations"] annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] classes = [obj["category_id"] for obj in annotations] classes = np.asarray(classes, dtype=np.int64) # for conversion to coco api area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) boxes = [obj["bbox"] for obj in annotations] # guard against no boxes via resizing boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) new_target = {} new_target["image_id"] = image_id new_target["class_labels"] = classes[keep] new_target["boxes"] = boxes[keep] new_target["area"] = area[keep] new_target["iscrowd"] = iscrowd[keep] new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) if annotations and "keypoints" in annotations[0]: keypoints = [obj["keypoints"] for obj in annotations] # Converting the filtered keypoints list to a numpy array keypoints = np.asarray(keypoints, dtype=np.float32) # Apply the keep mask here to filter the relevant annotations keypoints = keypoints[keep] num_keypoints = keypoints.shape[0] keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints new_target["keypoints"] = keypoints if return_segmentation_masks: segmentation_masks = [obj["segmentation"] for obj in annotations] masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) new_target["masks"] = masks[keep] return new_target # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes def masks_to_boxes(masks: np.ndarray) -> np.ndarray: """ Compute the bounding boxes around the provided panoptic segmentation masks. Args: masks: masks in format `[number_masks, height, width]` where N is the number of masks Returns: boxes: bounding boxes in format `[number_masks, 4]` in xyxy format """ if masks.size == 0: return np.zeros((0, 4)) h, w = masks.shape[-2:] y = np.arange(0, h, dtype=np.float32) x = np.arange(0, w, dtype=np.float32) # see https://github.com/pytorch/pytorch/issues/50276 y, x = np.meshgrid(y, x, indexing="ij") x_mask = masks * np.expand_dims(x, axis=0) x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) x_min = x.filled(fill_value=1e8) x_min = x_min.reshape(x_min.shape[0], -1).min(-1) y_mask = masks * np.expand_dims(y, axis=0) y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) y_min = y.filled(fill_value=1e8) y_min = y_min.reshape(y_min.shape[0], -1).min(-1) return np.stack([x_min, y_min, x_max, y_max], 1) # Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DETA def prepare_coco_panoptic_annotation( image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True, input_data_format: Union[ChannelDimension, str] = None, ) -> Dict: """ Prepare a coco panoptic annotation for DETA. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) annotation_path = pathlib.Path(masks_path) / target["file_name"] new_target = {} new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) if "segments_info" in target: masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) masks = rgb_to_id(masks) ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) masks = masks == ids[:, None, None] masks = masks.astype(np.uint8) if return_masks: new_target["masks"] = masks new_target["boxes"] = masks_to_boxes(masks) new_target["class_labels"] = np.array( [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["iscrowd"] = np.asarray( [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["area"] = np.asarray( [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 ) return new_target # Copied from transformers.models.detr.image_processing_detr.resize_annotation def resize_annotation( annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, resample: PILImageResampling = PILImageResampling.NEAREST, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): The resampling filter to use when resizing the masks. """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) ratio_height, ratio_width = ratios new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) masks = masks.astype(np.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation class DetaImageProcessor(BaseImageProcessor): r""" Constructs a Deformable DETR image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True` will pad the images in the batch to the largest height and width in the batch. Padding will be applied to the bottom and right of the image with zeros. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: bool = True, do_pad: bool = True, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, default_to_square=False) if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DETA def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETA model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): logger.warning_once( "The `prepare` method is deprecated and will be removed in a v4.33. " "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " "does not return the image anymore.", ) target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) return image, target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask def convert_coco_poly_to_mask(self, *args, **kwargs): logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") return convert_coco_poly_to_mask(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection def prepare_coco_detection(self, *args, **kwargs): logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") return prepare_coco_detection_annotation(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic def prepare_coco_panoptic(self, *args, **kwargs): logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") return prepare_coco_panoptic_annotation(*args, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The desired output size. Can contain keys `shortest_edge` and `longest_edge` or `height` and `width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: images (List[`np.ndarray`]): Images to pad. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): Annotations to transform according to the padding that is applied to the images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, pad_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs def preprocess( self, images: ImageInput, annotations: Optional[Union[List[Dict], List[List[Dict]]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_annotations: Optional[bool] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`List[Dict]` or `List[List[Dict]]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image after resizing. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead.", ) do_pad = kwargs.pop("pad_and_return_pixel_mask") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad format = self.format if format is None else format # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if not is_batched(images): images = [images] annotations = [annotations] if annotations is not None else None if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format, return_tensors=return_tensors, update_bboxes=do_convert_annotations, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, nms_threshold: float = 0.7, ): """ Converts the output of [`DetaForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. nms_threshold (`float`, *optional*, defaults to 0.7): NMS threshold. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes batch_size, num_queries, num_labels = out_logits.shape if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = out_logits.sigmoid() all_scores = prob.view(batch_size, num_queries * num_labels).to(out_logits.device) all_indexes = torch.arange(num_queries * num_labels)[None].repeat(batch_size, 1).to(out_logits.device) all_boxes = torch.div(all_indexes, out_logits.shape[2], rounding_mode="floor") all_labels = all_indexes % out_logits.shape[2] boxes = center_to_corners_format(out_bbox) boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for b in range(batch_size): box = boxes[b] score = all_scores[b] lbls = all_labels[b] pre_topk = score.topk(min(10000, num_queries * num_labels)).indices box = box[pre_topk] score = score[pre_topk] lbls = lbls[pre_topk] # apply NMS keep_inds = batched_nms(box, score, lbls, nms_threshold)[:100] score = score[keep_inds] lbls = lbls[keep_inds] box = box[keep_inds] results.append( { "scores": score[score > threshold], "labels": lbls[score > threshold], "boxes": box[score > threshold], } ) return results
transformers/src/transformers/models/deta/image_processing_deta.py/0
{ "file_path": "transformers/src/transformers/models/deta/image_processing_deta.py", "repo_id": "transformers", "token_count": 22512 }
79
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DINOv2 checkpoints from the original repository. URL: https://github.com/facebookresearch/dinov2/tree/main """ import argparse import json from pathlib import Path import requests import torch import torch.nn as nn from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dinov2_config(model_name, image_classifier=False): config = Dinov2Config(image_size=518, patch_size=14) # size of the architecture if "vits" in model_name: config.hidden_size = 384 config.num_attention_heads = 6 elif "vitb" in model_name: pass elif "vitl" in model_name: config.hidden_size = 1024 config.num_hidden_layers = 24 config.num_attention_heads = 16 elif "vitg" in model_name: config.use_swiglu_ffn = True config.hidden_size = 1536 config.num_hidden_layers = 40 config.num_attention_heads = 24 else: raise ValueError("Model not supported") if image_classifier: repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" config.num_labels = 1000 config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) config.id2label = {int(k): v for k, v in config.id2label.items()} return config def create_rename_keys(config): rename_keys = [] # fmt: off # patch embedding layer rename_keys.append(("cls_token", "embeddings.cls_token")) rename_keys.append(("mask_token", "embeddings.mask_token")) rename_keys.append(("pos_embed", "embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias")) for i in range(config.num_hidden_layers): # layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias")) # MLP if config.use_swiglu_ffn: rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight")) rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias")) rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight")) rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias")) else: rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias")) # layerscale rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1")) rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1")) # attention projection layer rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias")) # final layernorm rename_keys.append(("norm.weight", "layernorm.weight")) rename_keys.append(("norm.bias", "layernorm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our DINOv2 structure. """ # define default Dinov2 configuration image_classifier = "1layer" in model_name config = get_dinov2_config(model_name, image_classifier=image_classifier) # load original model from torch hub original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", "")) original_model.eval() # load state_dict of original model, remove and rename some keys state_dict = original_model.state_dict() rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config) for key, val in state_dict.copy().items(): val = state_dict.pop(key) if "w12" in key: key = key.replace("w12", "weights_in") if "w3" in key: key = key.replace("w3", "weights_out") state_dict[key] = val # load HuggingFace model if image_classifier: model = Dinov2ForImageClassification(config).eval() model.dinov2.load_state_dict(state_dict) model_name_to_classifier_dict_url = { "dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth", "dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth", "dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth", "dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth", } url = model_name_to_classifier_dict_url[model_name] classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") model.classifier.weight = nn.Parameter(classifier_state_dict["weight"]) model.classifier.bias = nn.Parameter(classifier_state_dict["bias"]) else: model = Dinov2Model(config).eval() model.load_state_dict(state_dict) # load image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") # preprocess image transformations = transforms.Compose( [ transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values std=IMAGENET_DEFAULT_STD, # across a large photo dataset. ), ] ) original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension processor = BitImageProcessor( size={"shortest_edge": 256}, resample=PILImageResampling.BICUBIC, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, ) pixel_values = processor(image, return_tensors="pt").pixel_values assert torch.allclose(original_pixel_values, pixel_values) with torch.no_grad(): outputs = model(pixel_values, output_hidden_states=True) original_outputs = original_model(pixel_values) # assert values if image_classifier: print("Predicted class:") class_idx = outputs.logits.argmax(-1).item() print(model.config.id2label[class_idx]) else: assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model_name_to_hf_name = { "dinov2_vits14": "dinov2-small", "dinov2_vitb14": "dinov2-base", "dinov2_vitl14": "dinov2-large", "dinov2_vitg14": "dinov2-giant", "dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer", "dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer", "dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer", "dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer", } name = model_name_to_hf_name[model_name] model.push_to_hub(f"facebook/{name}") processor.push_to_hub(f"facebook/{name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dinov2_vitb14", type=str, choices=[ "dinov2_vits14", "dinov2_vitb14", "dinov2_vitl14", "dinov2_vitg14", "dinov2_vits14_1layer", "dinov2_vitb14_1layer", "dinov2_vitl14_1layer", "dinov2_vitg14_1layer", ], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py", "repo_id": "transformers", "token_count": 5255 }
80
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ELECTRA checkpoint.""" import argparse import torch from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator): # Initialise PyTorch model config = ElectraConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") if discriminator_or_generator == "discriminator": model = ElectraForPreTraining(config) elif discriminator_or_generator == "generator": model = ElectraForMaskedLM(config) else: raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'") # Load weights from tf checkpoint load_tf_weights_in_electra( model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--discriminator_or_generator", default=None, type=str, required=True, help=( "Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or " "'generator'." ), ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator )
transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1018 }
81
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _import_structure = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_ernie"] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/ernie/__init__.py/0
{ "file_path": "transformers/src/transformers/models/ernie/__init__.py", "repo_id": "transformers", "token_count": 927 }
82
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple, overload import torch import torch.types from torch import nn from . import residue_constants as rc from .rigid_utils import Rigid, Rotation from .tensor_utils import batched_gather @overload def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor: ... @overload def pseudo_beta_fn( aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: ... def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks): is_gly = aatype == rc.restype_order["G"] ca_idx = rc.atom_order["CA"] cb_idx = rc.atom_order["CB"] pseudo_beta = torch.where( is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3), all_atom_positions[..., ca_idx, :], all_atom_positions[..., cb_idx, :], ) if all_atom_masks is not None: pseudo_beta_mask = torch.where( is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx], ) return pseudo_beta, pseudo_beta_mask else: return pseudo_beta def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor: atom37_data = batched_gather( atom14, batch["residx_atom37_to_atom14"], dim=-2, no_batch_dims=len(atom14.shape[:-2]), ) atom37_data = atom37_data * batch["atom37_atom_exists"][..., None] return atom37_data def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor: template_aatype = template_feats["template_aatype"] torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"] alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"] torsion_angles_mask = template_feats["template_torsion_angles_mask"] template_angle_feat = torch.cat( [ nn.functional.one_hot(template_aatype, 22), torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14), alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14), torsion_angles_mask, ], dim=-1, ) return template_angle_feat def build_template_pair_feat( batch: Dict[str, torch.Tensor], min_bin: torch.types.Number, max_bin: torch.types.Number, no_bins: int, use_unit_vector: bool = False, eps: float = 1e-20, inf: float = 1e8, ) -> torch.Tensor: template_mask = batch["template_pseudo_beta_mask"] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] # Compute distogram (this seems to differ slightly from Alg. 5) tpb = batch["template_pseudo_beta"] dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True) lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2 upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1) dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype) to_concat = [dgram, template_mask_2d[..., None]] aatype_one_hot: torch.LongTensor = nn.functional.one_hot( batch["template_aatype"], rc.restype_num + 2, ) n_res = batch["template_aatype"].shape[-1] to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1)) to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)) n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]] rigids = Rigid.make_transform_from_reference( n_xyz=batch["template_all_atom_positions"][..., n, :], ca_xyz=batch["template_all_atom_positions"][..., ca, :], c_xyz=batch["template_all_atom_positions"][..., c, :], eps=eps, ) points = rigids.get_trans()[..., None, :, :] rigid_vec = rigids[..., None].invert_apply(points) inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1)) t_aa_masks = batch["template_all_atom_mask"] template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] inv_distance_scalar = inv_distance_scalar * template_mask_2d unit_vector = rigid_vec * inv_distance_scalar[..., None] if not use_unit_vector: unit_vector = unit_vector * 0.0 to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1)) to_concat.append(template_mask_2d[..., None]) act = torch.cat(to_concat, dim=-1) act = act * template_mask_2d[..., None] return act def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor: msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23) msa_feat = [ msa_1hot, batch["extra_has_deletion"].unsqueeze(-1), batch["extra_deletion_value"].unsqueeze(-1), ] return torch.cat(msa_feat, dim=-1) def torsion_angles_to_frames( r: Rigid, alpha: torch.Tensor, aatype: torch.Tensor, rrgdf: torch.Tensor, ) -> Rigid: # [*, N, 8, 4, 4] default_4x4 = rrgdf[aatype, ...] # [*, N, 8] transformations, i.e. # One [*, N, 8, 3, 3] rotation matrix and # One [*, N, 8, 3] translation matrix default_r = r.from_tensor_4x4(default_4x4) bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2)) bb_rot[..., 1] = 1 # [*, N, 8, 2] alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2) # [*, N, 8, 3, 3] # Produces rotation matrices of the form: # [ # [1, 0 , 0 ], # [0, a_2,-a_1], # [0, a_1, a_2] # ] # This follows the original code rather than the supplement, which uses # different indices. all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape) all_rots[..., 0, 0] = 1 all_rots[..., 1, 1] = alpha[..., 1] all_rots[..., 1, 2] = -alpha[..., 0] all_rots[..., 2, 1:] = alpha all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None)) chi2_frame_to_frame = all_frames[..., 5] chi3_frame_to_frame = all_frames[..., 6] chi4_frame_to_frame = all_frames[..., 7] chi1_frame_to_bb = all_frames[..., 4] chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame) chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame) chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame) all_frames_to_bb = Rigid.cat( [ all_frames[..., :5], chi2_frame_to_bb.unsqueeze(-1), chi3_frame_to_bb.unsqueeze(-1), chi4_frame_to_bb.unsqueeze(-1), ], dim=-1, ) all_frames_to_global = r[..., None].compose(all_frames_to_bb) return all_frames_to_global def frames_and_literature_positions_to_atom14_pos( r: Rigid, aatype: torch.Tensor, default_frames: torch.Tensor, group_idx: torch.Tensor, atom_mask: torch.Tensor, lit_positions: torch.Tensor, ) -> torch.Tensor: # [*, N, 14] group_mask = group_idx[aatype, ...] # [*, N, 14, 8] group_mask_one_hot: torch.LongTensor = nn.functional.one_hot( group_mask, num_classes=default_frames.shape[-3], ) # [*, N, 14, 8] t_atoms_to_global = r[..., None, :] * group_mask_one_hot # [*, N, 14] t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) # [*, N, 14, 1] atom_mask = atom_mask[aatype, ...].unsqueeze(-1) # [*, N, 14, 3] lit_positions = lit_positions[aatype, ...] pred_positions = t_atoms_to_global.apply(lit_positions) pred_positions = pred_positions * atom_mask return pred_positions
transformers/src/transformers/models/esm/openfold_utils/feats.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/feats.py", "repo_id": "transformers", "token_count": 3763 }
83
# coding=utf-8 # Copyright 2023 The Espnet authors, IMS Toucan authors, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FastSpeech2Conformer model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, add_start_docstrings, logging, replace_return_docstrings from .configuration_fastspeech2_conformer import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerWithHifiGanConfig, ) logger = logging.get_logger(__name__) FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "espnet/fastspeech2_conformer", # See all FastSpeech2Conformer models at https://huggingface.co/models?filter=fastspeech2_conformer ] @dataclass class FastSpeech2ConformerModelOutput(ModelOutput): """ Output type of [`FastSpeech2ConformerModel`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ loss: Optional[torch.FloatTensor] = None spectrogram: torch.FloatTensor = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None duration_outputs: torch.LongTensor = None pitch_outputs: torch.FloatTensor = None energy_outputs: torch.FloatTensor = None @dataclass class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput): """ Output type of [`FastSpeech2ConformerWithHifiGan`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Speech output as a result of passing the predicted mel spectrogram through the vocoder. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ waveform: torch.FloatTensor = None _CONFIG_FOR_DOC = "FastSpeech2ConformerConfig" FASTSPEECH2_CONFORMER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerWithHifiGanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def length_regulator(encoded_embeddings, duration_labels, speaking_speed=1.0): """ Length regulator for feed-forward Transformer. This is the length regulator module described in `FastSpeech: Fast, Robust and Controllable Text to Speech` https://arxiv.org/pdf/1905.09263.pdf. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations. Args: encoded_embeddings (`torch.Tensor` of shape `(batch_size, max_text_length, embedding_dim)`): Batch of sequences of char or phoneme embeddings. duration_labels (`torch.LongTensor` of shape `(batch_size, time)`): Batch of durations of each frame. speaking_speed (`float`, *optional*, defaults to 1.0): Value to control speed of speech. Returns: `torch.Tensor`: Replicated input tensor based on durations (batch_size, time*, embedding_dim). """ if speaking_speed <= 0: raise ValueError("`speaking_speed` must be greater than 0.") elif speaking_speed != 1.0: duration_labels = torch.round(duration_labels.float() * speaking_speed).long() if duration_labels.sum() == 0: duration_labels[duration_labels.sum(dim=1).eq(0)] = 1 # Calculate the maximum length needed max_len = torch.sum(duration_labels, dim=1).max() # Create a padded tensor to hold the results hidden_states = torch.zeros( (encoded_embeddings.size(0), max_len, encoded_embeddings.size(2)), dtype=torch.float, device=encoded_embeddings.device, ) # Loop through the batch and fill in the data for i, (encoded_embedding, target_duration) in enumerate(zip(encoded_embeddings, duration_labels)): repeated = torch.repeat_interleave(encoded_embedding, target_duration, dim=0) hidden_states[i, : repeated.size(0)] = repeated return hidden_states class FastSpeech2ConformerDurationPredictor(nn.Module): """ Duration predictor module. This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() self.conv_layers = nn.ModuleList() self.log_domain_offset = 1.0 for layer_idx in range(config.duration_predictor_layers): num_chans = config.duration_predictor_channels input_channels = config.hidden_size if layer_idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer( input_channels, num_chans, config.duration_predictor_kernel_size, config.duration_predictor_dropout_rate, ) self.conv_layers.append(layer) self.linear = nn.Linear(config.duration_predictor_channels, 1) def forward(self, encoder_hidden_states): """ Args: hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: `torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) # NOTE: calculate in log domain, (batch_size, max_text_length) hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1) if not self.training: # NOTE: calculate in linear domain hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long() return hidden_states # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5BatchNormConvLayer class FastSpeech2ConformerBatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.layers = nn.ModuleList( [FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) layer_output = outputs_before_postnet.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2) return outputs_before_postnet, outputs_after_postnet class FastSpeech2ConformerPredictorLayer(nn.Module): def __init__(self, input_channels, num_chans, kernel_size, dropout_rate): super().__init__() self.conv = nn.Conv1d( input_channels, num_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.activation = nn.ReLU() self.layer_norm = nn.LayerNorm(num_chans) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) # Perform layer norm on dimension 1 hidden_states = hidden_states.transpose(1, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, -1) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerVariancePredictor(nn.Module): def __init__( self, config: FastSpeech2ConformerConfig, num_layers=2, num_chans=384, kernel_size=3, dropout_rate=0.5, ): """ Initilize variance predictor module. Args: input_dim (`int`): Input dimension. num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers. num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers. kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers. dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate. """ super().__init__() self.conv_layers = nn.ModuleList() for idx in range(num_layers): input_channels = config.hidden_size if idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate) self.conv_layers.append(layer) self.linear = nn.Linear(num_chans, 1) def forward(self, encoder_hidden_states, padding_masks=None): """ Calculate forward propagation. Args: encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) hidden_states = self.linear(hidden_states.transpose(1, 2)) if padding_masks is not None: hidden_states = hidden_states.masked_fill(padding_masks, 0.0) return hidden_states class FastSpeech2ConformerVarianceEmbedding(nn.Module): def __init__( self, in_channels=1, out_channels=384, kernel_size=1, padding=0, dropout_rate=0.0, ): super().__init__() self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, ) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class FastSpeech2ConformerAttention(nn.Module): """ Multi-Head attention layer with relative position encoding. Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """Construct an FastSpeech2ConformerAttention object.""" super().__init__() # We assume d_v always equals dim_key self.num_heads = module_config["num_attention_heads"] self.hidden_size = config.hidden_size self.dim_key = self.hidden_size // self.num_heads self.head_dim = self.hidden_size // self.num_heads self.linear_q = nn.Linear(self.hidden_size, self.hidden_size) self.linear_k = nn.Linear(self.hidden_size, self.hidden_size) self.linear_v = nn.Linear(self.hidden_size, self.hidden_size) self.linear_out = nn.Linear(self.hidden_size, self.hidden_size) self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"]) # linear transformation for positional encoding self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) def shift_relative_position_tensor(self, pos_tensor): """ Args: pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor. """ zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype) pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1) pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2)) # only keep the positions from 0 to time2 pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1] return pos_tensor def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, pos_emb: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor. pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`. """ bsz, q_len, _ = hidden_states.size() query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) bsz_pos = pos_emb.size(0) pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim) # (batch_size, head, time1, dim_key) query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2) # (batch_size, head, time1, dim_key) query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch_size, head, time1, time2) matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1)) # compute matrix b and matrix d # (batch_size, head, time1, 2*time1-1) matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1)) matrix_bd = self.shift_relative_position_tensor(matrix_bd) # (batch_size, head, time1, time2) scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key) # Forward attention if attention_mask is not None: expected_size = (bsz, 1, q_len) if attention_mask.size() != expected_size: raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}") attention_mask = attention_mask.unsqueeze(1).eq(0) min_value = float(torch.finfo(scores.dtype).min) scores = scores.masked_fill(attention_mask, min_value) attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0) else: attn_weights = torch.softmax(scores, dim=-1) attn_weights = self.dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2)) attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class FastSpeech2ConformerConvolutionModule(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # kernel_size should be an odd number for 'SAME' padding channels = config.hidden_size kernel_size = module_config["kernel_size"] self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True ) self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, hidden_states): """ Compute convolution module. Args: hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, channels)`. """ # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism, (batch_size, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # (batch_size, channel, dim) hidden_states = nn.functional.glu(hidden_states, dim=1) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = hidden_states * torch.sigmoid(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) return hidden_states.transpose(1, 2) class FastSpeech2ConformerEncoderLayer(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # self-attention module definition self.self_attn = FastSpeech2ConformerAttention(config, module_config) # feed-forward module definition self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.macaron_style = config.use_macaron_style_in_conformer if self.macaron_style: self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 # convolution module definition self.use_cnn_module = config.use_cnn_in_conformer if self.use_cnn_module: self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config) self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_layer_norm = nn.LayerNorm(config.hidden_size) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size) self.dropout = nn.Dropout(module_config["dropout_rate"]) self.size = config.hidden_size self.normalize_before = module_config["normalize_before"] self.concat_after = module_config["concat_after"] if self.concat_after: self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size) def forward( self, hidden_states: torch.Tensor, pos_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ): """ Compute encoded features. Args: hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor. pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor. attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, size)`. """ # whether to use macaron style if self.macaron_style: residual = hidden_states if self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states)) if not self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) # multi-headed self-attention module residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) attention_output, attention_scores = self.self_attn( hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions ) if self.concat_after: x_concat = torch.cat((hidden_states, attention_output), dim=-1) hidden_states = self.concat_linear(x_concat) hidden_states = residual + hidden_states else: hidden_states = self.dropout(attention_output) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) # convolution module if self.use_cnn_module: residual = hidden_states if self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) hidden_states = self.conv_module(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) # feed forward module residual = hidden_states if self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + self.ff_scale * hidden_states if not self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) if self.conv_module is not None: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attention_scores,) return outputs class FastSpeech2ConformerMultiLayeredConv1d(nn.Module): """ Multi-layered conv1d for Transformer block. This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Initialize FastSpeech2ConformerMultiLayeredConv1d module. Args: input_channels (`int`): Number of input channels. hidden_channels (`int`): Number of hidden channels. kernel_size (`int`): Kernel size of conv1d. dropout_rate (`float`): Dropout rate. """ super().__init__() input_channels = config.hidden_size hidden_channels = module_config["linear_units"] kernel_size = config.positionwise_conv_kernel_size self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.dropout = nn.Dropout(module_config["dropout_rate"]) def forward(self, hidden_states): """ Calculate forward propagation. Args: hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels). Returns: torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels). """ hidden_states = hidden_states.transpose(-1, 1) hidden_states = self.conv1(hidden_states) hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = hidden_states.transpose(-1, 1) return hidden_states class FastSpeech2ConformerRelPositionalEncoding(nn.Module): """ Args: Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860 config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Construct an PositionalEncoding object. """ super().__init__() self.embed_dim = config.hidden_size self.input_scale = math.sqrt(self.embed_dim) self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"]) self.pos_enc = None self.max_len = 5000 self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len)) def extend_pos_enc(self, x): """Reset the positional encodings.""" if self.pos_enc is not None: # self.pos_enc contains both positive and negative parts # the length of self.pos_enc is 2 * input_len - 1 if self.pos_enc.size(1) >= x.size(1) * 2 - 1: if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device: self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pos_enc_positive = torch.zeros(x.size(1), self.embed_dim) pos_enc_negative = torch.zeros(x.size(1), self.embed_dim) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim) ) pos_enc_positive[:, 0::2] = torch.sin(position * div_term) pos_enc_positive[:, 1::2] = torch.cos(position * div_term) pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term) pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0) pos_enc_negative = pos_enc_negative[1:].unsqueeze(0) pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1) self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype) def forward(self, feature_representation): """ Args: feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)): Input tensor. Returns: `torch.Tensor`: Encoded tensor (batch_size, time, `*`). """ self.extend_pos_enc(feature_representation) hidden_states = feature_representation * self.input_scale center_idx = self.pos_enc.size(1) // 2 pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)] return self.dropout(hidden_states), self.dropout(pos_emb) class FastSpeech2ConformerEncoder(nn.Module): """ FastSpeech2ConformerEncoder encoder module. Args: config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. use_encoder_input_layer (`bool`, *optional*, defaults to `False`): Input layer type. """ def __init__( self, config: FastSpeech2ConformerConfig, module_config, use_encoder_input_layer=False, ): super().__init__() self.embed = None if use_encoder_input_layer: self.embed = nn.Embedding( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0 ) self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config) self.conformer_layers = nn.ModuleList( [FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])] ) def forward( self, input_tensor: torch.LongTensor, attention_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = False, return_dict: Optional[bool] = None, ): """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, attention_dim)`. """ feature_representation = input_tensor if self.embed is not None: feature_representation = self.embed(feature_representation) hidden_states, pos_emb = self.pos_enc(feature_representation) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for conformer_layer in self.conformer_layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class FastSpeech2ConformerLoss(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() use_masking = config.use_masking use_weighted_masking = config.use_weighted_masking if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = nn.MSELoss(reduction=reduction) self.log_domain_offset = 1.0 def forward( self, outputs_after_postnet, outputs_before_postnet, duration_outputs, pitch_outputs, energy_outputs, spectrogram_labels, duration_labels, pitch_labels, energy_labels, duration_mask, spectrogram_mask, ): """ Args: outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs after postnet. outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs before postnet. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of outputs of duration predictor. pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of pitch predictor. energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of energy predictor. spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of target features. duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations. pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged pitch. energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged energy. duration_mask (`torch.LongTensor`): Mask used to discern which values the duration loss should be calculated for. spectrogram_mask (`torch.LongTensor`): Mask used to discern which values the spectrogam loss should be calculated for. Returns: `tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor loss value, pitch predictor loss value, and energy predictor loss value. """ pitch_and_energy_masks = duration_mask.unsqueeze(-1) # apply mask to remove padded part if self.use_masking: outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask) if outputs_after_postnet is not None: outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask) spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask) duration_outputs = duration_outputs.masked_select(duration_mask) duration_labels = duration_labels.masked_select(duration_mask) pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks) energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks) pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks) energy_labels = energy_labels.masked_select(pitch_and_energy_masks) # calculate loss l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels) if outputs_after_postnet is not None: l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels) duration_labels = torch.log(duration_labels.float() + self.log_domain_offset) duration_loss = self.duration_criterion(duration_outputs, duration_labels) pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels) energy_loss = self.mse_criterion(energy_outputs, energy_labels) # make weighted mask and apply it if self.use_weighted_masking: spectrogram_mask = nn.functional.pad( spectrogram_mask.transpose(1, 2), [0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0], value=False, ).transpose(1, 2) out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float() out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2) duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float() duration_weights /= duration_labels.size(0) # apply weight l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum() duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum() pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() return l1_loss + duration_loss + pitch_loss + energy_loss class FastSpeech2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastSpeech2ConformerConfig base_model_prefix = "fastspeech2_conformer" main_input_name = "input_ids" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.LayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-key, b=key) elif isinstance(module, nn.Embedding): module.weight.data.normal_() if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, FastSpeech2ConformerAttention): nn.init.xavier_uniform_(module.pos_bias_u) nn.init.xavier_uniform_(module.pos_bias_v) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, FastSpeech2ConformerEncoder): module.gradient_checkpointing = value @add_start_docstrings( """FastSpeech2Conformer Model.""", FASTSPEECH2_CONFORMER_START_DOCSTRING, ) class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel): """ FastSpeech 2 module. This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech' https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular Transformers. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__(config) self.config = config # store hyperparameters self.vocab_size = config.vocab_size self.num_mel_bins = config.num_mel_bins self.hidden_size = config.hidden_size self.reduction_factor = config.reduction_factor self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor self.multilingual_model = config.num_languages is not None and config.num_languages > 1 if self.multilingual_model: self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size) self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1 if self.multispeaker_model: self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size) self.speaker_embed_dim = config.speaker_embed_dim if self.speaker_embed_dim: self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size) self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True) self.duration_predictor = FastSpeech2ConformerDurationPredictor(config) self.pitch_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.pitch_predictor_layers, num_chans=config.pitch_predictor_channels, kernel_size=config.pitch_predictor_kernel_size, dropout_rate=config.pitch_predictor_dropout, ) # continuous pitch + FastPitch style avg self.pitch_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.pitch_embed_kernel_size, padding=(config.pitch_embed_kernel_size - 1) // 2, dropout_rate=config.pitch_embed_dropout, ) self.energy_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.energy_predictor_layers, num_chans=config.energy_predictor_channels, kernel_size=config.energy_predictor_kernel_size, dropout_rate=config.energy_predictor_dropout, ) # continuous energy + FastPitch style avg self.energy_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.energy_embed_kernel_size, padding=(config.energy_embed_kernel_size - 1) // 2, dropout_rate=config.energy_embed_dropout, ) # The decoder is an encoder self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False) self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config) self.criterion = FastSpeech2ConformerLoss(config) self.post_init() @replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerModel, ... FastSpeech2ConformerHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") >>> output_dict = model(input_ids, return_dict=True) >>> spectrogram = output_dict["spectrogram"] >>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan") >>> waveform = vocoder(spectrogram) >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if attention_mask is None: attention_mask = torch.ones(input_ids.shape, device=input_ids.device) has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if self.training and has_missing_labels: raise ValueError("All labels must be provided to run in training mode.") # forward encoder text_masks = attention_mask.unsqueeze(-2) encoder_outputs = self.encoder( input_ids, text_masks, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) hidden_states = encoder_outputs[0] # Integrate with language id, speaker id, and speaker embedding if self.multispeaker_model and speaker_ids is not None: speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1)) hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1) if self.multilingual_model and lang_ids is not None: language_id_embbedings = self.language_id_embedding(lang_ids.view(-1)) hidden_states = hidden_states + language_id_embbedings.unsqueeze(1) if self.speaker_embed_dim is not None and speaker_embedding is not None: embeddings_expanded = ( nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1) ) hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1)) # forward duration predictor and variance predictors duration_mask = ~attention_mask.bool() if self.stop_gradient_from_pitch_predictor: pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1)) if self.stop_gradient_from_energy_predictor: energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1)) duration_predictions = self.duration_predictor(hidden_states) duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0) if not self.training: # use prediction in inference embedded_pitch_curve = self.pitch_embed(pitch_predictions) embedded_energy_curve = self.energy_embed(energy_predictions) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed) else: # use groundtruth in training embedded_pitch_curve = self.pitch_embed(pitch_labels) embedded_energy_curve = self.energy_embed(energy_labels) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_labels) # forward decoder if not self.training: hidden_mask = None else: spectrogram_mask = (spectrogram_labels != -100).any(dim=-1) spectrogram_mask = spectrogram_mask.int() if self.reduction_factor > 1: length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor spectrogram_mask = spectrogram_mask[:, :, :length_dim] hidden_mask = spectrogram_mask.unsqueeze(-2) decoder_outputs = self.decoder( hidden_states, hidden_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0]) loss = None if self.training: # calculate loss loss_duration_mask = ~duration_mask loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool() loss = self.criterion( outputs_after_postnet=outputs_after_postnet, outputs_before_postnet=outputs_before_postnet, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, duration_mask=loss_duration_mask, spectrogram_mask=loss_spectrogram_mask, ) if not return_dict: postnet_outputs = (outputs_after_postnet,) audio_feature_predictions = ( duration_predictions, pitch_predictions, energy_predictions, ) outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions return ((loss,) + outputs) if loss is not None else outputs return FastSpeech2ConformerModelOutput( loss=loss, spectrogram=outputs_after_postnet, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, ) # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states @add_start_docstrings( """HiFi-GAN vocoder.""", HIFIGAN_START_DOCSTRING, ) # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5HifiGan with SpeechT5->FastSpeech2Conformer class FastSpeech2ConformerHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerHifiGanConfig main_input_name = "spectrogram" def __init__(self, config: FastSpeech2ConformerHifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): nn.utils.weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() nn.utils.weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( "The FastSpeech2ConformerModel with a FastSpeech2ConformerHifiGan vocoder head that performs text-to-speech (waveform).", FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING, ) class FastSpeech2ConformerWithHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerWithHifiGanConfig def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig): super().__init__(config) self.model = FastSpeech2ConformerModel(config.model_config) self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config) self.config = config @replace_return_docstrings( output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig ) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerWithHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan") >>> output_dict = model(input_ids, return_dict=True) >>> waveform = output_dict["waveform"] >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict output_attentions = ( output_attentions if output_attentions is not None else self.config.model_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states ) model_outputs = self.model( input_ids, attention_mask, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, speaker_ids=speaker_ids, lang_ids=lang_ids, speaker_embedding=speaker_embedding, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if has_missing_labels: spectrogram = model_outputs[0] else: spectrogram = model_outputs[1] else: spectrogram = model_outputs["spectrogram"] waveform = self.vocoder(spectrogram) if not return_dict: return model_outputs + (waveform,) return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py", "repo_id": "transformers", "token_count": 33081 }
84
# coding=utf-8 # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json", # See all FNet models at https://huggingface.co/models?filter=fnet } class FNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FNet [google/fnet-base](https://huggingface.co/google/fnet-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 4): The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`): Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms. Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used. tpu_short_seq_length (`int`, *optional*, defaults to 512): The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or equal to 4096 tokens. Example: ```python >>> from transformers import FNetConfig, FNetModel >>> # Initializing a FNet fnet-base style configuration >>> configuration = FNetConfig() >>> # Initializing a model (with random weights) from the fnet-base style configuration >>> model = FNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fnet" def __init__( self, vocab_size=32000, hidden_size=768, num_hidden_layers=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=4, initializer_range=0.02, layer_norm_eps=1e-12, use_tpu_fourier_optimizations=False, tpu_short_seq_length=512, pad_token_id=3, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations self.tpu_short_seq_length = tpu_short_seq_length
transformers/src/transformers/models/fnet/configuration_fnet.py/0
{ "file_path": "transformers/src/transformers/models/fnet/configuration_fnet.py", "repo_id": "transformers", "token_count": 2166 }
85
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Gemma.""" import os from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: pass logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} SPIECE_UNDERLINE = "▁" class GemmaTokenizer(PreTrainedTokenizer): """ Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Gemma should be used. spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to add spaces between special tokens. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<bos>", eos_token="<eos>", pad_token="<pad>", sp_model_kwargs: Optional[Dict[str, Any]] = None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, use_default_system_prompt=False, spaces_between_special_tokens=False, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.use_default_system_prompt = use_default_system_prompt self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs, clean_up_tokenization_spaces=clean_up_tokenization_spaces, use_default_system_prompt=use_default_system_prompt, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.vocab_size def vocab_size(self): """Returns vocab size""" return self.sp_model.get_piece_size() # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_vocab def get_vocab(self): """Returns vocab as a dict""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, **kwargs): """ Returns a tokenized string. The Gemma tokenizer never adds a prefix space. """ return self.sp_model.encode(text, out_type=str) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: sub_texts = [] current_sub_text = [] for ids in token_ids: if skip_special_tokens and ids in self.all_special_ids: continue if ids in self._added_tokens_decoder: if current_sub_text: sub_texts.append(self.sp_model.decode(current_sub_text)) sub_texts.append(self._added_tokens_decoder[ids].content) current_sub_text = [] else: current_sub_text.append(ids) if current_sub_text: sub_texts.append(self.sp_model.decode(current_sub_text)) if spaces_between_special_tokens: sub_texts = " ".join(sub_texts) else: sub_texts = "".join(sub_texts) return sub_texts def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self._added_tokens_encoder: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.save_vocabulary def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return ( bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id ) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) if token_ids_1 is not None: output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) return output
transformers/src/transformers/models/gemma/tokenization_gemma.py/0
{ "file_path": "transformers/src/transformers/models/gemma/tokenization_gemma.py", "repo_id": "transformers", "token_count": 6049 }
86
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import torch from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2 from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path): # Construct model if gpt2_config_file == "": config = GPT2Config() else: config = GPT2Config.from_json_file(gpt2_config_file) model = GPT2Model(config) # Load weights from numpy load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path) # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) args = parser.parse_args() convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 937 }
87
# coding=utf-8 # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTNeoX model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class GPTNeoXConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeoX [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50432): Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoXModel`]. hidden_size (`int`, *optional*, defaults to 6144): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 44): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. rotary_pct (`float`, *optional*, defaults to 0.25): percentage of hidden dimensions to allocate to rotary embeddings rotary_emb_base (`int`, *optional*, defaults to 10000) base for computing rotary embeddings frequency attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio probability of the attention score. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp hidden states. classifier_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`]. The dropout ratio for the hidden layer. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 1e-5): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. use_parallel_residual (`bool`, *optional*, defaults to `True`): Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training speedup at large scales (e.g. 20B). rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, *optional*, defaults to `True`): Whether to use a bias in the query, key, value and output projection layers during self-attention. Example: ```python >>> from transformers import GPTNeoXConfig, GPTNeoXModel >>> # Initializing a GPTNeoX gpt-neox-20b style configuration >>> configuration = GPTNeoXConfig() >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration >>> model = GPTNeoXModel(configuration) # doctest: +SKIP >>> # Accessing the model configuration >>> configuration = model.config # doctest: +SKIP ```""" model_type = "gpt_neox" def __init__( self, vocab_size=50432, hidden_size=6144, num_hidden_layers=44, num_attention_heads=64, intermediate_size=24576, hidden_act="gelu", rotary_pct=0.25, rotary_emb_base=10000, attention_dropout=0.0, hidden_dropout=0.0, classifier_dropout=0.1, max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, bos_token_id=0, eos_token_id=2, tie_word_embeddings=False, use_parallel_residual=True, rope_scaling=None, attention_bias=True, **kwargs, ): super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.rotary_pct = rotary_pct self.rotary_emb_base = rotary_emb_base self.attention_dropout = attention_dropout self.hidden_dropout = hidden_dropout self.classifier_dropout = classifier_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.tie_word_embeddings = tie_word_embeddings self.use_parallel_residual = use_parallel_residual self.rope_scaling = rope_scaling self.attention_bias = attention_bias self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py", "repo_id": "transformers", "token_count": 3539 }
88
# coding=utf-8 # Copyright 2023, HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTSAN-japanese model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class GPTSanJapaneseConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese [Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 36000): Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`]. max_position_embeddings (`int`, *optional*, defaults to 1280): The maximum sequence length that this model might ever be used with. Defaults set this to 1280. d_model (`int`, *optional*, defaults to 1024): Size of the encoder layers and the pooler layer. d_ff (`int`, *optional*, defaults to 8192): Size of the intermediate feed forward layer in each `SwitchTransformersBlock`. d_ext (`int`, *optional*, defaults to 4096): Size of the intermediate feed forward layer in each Extra-layers. d_spout (`int`, *optional*, defaults to 128): Size of the `spout` vector. num_switch_layers (`int`, *optional*, defaults to 10): Number of layers in the Switch Transformer layer. num_ext_layers (`int`, *optional*, defaults to 0): Number of layers in the Extra-layers. num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_experts (`int`, *optional*, defaults to 16): Number of experts for each SwitchTransformer layer. expert_capacity (`int`, *optional*, defaults to 128): Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular Transformer. dropout_rate (`float`, *optional*, defaults to 0.0): The ratio for all dropout layers. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. router_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the router. router_jitter_noise (`float`, *optional*, defaults to 0.0): Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2) during training. router_dtype (`str`, *optional*, default to `"float32"`): The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): Whether to ignore padding tokens when routing. output_hidden_states (`bool`, *optional*, default to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. initializer_factor (`float`, *optional*, defaults to 0.002): A factor for initializing all weight matrices. output_router_logits (`bool`, *optional*, default to `False`): Whether or not to return the router logits of all experts. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) """ model_type = "gptsan-japanese" keys_to_ignore_at_inference = [ "past_key_values", ] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=36000, max_position_embeddings=1280, d_model=1024, d_ff=8192, d_ext=4096, d_spout=128, num_switch_layers=10, num_ext_layers=0, num_heads=16, num_experts=16, expert_capacity=128, dropout_rate=0.0, layer_norm_epsilon=1e-5, router_bias=False, router_jitter_noise=0.0, router_dtype="float32", router_ignore_padding_tokens=False, output_hidden_states=False, output_attentions=False, initializer_factor=0.002, output_router_logits=False, use_cache=True, separator_token_id=35998, pad_token_id=35995, eos_token_id=35999, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.d_ff = d_ff self.d_ext = d_ext self.d_spout = d_spout self.num_switch_layers = num_switch_layers self.num_ext_layers = num_ext_layers self.num_layers = num_switch_layers + num_ext_layers self.num_heads = num_heads self.num_experts = num_experts self.expert_capacity = expert_capacity self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.router_bias = router_bias self.router_jitter_noise = router_jitter_noise self.router_dtype = router_dtype self.router_ignore_padding_tokens = router_ignore_padding_tokens self.output_hidden_states = output_hidden_states self.output_attentions = output_attentions self.initializer_factor = initializer_factor self.output_router_logits = output_router_logits self.use_cache = use_cache super().__init__( separator_token_id=separator_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, **kwargs, )
transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py/0
{ "file_path": "transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py", "repo_id": "transformers", "token_count": 2956 }
89
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"allegro/herbert-base-cased": 514} PRETRAINED_INIT_CONFIGURATION = {} class HerbertTokenizerFast(PreTrainedTokenizerFast): """ Construct a "Fast" BPE tokenizer for HerBERT (backed by HuggingFace's *tokenizers* library). Peculiarities: - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a punctuation character will be treated separately. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = HerbertTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sep_token="</s>", **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, sep_token=sep_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An HerBERT, like BERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ cls = [self.cls_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. HerBERT, like BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/herbert/tokenization_herbert_fast.py/0
{ "file_path": "transformers/src/transformers/models/herbert/tokenization_herbert_fast.py", "repo_id": "transformers", "token_count": 2812 }
90
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License. # # MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore. References: - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch """ from typing import Optional, Tuple import torch import torch.nn as nn from .configuration_idefics import IdeficsConfig class IdeficsPerceiverResampler(nn.Module): def __init__( self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__() self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver # Create Latents for Perceiver self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True) self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = nn.ModuleList( [ nn.ModuleList( [ IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms), IdeficsMLP(self.intermediate_dim, config), ] ) for _ in range(depth) ] ) self.layer_norm = nn.LayerNorm(self.embed_dim) def forward(self, context: torch.Tensor) -> torch.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = self.latents.repeat(context.shape[0], 1, 1) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents) class IdeficsPerceiverAttention(nn.Module): def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__() self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = nn.LayerNorm(self.embed_dim) self.latents_layer_norm = nn.LayerNorm(self.embed_dim) if self.qk_layer_norms: self.q_layer_norm = nn.LayerNorm(self.head_dim) self.k_layer_norm = nn.LayerNorm(self.head_dim) self.qk_scale = self.head_dim**-0.5 # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False) def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`torch.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`torch.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = context.shape[:3] # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(torch.cat([context, latents], dim=-2)) v = self.v_proj(torch.cat([context, latents], dim=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] # einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) attn = stabilized_scores.softmax(dim=-1) # Attend & project back to output... resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) # einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) return self.output_proj(resampled.transpose(1, 2).flatten(-2)) class IdeficsMLP(nn.Module): def __init__(self, intermediate_size, config: IdeficsConfig): """Simple MLP block with intermediate_size and embedding size""" super().__init__() self.embed_dim = config.vision_config.embed_dim self.ln = nn.LayerNorm(self.embed_dim) self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False) self.act = nn.ReLU() self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states
transformers/src/transformers/models/idefics/perceiver.py/0
{ "file_path": "transformers/src/transformers/models/idefics/perceiver.py", "repo_id": "transformers", "token_count": 3755 }
91
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LeViT.""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, logging logger = logging.get_logger(__name__) class LevitImageProcessor(BaseImageProcessor): r""" Constructs a LeViT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size_dict = get_size_dict(size, default_to_square=False) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: shortest_edge = int((256 / 224) * size["shortest_edge"]) output_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format ) size_dict = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( image, size=(size_dict["height"], size_dict["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, Iterable[float]]] = None, image_std: Optional[Union[float, Iterable[float]]] = None, return_tensors: Optional[TensorType] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images to be used as input to a LeViT model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the output image after center cropping. Crops images to (crop_size["height"], crop_size["width"]). do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Factor to rescale the image pixel values by. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image pixel values by `image_mean` and `image_std`. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to normalize the image pixel values by. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to normalize the image pixel values by. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image, size, resample, input_data_format=input_data_format) for image in images] if do_center_crop: images = [self.center_crop(image, crop_size, input_data_format=input_data_format) for image in images] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/levit/image_processing_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/image_processing_levit.py", "repo_id": "transformers", "token_count": 7148 }
92
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Llava. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LlavaProcessor(ProcessorMixin): r""" Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is not None: pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] else: pixel_values = None text_inputs = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/llava/processing_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/processing_llava.py", "repo_id": "transformers", "token_count": 2756 }
93
# coding=utf-8 # Copyright Studio Ousia and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LUKE model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_luke import LukeConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LukeConfig" _CHECKPOINT_FOR_DOC = "studio-ousia/luke-base" LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "studio-ousia/luke-base", "studio-ousia/luke-large", # See all LUKE models at https://huggingface.co/models?filter=luke ] @dataclass class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling): """ Base class for outputs of the LUKE model. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length + entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class BaseLukeModelOutput(BaseModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class LukeMaskedLMOutput(ModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): The sum of masked language modeling (MLM) loss and entity prediction loss. mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked entity prediction (MEP) loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mlm_loss: Optional[torch.FloatTensor] = None mep_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None entity_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class EntityClassificationOutput(ModelOutput): """ Outputs of entity classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class EntityPairClassificationOutput(ModelOutput): """ Outputs of entity pair classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class EntitySpanClassificationOutput(ModelOutput): """ Outputs of entity span classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class LukeSequenceClassifierOutput(ModelOutput): """ Outputs of sentence classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class LukeTokenClassifierOutput(ModelOutput): """ Base class for outputs of token classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class LukeQuestionAnsweringModelOutput(ModelOutput): """ Outputs of question answering models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class LukeMultipleChoiceModelOutput(ModelOutput): """ Outputs of multiple choice models. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None class LukeEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LukeEntityEmbeddings(nn.Module): def __init__(self, config: LukeConfig): super().__init__() self.config = config self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) if config.entity_emb_size != config.hidden_size: self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None ): if token_type_ids is None: token_type_ids = torch.zeros_like(entity_ids) entity_embeddings = self.entity_embeddings(entity_ids) if self.config.entity_emb_size != self.config.hidden_size: entity_embeddings = self.entity_embedding_dense(entity_embeddings) position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) position_embeddings = position_embeddings * position_embedding_mask position_embeddings = torch.sum(position_embeddings, dim=-2) position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = entity_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LukeSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.use_entity_aware_attention = config.use_entity_aware_attention self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) if self.use_entity_aware_attention: self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) if entity_hidden_states is None: concat_hidden_states = word_hidden_states else: concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) if self.use_entity_aware_attention and entity_hidden_states is not None: # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) # query layers w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above w2w_key_layer = key_layer[:, :, :word_size, :] e2w_key_layer = key_layer[:, :, :word_size, :] w2e_key_layer = key_layer[:, :, word_size:, :] e2e_key_layer = key_layer[:, :, word_size:, :] # compute attention scores based on the dot product between the query and key vectors w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) # combine attention scores to create the final attention score matrix word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) else: query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LukeModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) output_word_hidden_states = context_layer[:, :word_size, :] if entity_hidden_states is None: output_entity_hidden_states = None else: output_entity_hidden_states = context_layer[:, word_size:, :] if output_attentions: outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) else: outputs = (output_word_hidden_states, output_entity_hidden_states) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LukeSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeAttention(nn.Module): def __init__(self, config): super().__init__() self.self = LukeSelfAttention(config) self.output = LukeSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError("LUKE does not support the pruning of attention heads") def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_outputs = self.self( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions, ) if entity_hidden_states is None: concat_self_outputs = self_outputs[0] concat_hidden_states = word_hidden_states else: concat_self_outputs = torch.cat(self_outputs[:2], dim=1) concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) attention_output = self.output(concat_self_outputs, concat_hidden_states) word_attention_output = attention_output[:, :word_size, :] if entity_hidden_states is None: entity_attention_output = None else: entity_attention_output = attention_output[:, word_size:, :] # add attentions if we output them outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LukeIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LukeOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LukeAttention(config) self.intermediate = LukeIntermediate(config) self.output = LukeOutput(config) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_attention_outputs = self.attention( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) if entity_hidden_states is None: concat_attention_output = self_attention_outputs[0] else: concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) outputs = self_attention_outputs[2:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output ) word_layer_output = layer_output[:, :word_size, :] if entity_hidden_states is None: entity_layer_output = None else: entity_layer_output = layer_output[:, word_size:, :] outputs = (word_layer_output, entity_layer_output) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LukeEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_word_hidden_states = () if output_hidden_states else None all_entity_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module( word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) word_hidden_states = layer_outputs[0] if entity_hidden_states is not None: entity_hidden_states = layer_outputs[1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) if not return_dict: return tuple( v for v in [ word_hidden_states, all_word_hidden_states, all_self_attentions, entity_hidden_states, all_entity_hidden_states, ] if v is not None ) return BaseLukeModelOutput( last_hidden_state=word_hidden_states, hidden_states=all_word_hidden_states, attentions=all_self_attentions, entity_last_hidden_state=entity_hidden_states, entity_hidden_states=all_entity_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LukePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class EntityPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class EntityPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transform = EntityPredictionHeadTransform(config) self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class LukePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LukeConfig base_model_prefix = "luke" supports_gradient_checkpointing = True _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"] def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if module.embedding_dim == 1: # embedding for bias parameters module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LUKE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LukeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LUKE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`): Indices of entity tokens in the entity vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*): Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`: - 1 for entity tokens that are **not masked**, - 0 for entity tokens that are **masked**. entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Segment token indices to indicate first and second portions of the entity token inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *portion A* entity token, - 1 corresponds to a *portion B* entity token. entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*): Indices of positions of each input entity in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any" " specific head on top.", LUKE_START_DOCSTRING, ) class LukeModel(LukePreTrainedModel): def __init__(self, config: LukeConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = LukeEmbeddings(config) self.entity_embeddings = LukeEntityEmbeddings(config) self.encoder = LukeEncoder(config) self.pooler = LukePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def get_entity_embeddings(self): return self.entity_embeddings.entity_embeddings def set_entity_embeddings(self, value): self.entity_embeddings.entity_embeddings = value def _prune_heads(self, heads_to_prune): raise NotImplementedError("LUKE does not support the pruning of attention heads") @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseLukeModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeModel >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base") >>> model = LukeModel.from_pretrained("studio-ousia/luke-base") # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state # Input Wikipedia entities to obtain enriched contextualized representations of word tokens >>> text = "Beyoncé lives in Los Angeles." >>> entities = [ ... "Beyoncé", ... "Los Angeles", ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> encoding = tokenizer( ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" ... ) >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if entity_ids is not None: entity_seq_length = entity_ids.size(1) if entity_attention_mask is None: entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) if entity_token_type_ids is None: entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # First, compute word embeddings word_embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) # Second, compute extended attention mask extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) # Third, compute entity embeddings and concatenate with word embeddings if entity_ids is None: entity_embedding_output = None else: entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) # Fourth, send embeddings through the model encoder_outputs = self.encoder( word_embedding_output, entity_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) sequence_output = encoder_outputs[0] # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseLukeModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, entity_hidden_states=encoder_outputs.entity_hidden_states, ) def get_extended_attention_mask( self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] ): """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: word_attention_mask (`torch.LongTensor`): Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. entity_attention_mask (`torch.LongTensor`, *optional*): Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ attention_mask = word_attention_mask if entity_attention_mask is not None: attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min return extended_attention_mask def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class LukeLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and masked entity prediction. """, LUKE_START_DOCSTRING, ) class LukeForMaskedLM(LukePreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.lm_head = LukeLMHead(config) self.entity_predictions = EntityPredictionHead(config) self.loss_fn = nn.CrossEntropyLoss() # Initialize weights and apply final processing self.post_init() def tie_weights(self): super().tie_weights() self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, entity_labels: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) loss = None mlm_loss = None logits = self.lm_head(outputs.last_hidden_state) if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) if loss is None: loss = mlm_loss mep_loss = None entity_logits = None if outputs.entity_last_hidden_state is not None: entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) if entity_labels is not None: mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) if loss is None: loss = mep_loss else: loss = loss + mep_loss if not return_dict: return tuple( v for v in [ loss, mlm_loss, mep_loss, logits, entity_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeMaskedLMOutput( loss=loss, mlm_loss=mlm_loss, mep_loss=mep_loss, logits=logits, entity_logits=entity_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity token) for entity classification tasks, such as Open Entity. """, LUKE_START_DOCSTRING, ) class LukeForEntityClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntityClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: person ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = outputs.entity_last_hidden_state[:, 0, :] feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntityClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity tokens) for entity pair classification tasks, such as TACRED. """, LUKE_START_DOCSTRING, ) class LukeForEntityPairClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityPairClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntityPairClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: per:cities_of_residence ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = torch.cat( [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 ) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntityPairClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks such as named entity recognition. """, LUKE_START_DOCSTRING, ) class LukeForEntitySpanClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, entity_start_positions: Optional[torch.LongTensor] = None, entity_end_positions: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntitySpanClassificationOutput]: r""" entity_start_positions (`torch.LongTensor`): The start positions of entities in the word token sequence. entity_end_positions (`torch.LongTensor`): The end positions of entities in the word token sequence. labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntitySpanClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> text = "Beyoncé lives in Los Angeles" # List all possible entity spans in the text >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens >>> entity_spans = [] >>> for i, start_pos in enumerate(word_start_positions): ... for end_pos in word_end_positions[i:]: ... entity_spans.append((start_pos, end_pos)) >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): ... if predicted_class_idx != 0: ... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx]) Beyoncé PER Los Angeles LOC ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) hidden_size = outputs.last_hidden_state.size(-1) entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) if entity_start_positions.device != outputs.last_hidden_state.device: entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device) start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) if entity_end_positions.device != outputs.last_hidden_state.device: entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device) end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 2: loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntitySpanClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LUKE_START_DOCSTRING, ) class LukeForSequenceClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pooled_output = outputs.pooler_output pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return LukeSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE Model with a token classification head on top (a linear layer on top of the hidden-states output). To solve Named-Entity Recognition (NER) task using LUKE, `LukeForEntitySpanClassification` is more suitable than this class. """, LUKE_START_DOCSTRING, ) class LukeForTokenClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config, add_pooling_layer=False) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeTokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return LukeTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LUKE_START_DOCSTRING, ) class LukeForQuestionAnswering(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: return tuple( v for v in [ total_loss, start_logits, end_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, LUKE_START_DOCSTRING, ) class LukeForMultipleChoice(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeMultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None entity_attention_mask = ( entity_attention_mask.view(-1, entity_attention_mask.size(-1)) if entity_attention_mask is not None else None ) entity_token_type_ids = ( entity_token_type_ids.view(-1, entity_token_type_ids.size(-1)) if entity_token_type_ids is not None else None ) entity_position_ids = ( entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1)) if entity_position_ids is not None else None ) outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pooled_output = outputs.pooler_output pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: return tuple( v for v in [ loss, reshaped_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/luke/modeling_luke.py/0
{ "file_path": "transformers/src/transformers/models/luke/modeling_luke.py", "repo_id": "transformers", "token_count": 43009 }
94
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import datetime import json import os import re from pathlib import Path from typing import Tuple import yaml from tqdm import tqdm from transformers.models.marian.convert_marian_to_pytorch import ( FRONT_MATTER_TEMPLATE, convert, convert_opus_name_to_hf_name, download_and_unzip, get_system_metadata, ) DEFAULT_REPO = "Tatoeba-Challenge" DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models") LANG_CODE_URL = "https://datahub.io/core/language-codes/r/language-codes-3b2.csv" ISO_URL = "https://cdn-datasets.huggingface.co/language_codes/iso-639-3.csv" ISO_PATH = "lang_code_data/iso-639-3.csv" LANG_CODE_PATH = "lang_code_data/language-codes-3b2.csv" TATOEBA_MODELS_URL = "https://object.pouta.csc.fi/Tatoeba-MT-models" class TatoebaConverter: """ Convert Tatoeba-Challenge models to huggingface format. Steps: 1. Convert numpy state dict to hf format (same code as OPUS-MT-Train conversion). 2. Rename opus model to huggingface format. This means replace each alpha3 code with an alpha2 code if a unique one exists. e.g. aav-eng -> aav-en, heb-eng -> he-en 3. Select the best model for a particular pair, parse the yml for it and write a model card. By default the best model is the one listed first in released-model-results, but it's also possible to specify the most recent one. """ def __init__(self, save_dir="marian_converted"): assert Path(DEFAULT_REPO).exists(), "need git clone [email protected]:Helsinki-NLP/Tatoeba-Challenge.git" self.download_lang_info() self.model_results = json.load(open("Tatoeba-Challenge/models/released-model-results.json")) self.alpha3_to_alpha2 = {} for line in open(ISO_PATH): parts = line.split("\t") if len(parts[0]) == 3 and len(parts[3]) == 2: self.alpha3_to_alpha2[parts[0]] = parts[3] for line in LANG_CODE_PATH: parts = line.split(",") if len(parts[0]) == 3 and len(parts[1]) == 2: self.alpha3_to_alpha2[parts[0]] = parts[1] self.model_card_dir = Path(save_dir) self.tag2name = {} for key, value in GROUP_MEMBERS.items(): self.tag2name[key] = value[0] def convert_models(self, tatoeba_ids, dry_run=False): models_to_convert = [self.parse_metadata(x) for x in tatoeba_ids] save_dir = Path("marian_ckpt") dest_dir = Path(self.model_card_dir) dest_dir.mkdir(exist_ok=True) for model in tqdm(models_to_convert): # k, prepro, download, test_set_url in tqdm(model_list): if "SentencePiece" not in model["pre-processing"]: print(f"Skipping {model['release']} because it doesn't appear to use SentencePiece") continue if not os.path.exists(save_dir / model["_name"]): download_and_unzip(f"{TATOEBA_MODELS_URL}/{model['release']}", save_dir / model["_name"]) # from convert_marian_to_pytorch opus_language_groups_to_hf = convert_opus_name_to_hf_name pair_name = opus_language_groups_to_hf(model["_name"]) convert(save_dir / model["_name"], dest_dir / f"opus-mt-{pair_name}") self.write_model_card(model, dry_run=dry_run) def expand_group_to_two_letter_codes(self, grp_name): return [self.alpha3_to_alpha2.get(x, x) for x in GROUP_MEMBERS[grp_name][1]] def is_group(self, code, name): return "languages" in name or len(GROUP_MEMBERS.get(code, [])) > 1 def get_tags(self, code, name): if len(code) == 2: assert "languages" not in name, f"{code}: {name}" return [code] elif self.is_group(code, name): group = self.expand_group_to_two_letter_codes(code) group.append(code) return group else: # zho-> zh print(f"Three letter monolingual code: {code}") return [code] def resolve_lang_code(self, src, tgt) -> Tuple[str, str]: src_tags = self.get_tags(src, self.tag2name[src]) tgt_tags = self.get_tags(tgt, self.tag2name[tgt]) return src_tags, tgt_tags @staticmethod def model_type_info_from_model_name(name): info = {"_has_backtranslated_data": False} if "1m" in name: info["_data_per_pair"] = str(1e6) if "2m" in name: info["_data_per_pair"] = str(2e6) if "4m" in name: info["_data_per_pair"] = str(4e6) if "+bt" in name: info["_has_backtranslated_data"] = True if "tuned4" in name: info["_tuned"] = re.search(r"tuned4[^-]+", name).group() return info def write_model_card(self, model_dict, dry_run=False) -> str: """ Construct card from data parsed from YAML and the model's name. upload command: aws s3 sync model_card_dir s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun """ model_dir_url = f"{TATOEBA_MODELS_URL}/{model_dict['release']}" long_pair = model_dict["_name"].split("-") assert len(long_pair) == 2, f"got a translation pair {model_dict['_name']} that doesn't appear to be a pair" short_src = self.alpha3_to_alpha2.get(long_pair[0], long_pair[0]) short_tgt = self.alpha3_to_alpha2.get(long_pair[1], long_pair[1]) model_dict["_hf_model_id"] = f"opus-mt-{short_src}-{short_tgt}" a3_src, a3_tgt = model_dict["_name"].split("-") # opus_src_tags, opus_tgt_tags = a3_src.split("+"), a3_tgt.split("+") # This messy part tries to deal with language tags in multilingual models, possibly # not all having three-letter codes resolved_src_tags, resolved_tgt_tags = self.resolve_lang_code(a3_src, a3_tgt) a2_src_tags, a2_tgt_tags = [], [] for tag in resolved_src_tags: if tag not in self.alpha3_to_alpha2: a2_src_tags.append(tag) for tag in resolved_tgt_tags: if tag not in self.alpha3_to_alpha2: a2_tgt_tags.append(tag) lang_tags = dedup(a2_src_tags + a2_tgt_tags) src_multilingual, tgt_multilingual = (len(a2_src_tags) > 1), (len(a2_tgt_tags) > 1) s, t = ",".join(a2_src_tags), ",".join(a2_tgt_tags) metadata = { "hf_name": model_dict["_name"], "source_languages": s, "target_languages": t, "opus_readme_url": f"{model_dir_url}/README.md", "original_repo": "Tatoeba-Challenge", "tags": ["translation"], "languages": lang_tags, } lang_tags = l2front_matter(lang_tags) metadata["src_constituents"] = list(GROUP_MEMBERS[a3_src][1]) metadata["tgt_constituents"] = list(GROUP_MEMBERS[a3_tgt][1]) metadata["src_multilingual"] = src_multilingual metadata["tgt_multilingual"] = tgt_multilingual backtranslated_data = "" if model_dict["_has_backtranslated_data"]: backtranslated_data = " with backtranslations" multilingual_data = "" if "_data_per_pair" in model_dict: multilingual_data = f"* data per pair in multilingual model: {model_dict['_data_per_pair']}\n" tuned = "" if "_tuned" in model_dict: tuned = f"* multilingual model tuned for: {model_dict['_tuned']}\n" model_base_filename = model_dict["release"].split("/")[-1] download = f"* download original weights: [{model_base_filename}]({model_dir_url}/{model_dict['release']})\n" langtoken = "" if tgt_multilingual: langtoken = ( "* a sentence-initial language token is required in the form of >>id<<" "(id = valid, usually three-letter target language ID)\n" ) metadata.update(get_system_metadata(DEFAULT_REPO)) scorestable = "" for k, v in model_dict.items(): if "scores" in k: this_score_table = f"* {k}\n|Test set|score|\n|---|---|\n" pairs = sorted(v.items(), key=lambda x: x[1], reverse=True) for pair in pairs: this_score_table += f"|{pair[0]}|{pair[1]}|\n" scorestable += this_score_table datainfo = "" if "training-data" in model_dict: datainfo += "* Training data: \n" for k, v in model_dict["training-data"].items(): datainfo += f" * {str(k)}: {str(v)}\n" if "validation-data" in model_dict: datainfo += "* Validation data: \n" for k, v in model_dict["validation-data"].items(): datainfo += f" * {str(k)}: {str(v)}\n" if "test-data" in model_dict: datainfo += "* Test data: \n" for k, v in model_dict["test-data"].items(): datainfo += f" * {str(k)}: {str(v)}\n" testsetfilename = model_dict["release"].replace(".zip", ".test.txt") testscoresfilename = model_dict["release"].replace(".zip", ".eval.txt") testset = f"* test set translations file: [test.txt]({model_dir_url}/{testsetfilename})\n" testscores = f"* test set scores file: [eval.txt]({model_dir_url}/{testscoresfilename})\n" # combine with Tatoeba markdown readme_url = f"{TATOEBA_MODELS_URL}/{model_dict['_name']}/README.md" extra_markdown = f""" ### {model_dict['_name']} * source language name: {self.tag2name[a3_src]} * target language name: {self.tag2name[a3_tgt]} * OPUS readme: [README.md]({readme_url}) """ content = ( f""" * model: {model_dict['modeltype']} * source language code{src_multilingual*'s'}: {', '.join(a2_src_tags)} * target language code{tgt_multilingual*'s'}: {', '.join(a2_tgt_tags)} * dataset: opus {backtranslated_data} * release date: {model_dict['release-date']} * pre-processing: {model_dict['pre-processing']} """ + multilingual_data + tuned + download + langtoken + datainfo + testset + testscores + scorestable ) content = FRONT_MATTER_TEMPLATE.format(lang_tags) + extra_markdown + content items = "\n".join([f"* {k}: {v}" for k, v in metadata.items()]) sec3 = "\n### System Info: \n" + items content += sec3 if dry_run: print("CONTENT:") print(content) print("METADATA:") print(metadata) return sub_dir = self.model_card_dir / model_dict["_hf_model_id"] sub_dir.mkdir(exist_ok=True) dest = sub_dir / "README.md" dest.open("w").write(content) for k, v in metadata.items(): if isinstance(v, datetime.date): metadata[k] = datetime.datetime.strftime(v, "%Y-%m-%d") with open(sub_dir / "metadata.json", "w", encoding="utf-8") as writeobj: json.dump(metadata, writeobj) def download_lang_info(self): Path(LANG_CODE_PATH).parent.mkdir(exist_ok=True) import wget if not os.path.exists(ISO_PATH): wget.download(ISO_URL, ISO_PATH) if not os.path.exists(LANG_CODE_PATH): wget.download(LANG_CODE_URL, LANG_CODE_PATH) def parse_metadata(self, model_name, repo_path=DEFAULT_MODEL_DIR, method="best"): p = Path(repo_path) / model_name def url_to_name(url): return url.split("/")[-1].split(".")[0] if model_name not in self.model_results: # This is not a language pair, so model results are ambiguous, go by newest method = "newest" if method == "best": # Sort by how early they appear in released-models-results results = [url_to_name(model["download"]) for model in self.model_results[model_name]] ymls = [f for f in os.listdir(p) if f.endswith(".yml") and f[:-4] in results] ymls.sort(key=lambda x: results.index(x[:-4])) metadata = yaml.safe_load(open(p / ymls[0])) metadata.update(self.model_type_info_from_model_name(ymls[0][:-4])) elif method == "newest": ymls = [f for f in os.listdir(p) if f.endswith(".yml")] # Sort by date ymls.sort( key=lambda x: datetime.datetime.strptime(re.search(r"\d\d\d\d-\d\d?-\d\d?", x).group(), "%Y-%m-%d") ) metadata = yaml.safe_load(open(p / ymls[-1])) metadata.update(self.model_type_info_from_model_name(ymls[-1][:-4])) else: raise NotImplementedError(f"Don't know argument method='{method}' to parse_metadata()") metadata["_name"] = model_name return metadata GROUP_MEMBERS = { # three letter code -> (group/language name, {constituents...} # if this language is on the target side the constituents can be used as target language codes. # if the language is on the source side they are supported natively without special codes. "aav": ("Austro-Asiatic languages", {"hoc", "hoc_Latn", "kha", "khm", "khm_Latn", "mnw", "vie", "vie_Hani"}), "afa": ( "Afro-Asiatic languages", { "acm", "afb", "amh", "apc", "ara", "arq", "ary", "arz", "hau_Latn", "heb", "kab", "mlt", "rif_Latn", "shy_Latn", "som", "thv", "tir", }, ), "afr": ("Afrikaans", {"afr"}), "alv": ( "Atlantic-Congo languages", { "ewe", "fuc", "fuv", "ibo", "kin", "lin", "lug", "nya", "run", "sag", "sna", "swh", "toi_Latn", "tso", "umb", "wol", "xho", "yor", "zul", }, ), "ara": ("Arabic", {"afb", "apc", "apc_Latn", "ara", "ara_Latn", "arq", "arq_Latn", "arz"}), "art": ( "Artificial languages", { "afh_Latn", "avk_Latn", "dws_Latn", "epo", "ido", "ido_Latn", "ile_Latn", "ina_Latn", "jbo", "jbo_Cyrl", "jbo_Latn", "ldn_Latn", "lfn_Cyrl", "lfn_Latn", "nov_Latn", "qya", "qya_Latn", "sjn_Latn", "tlh_Latn", "tzl", "tzl_Latn", "vol_Latn", }, ), "aze": ("Azerbaijani", {"aze_Latn"}), "bat": ("Baltic languages", {"lit", "lav", "prg_Latn", "ltg", "sgs"}), "bel": ("Belarusian", {"bel", "bel_Latn"}), "ben": ("Bengali", {"ben"}), "bnt": ( "Bantu languages", {"kin", "lin", "lug", "nya", "run", "sna", "swh", "toi_Latn", "tso", "umb", "xho", "zul"}, ), "bul": ("Bulgarian", {"bul", "bul_Latn"}), "cat": ("Catalan", {"cat"}), "cau": ("Caucasian languages", {"abk", "kat", "che", "ady"}), "ccs": ("South Caucasian languages", {"kat"}), "ceb": ("Cebuano", {"ceb"}), "cel": ("Celtic languages", {"gla", "gle", "bre", "cor", "glv", "cym"}), "ces": ("Czech", {"ces"}), "cpf": ("Creoles and pidgins, French‑based", {"gcf_Latn", "hat", "mfe"}), "cpp": ( "Creoles and pidgins, Portuguese-based", {"zsm_Latn", "ind", "pap", "min", "tmw_Latn", "max_Latn", "zlm_Latn"}, ), "cus": ("Cushitic languages", {"som"}), "dan": ("Danish", {"dan"}), "deu": ("German", {"deu"}), "dra": ("Dravidian languages", {"tam", "kan", "mal", "tel"}), "ell": ("Modern Greek (1453-)", {"ell"}), "eng": ("English", {"eng"}), "epo": ("Esperanto", {"epo"}), "est": ("Estonian", {"est"}), "euq": ("Basque (family)", {"eus"}), "eus": ("Basque", {"eus"}), "fin": ("Finnish", {"fin"}), "fiu": ( "Finno-Ugrian languages", { "est", "fin", "fkv_Latn", "hun", "izh", "kpv", "krl", "liv_Latn", "mdf", "mhr", "myv", "sma", "sme", "udm", "vep", "vro", }, ), "fra": ("French", {"fra"}), "gem": ( "Germanic languages", { "afr", "ang_Latn", "dan", "deu", "eng", "enm_Latn", "fao", "frr", "fry", "gos", "got_Goth", "gsw", "isl", "ksh", "ltz", "nds", "nld", "nno", "nob", "nob_Hebr", "non_Latn", "pdc", "sco", "stq", "swe", "swg", "yid", }, ), "gle": ("Irish", {"gle"}), "glg": ("Galician", {"glg"}), "gmq": ("North Germanic languages", {"dan", "nob", "nob_Hebr", "swe", "isl", "nno", "non_Latn", "fao"}), "gmw": ( "West Germanic languages", { "afr", "ang_Latn", "deu", "eng", "enm_Latn", "frr", "fry", "gos", "gsw", "ksh", "ltz", "nds", "nld", "pdc", "sco", "stq", "swg", "yid", }, ), "grk": ("Greek languages", {"grc_Grek", "ell"}), "hbs": ("Serbo-Croatian", {"hrv", "srp_Cyrl", "bos_Latn", "srp_Latn"}), "heb": ("Hebrew", {"heb"}), "hin": ("Hindi", {"hin"}), "hun": ("Hungarian", {"hun"}), "hye": ("Armenian", {"hye", "hye_Latn"}), "iir": ( "Indo-Iranian languages", { "asm", "awa", "ben", "bho", "gom", "guj", "hif_Latn", "hin", "jdt_Cyrl", "kur_Arab", "kur_Latn", "mai", "mar", "npi", "ori", "oss", "pan_Guru", "pes", "pes_Latn", "pes_Thaa", "pnb", "pus", "rom", "san_Deva", "sin", "snd_Arab", "tgk_Cyrl", "tly_Latn", "urd", "zza", }, ), "ilo": ("Iloko", {"ilo"}), "inc": ( "Indic languages", { "asm", "awa", "ben", "bho", "gom", "guj", "hif_Latn", "hin", "mai", "mar", "npi", "ori", "pan_Guru", "pnb", "rom", "san_Deva", "sin", "snd_Arab", "urd", }, ), "ine": ( "Indo-European languages", { "afr", "afr_Arab", "aln", "ang_Latn", "arg", "asm", "ast", "awa", "bel", "bel_Latn", "ben", "bho", "bjn", "bos_Latn", "bre", "bul", "bul_Latn", "cat", "ces", "cor", "cos", "csb_Latn", "cym", "dan", "deu", "dsb", "egl", "ell", "eng", "enm_Latn", "ext", "fao", "fra", "frm_Latn", "frr", "fry", "gcf_Latn", "gla", "gle", "glg", "glv", "gom", "gos", "got_Goth", "grc_Grek", "gsw", "guj", "hat", "hif_Latn", "hin", "hrv", "hsb", "hye", "hye_Latn", "ind", "isl", "ita", "jdt_Cyrl", "ksh", "kur_Arab", "kur_Latn", "lad", "lad_Latn", "lat_Grek", "lat_Latn", "lav", "lij", "lit", "lld_Latn", "lmo", "ltg", "ltz", "mai", "mar", "max_Latn", "mfe", "min", "mkd", "mwl", "nds", "nld", "nno", "nob", "nob_Hebr", "non_Latn", "npi", "oci", "ori", "orv_Cyrl", "oss", "pan_Guru", "pap", "pcd", "pdc", "pes", "pes_Latn", "pes_Thaa", "pms", "pnb", "pol", "por", "prg_Latn", "pus", "roh", "rom", "ron", "rue", "rus", "rus_Latn", "san_Deva", "scn", "sco", "sgs", "sin", "slv", "snd_Arab", "spa", "sqi", "srd", "srp_Cyrl", "srp_Latn", "stq", "swe", "swg", "tgk_Cyrl", "tly_Latn", "tmw_Latn", "ukr", "urd", "vec", "wln", "yid", "zlm_Latn", "zsm_Latn", "zza", }, ), "isl": ("Icelandic", {"isl"}), "ita": ("Italian", {"ita"}), "itc": ( "Italic languages", { "arg", "ast", "bjn", "cat", "cos", "egl", "ext", "fra", "frm_Latn", "gcf_Latn", "glg", "hat", "ind", "ita", "lad", "lad_Latn", "lat_Grek", "lat_Latn", "lij", "lld_Latn", "lmo", "max_Latn", "mfe", "min", "mwl", "oci", "pap", "pcd", "pms", "por", "roh", "ron", "scn", "spa", "srd", "tmw_Latn", "vec", "wln", "zlm_Latn", "zsm_Latn", }, ), "jpn": ("Japanese", {"jpn", "jpn_Bopo", "jpn_Hang", "jpn_Hani", "jpn_Hira", "jpn_Kana", "jpn_Latn", "jpn_Yiii"}), "jpx": ("Japanese (family)", {"jpn"}), "kat": ("Georgian", {"kat"}), "kor": ("Korean", {"kor_Hani", "kor_Hang", "kor_Latn", "kor"}), "lav": ("Latvian", {"lav"}), "lit": ("Lithuanian", {"lit"}), "mkd": ("Macedonian", {"mkd"}), "mkh": ("Mon-Khmer languages", {"vie_Hani", "mnw", "vie", "kha", "khm_Latn", "khm"}), "msa": ("Malay (macrolanguage)", {"zsm_Latn", "ind", "max_Latn", "zlm_Latn", "min"}), "mul": ( "Multiple languages", { "abk", "acm", "ady", "afb", "afh_Latn", "afr", "akl_Latn", "aln", "amh", "ang_Latn", "apc", "ara", "arg", "arq", "ary", "arz", "asm", "ast", "avk_Latn", "awa", "aze_Latn", "bak", "bam_Latn", "bel", "bel_Latn", "ben", "bho", "bod", "bos_Latn", "bre", "brx", "brx_Latn", "bul", "bul_Latn", "cat", "ceb", "ces", "cha", "che", "chr", "chv", "cjy_Hans", "cjy_Hant", "cmn", "cmn_Hans", "cmn_Hant", "cor", "cos", "crh", "crh_Latn", "csb_Latn", "cym", "dan", "deu", "dsb", "dtp", "dws_Latn", "egl", "ell", "enm_Latn", "epo", "est", "eus", "ewe", "ext", "fao", "fij", "fin", "fkv_Latn", "fra", "frm_Latn", "frr", "fry", "fuc", "fuv", "gan", "gcf_Latn", "gil", "gla", "gle", "glg", "glv", "gom", "gos", "got_Goth", "grc_Grek", "grn", "gsw", "guj", "hat", "hau_Latn", "haw", "heb", "hif_Latn", "hil", "hin", "hnj_Latn", "hoc", "hoc_Latn", "hrv", "hsb", "hun", "hye", "iba", "ibo", "ido", "ido_Latn", "ike_Latn", "ile_Latn", "ilo", "ina_Latn", "ind", "isl", "ita", "izh", "jav", "jav_Java", "jbo", "jbo_Cyrl", "jbo_Latn", "jdt_Cyrl", "jpn", "kab", "kal", "kan", "kat", "kaz_Cyrl", "kaz_Latn", "kek_Latn", "kha", "khm", "khm_Latn", "kin", "kir_Cyrl", "kjh", "kpv", "krl", "ksh", "kum", "kur_Arab", "kur_Latn", "lad", "lad_Latn", "lao", "lat_Latn", "lav", "ldn_Latn", "lfn_Cyrl", "lfn_Latn", "lij", "lin", "lit", "liv_Latn", "lkt", "lld_Latn", "lmo", "ltg", "ltz", "lug", "lzh", "lzh_Hans", "mad", "mah", "mai", "mal", "mar", "max_Latn", "mdf", "mfe", "mhr", "mic", "min", "mkd", "mlg", "mlt", "mnw", "moh", "mon", "mri", "mwl", "mww", "mya", "myv", "nan", "nau", "nav", "nds", "niu", "nld", "nno", "nob", "nob_Hebr", "nog", "non_Latn", "nov_Latn", "npi", "nya", "oci", "ori", "orv_Cyrl", "oss", "ota_Arab", "ota_Latn", "pag", "pan_Guru", "pap", "pau", "pdc", "pes", "pes_Latn", "pes_Thaa", "pms", "pnb", "pol", "por", "ppl_Latn", "prg_Latn", "pus", "quc", "qya", "qya_Latn", "rap", "rif_Latn", "roh", "rom", "ron", "rue", "run", "rus", "sag", "sah", "san_Deva", "scn", "sco", "sgs", "shs_Latn", "shy_Latn", "sin", "sjn_Latn", "slv", "sma", "sme", "smo", "sna", "snd_Arab", "som", "spa", "sqi", "srp_Cyrl", "srp_Latn", "stq", "sun", "swe", "swg", "swh", "tah", "tam", "tat", "tat_Arab", "tat_Latn", "tel", "tet", "tgk_Cyrl", "tha", "tir", "tlh_Latn", "tly_Latn", "tmw_Latn", "toi_Latn", "ton", "tpw_Latn", "tso", "tuk", "tuk_Latn", "tur", "tvl", "tyv", "tzl", "tzl_Latn", "udm", "uig_Arab", "uig_Cyrl", "ukr", "umb", "urd", "uzb_Cyrl", "uzb_Latn", "vec", "vie", "vie_Hani", "vol_Latn", "vro", "war", "wln", "wol", "wuu", "xal", "xho", "yid", "yor", "yue", "yue_Hans", "yue_Hant", "zho", "zho_Hans", "zho_Hant", "zlm_Latn", "zsm_Latn", "zul", "zza", }, ), "nic": ( "Niger-Kordofanian languages", { "bam_Latn", "ewe", "fuc", "fuv", "ibo", "kin", "lin", "lug", "nya", "run", "sag", "sna", "swh", "toi_Latn", "tso", "umb", "wol", "xho", "yor", "zul", }, ), "nld": ("Dutch", {"nld"}), "nor": ("Norwegian", {"nob", "nno"}), "phi": ("Philippine languages", {"ilo", "akl_Latn", "war", "hil", "pag", "ceb"}), "pol": ("Polish", {"pol"}), "por": ("Portuguese", {"por"}), "pqe": ( "Eastern Malayo-Polynesian languages", {"fij", "gil", "haw", "mah", "mri", "nau", "niu", "rap", "smo", "tah", "ton", "tvl"}, ), "roa": ( "Romance languages", { "arg", "ast", "cat", "cos", "egl", "ext", "fra", "frm_Latn", "gcf_Latn", "glg", "hat", "ind", "ita", "lad", "lad_Latn", "lij", "lld_Latn", "lmo", "max_Latn", "mfe", "min", "mwl", "oci", "pap", "pms", "por", "roh", "ron", "scn", "spa", "tmw_Latn", "vec", "wln", "zlm_Latn", "zsm_Latn", }, ), "ron": ("Romanian", {"ron"}), "run": ("Rundi", {"run"}), "rus": ("Russian", {"rus"}), "sal": ("Salishan languages", {"shs_Latn"}), "sem": ("Semitic languages", {"acm", "afb", "amh", "apc", "ara", "arq", "ary", "arz", "heb", "mlt", "tir"}), "sla": ( "Slavic languages", { "bel", "bel_Latn", "bos_Latn", "bul", "bul_Latn", "ces", "csb_Latn", "dsb", "hrv", "hsb", "mkd", "orv_Cyrl", "pol", "rue", "rus", "slv", "srp_Cyrl", "srp_Latn", "ukr", }, ), "slv": ("Slovenian", {"slv"}), "spa": ("Spanish", {"spa"}), "swe": ("Swedish", {"swe"}), "taw": ("Tai", {"lao", "tha"}), "tgl": ("Tagalog", {"tgl_Latn"}), "tha": ("Thai", {"tha"}), "trk": ( "Turkic languages", { "aze_Latn", "bak", "chv", "crh", "crh_Latn", "kaz_Cyrl", "kaz_Latn", "kir_Cyrl", "kjh", "kum", "ota_Arab", "ota_Latn", "sah", "tat", "tat_Arab", "tat_Latn", "tuk", "tuk_Latn", "tur", "tyv", "uig_Arab", "uig_Cyrl", "uzb_Cyrl", "uzb_Latn", }, ), "tur": ("Turkish", {"tur"}), "ukr": ("Ukrainian", {"ukr"}), "urd": ("Urdu", {"urd"}), "urj": ( "Uralic languages", { "est", "fin", "fkv_Latn", "hun", "izh", "kpv", "krl", "liv_Latn", "mdf", "mhr", "myv", "sma", "sme", "udm", "vep", "vro", }, ), "vie": ("Vietnamese", {"vie", "vie_Hani"}), "war": ("Waray (Philippines)", {"war"}), "zho": ( "Chinese", { "cjy_Hans", "cjy_Hant", "cmn", "cmn_Bopo", "cmn_Hang", "cmn_Hani", "cmn_Hans", "cmn_Hant", "cmn_Hira", "cmn_Kana", "cmn_Latn", "cmn_Yiii", "gan", "hak_Hani", "lzh", "lzh_Bopo", "lzh_Hang", "lzh_Hani", "lzh_Hans", "lzh_Hira", "lzh_Kana", "lzh_Yiii", "nan", "nan_Hani", "wuu", "wuu_Bopo", "wuu_Hani", "wuu_Latn", "yue", "yue_Bopo", "yue_Hang", "yue_Hani", "yue_Hans", "yue_Hant", "yue_Hira", "yue_Kana", "zho", "zho_Hans", "zho_Hant", }, ), "zle": ("East Slavic languages", {"bel", "orv_Cyrl", "bel_Latn", "rus", "ukr", "rue"}), "zls": ("South Slavic languages", {"bos_Latn", "bul", "bul_Latn", "hrv", "mkd", "slv", "srp_Cyrl", "srp_Latn"}), "zlw": ("West Slavic languages", {"csb_Latn", "dsb", "hsb", "pol", "ces"}), } def l2front_matter(langs): return "".join(f"- {l}\n" for l in langs) def dedup(lst): """Preservers order""" new_lst = [] for item in lst: if not item or item in new_lst: continue else: new_lst.append(item) return new_lst if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-m", "--models", action="append", help="<Required> Set flag", required=True, nargs="+", dest="models" ) parser.add_argument("-save_dir", "--save_dir", default="marian_converted", help="where to save converted models") args = parser.parse_args() resolver = TatoebaConverter(save_dir=args.save_dir) resolver.convert_models(args.models[0])
transformers/src/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py", "repo_id": "transformers", "token_count": 22808 }
95
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import re import sys import types import torch from transformers import AutoTokenizer, GPT2Config from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint def add_checkpointing_args(parser): parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository") parser.add_argument( "--convert_checkpoint_from_megatron_to_transformers", action="store_true", help=( "If True, convert a Megatron checkpoint to a Transformers checkpoint. " "If False, convert a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--load_path", type=str, required=True, help="Path to the checkpoint to convert.", ) parser.add_argument( "--save_path", type=str, required=True, help="Path to the converted checkpoint.", ) parser.add_argument("--print-checkpoint-structure", action="store_true") return parser def add_megatron_checkpoint_args(parser): parser.add_argument( "--target_tensor_model_parallel_size", type=int, default=1, help=( "The tensor model parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_pipeline_model_parallel_size", type=int, default=1, help=( "The pipeline model parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_data_parallel_size", type=int, default=1, help=( "The data parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_params_dtype", type=str, default="fp32", help=( "The dtype of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--make_vocab_size_divisible_by", type=int, default=128, help=( "Pad the vocab size to be divisible by this value. " "This is added for computational efficieny reasons. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--use_distributed_optimizer", action="store_true", help=( "If True, use the distributed optimizer. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) return parser def add_transformers_checkpoint_args(parser): parser.add_argument( "--tokenizer_name", type=str, default=None, help=( "The name of the pre-trained tokenizer to save. " "If not None, the tokenizer will be saved. " "Only used when converting a Megatron checkpoint to a Transformers checkpoint." ), ) parser.add_argument( "--max_shard_size", type=str, default="10GB", help=( "The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size " "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). " "Only used when converting a Megatron checkpoint to a Transformers checkpoint." ), ) return parser # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()} tensor_parallel_params = [ # megatron-lm layers to merge across tp ranks "self_attention.query_key_value.weight", "self_attention.query_key_value.bias", "self_attention.dense.weight", "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_4h_to_h.weight", # deprecated "attention.query_key_value.weight", "attention.query_key_value.bias", "attention.dense.weight", # transformers layers to split across tp ranks "attn.c_attn.weight", "attn.c_attn.bias", "attn.c_proj.weight", "mlp.c_fc.weight", "mlp.c_fc.bias", "mlp.c_proj.weight", ] def recursive_print(name, val, spaces=0): """ Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py` Args: name (str): the name of the current tensor parameter val (Tuple(int)): the shape of the current tensor parameter spaces (int): the number of spaces to print before the output for a nested structure """ # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def megatron_to_transformers_fix_query_key_value_ordering( param, checkpoint_version, num_splits, num_heads, hidden_size ): """ Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints: https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2. This function is taken from `convert_megatron_gpt2_checkpoint.py` Args: param (torch.Tensor): the tensor to permute checkpoint_version (int): the version of the checkpoint. num_splits (int): the number of projections, usually 3 for (Query, Key, Value) num_heads (int): the number of attention heads hidden_size (int): the hidden size per head """ input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def transformers_to_megatron_fix_query_key_value_ordering( param, checkpoint_version, num_splits, num_heads, hidden_size ): """ Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version 1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the self-attention block, the param needs to be already transposed before calling this function. Args: param (torch.Tensor): the tensor to permute checkpoint_version (int): the version of the checkpoint. num_splits (int): the number of projections, usually 3 for (Query, Key, Value) num_heads (int): the number of attention heads hidden_size (int): the hidden size per head """ # Input is [num_splits * num_heads * hidden_size, :] input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:] param = param.view(*current_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:] param = param.view(*current_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def merge_transformers_sharded_states(path, num_checkpoints): """ Merge sharded checkpoints from transformers into a single checkpoint. Args: path (str): the path to the sharded checkpoints num_checkpoints (int): the number of checkpoints to merge """ state_dict = {} for i in range(1, num_checkpoints + 1): checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin") current_chunk = torch.load(checkpoint_path, map_location="cpu") state_dict.update(current_chunk) return state_dict def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank): """ Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline parallel size and pipeline parallel rank. Args: args (argparse.Namespace): the arguments to the script tp_size (int): the tensor parallel size pp_size (int): the pipeline parallel size pp_rank (int): the pipeline parallel rank """ tp_state_dicts = [] for i in range(tp_size): sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}" for checkpoint_name in ["model_optim_rng.pt", "model_rng.pt"]: checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name) if os.path.isfile(checkpoint_path): break state_dict = torch.load(checkpoint_path, map_location="cpu") tp_state_dicts.append(state_dict) return tp_state_dicts def get_element_from_dict_by_path(d, path): """ Get element from dictionary by path. If element is not present, recursively add empty dictionaries. Args: d (dict): the dictionary to get the element from path (list): the path to the element which is delimited by "." """ path = path.split(".") for k in path: if k not in d: d[k] = {} d = d[k] return d def convert_checkpoint_from_megatron_to_transformers(args): """ Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of `convert_megatron_gpt2_checkpoint.py` Args: args (argparse.Namespace): the arguments to the script """ # Load Megatron-LM checkpoint arguments from the state dict sub_dirs = os.listdir(args.load_path) possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"] for sub_dir in possible_sub_dirs: if sub_dir in sub_dirs: rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0] rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name) break print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}") state_dict = torch.load(rank0_checkpoint_path, map_location="cpu") megatron_args = state_dict.get("args", None) if megatron_args is None: raise ValueError( "Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints" " containing all the megatron arguments. This is because it loads all config related to model" " architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to" " manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron" " arguments to use this utility." ) # Create Transformers GPT2 config from Megatron-LM arguments if megatron_args is not None: if megatron_args.bias_gelu_fusion: activation_function = "gelu_fast" elif megatron_args.openai_gelu: activation_function = "gelu_new" else: activation_function = "gelu" else: # in the very early days this used to be "gelu_new" activation_function = "gelu_new" vocab_size = ( megatron_args.padded_vocab_size if getattr(megatron_args, "orig_vocab_size", None) is None else megatron_args.orig_vocab_size ) print(vocab_size) config = GPT2Config( vocab_size=vocab_size, n_positions=megatron_args.max_position_embeddings, n_embd=megatron_args.hidden_size, n_layer=megatron_args.num_layers, n_head=megatron_args.num_attention_heads, n_inner=megatron_args.ffn_hidden_size, activation_function=activation_function, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, scale_attn_weights=True, use_cache=True, bos_token_id=vocab_size - 1, eos_token_id=vocab_size - 1, architectures=["GPT2LMHeadModel"], ) output_state_dict = {} checkpoint_version = state_dict.get("checkpoint_version", 0.0) tp_size = megatron_args.tensor_model_parallel_size pp_size = megatron_args.pipeline_model_parallel_size dtype = torch.float32 # The regex to extract layer names. layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # Convert. print("Converting") # Embeddings print("Converting embeddings") tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0) # Convert and store the position embeddings. position_embeddings = get_element_from_dict_by_path( tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight" ) output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype) # Convert and store the word embeddings. word_embeddings = torch.cat( [ get_element_from_dict_by_path( tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight" ) for tp_rank in range(tp_size) ], dim=0, ) word_embeddings = word_embeddings[:vocab_size].to(dtype) output_state_dict["transformer.wte.weight"] = word_embeddings # Transformer Layers print("Converting transformer layers") # The number of heads. heads = config.n_head # The hidden_size per head. hidden_size_per_head = config.n_embd // config.n_head n_positions = config.n_positions num_layers = config.num_hidden_layers // pp_size for pp_rank in range(pp_size): if pp_size > 0: print(f"Converting pipeline parallel rank {pp_rank}") tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank) # The transformer. path = ( "model.language_model.transformer" if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys() else "model.language_model.encoder" ) # Extract the layers. for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) + pp_rank * num_layers # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"transformer.h.{layer_idx}" if op_name + "." + weight_or_bias not in tensor_parallel_params: params = val.to(dtype) else: dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0 params = torch.cat( [val] + [ get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key] for tp_rank in range(1, tp_size) ], dim=dim, ).to(dtype) # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "ln_1" if op_name.startswith("input") else "ln_2" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view( 1, 1, n_positions, n_positions ) output_state_dict[layer_name + ".attn.bias"] = causal_mask # Insert a "dummy" tensor for masked_bias. masked_bias = torch.tensor(-1e4, dtype=dtype) output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias out_val = megatron_to_transformers_fix_query_key_value_ordering( params, checkpoint_version, 3, heads, hidden_size_per_head, ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. out_val = out_val.transpose(0, 1).contiguous() # Store. output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": out_val = megatron_to_transformers_fix_query_key_value_ordering( params, checkpoint_version, 3, heads, hidden_size_per_head ) # Store. No change of shape. output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val # Transpose the weights. elif weight_or_bias == "weight": out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1) # Copy the bias. elif weight_or_bias == "bias": out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + "bias"] = params if config.n_layer != (layer_idx + 1): raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}") # The final layernorm. print("Converting final layernorm") params = get_element_from_dict_by_path(tp_state_dicts[0], str(path)) output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype) output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype) # For LM head, transformers' wants the matrix to weight embeddings. print("Converting LM head") output_state_dict["lm_head.weight"] = word_embeddings.to(dtype) # It should be done! print("Conversion from Megatron-LM to Transformers is done!") # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, output_state_dict) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if args.tokenizer_name is None: tokenizer_name = "openai-community/gpt2" else: tokenizer_name = args.tokenizer_name tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) tokenizer_class = type(tokenizer).__name__ config.tokenizer_class = tokenizer_class # Store the config to file. print("Saving config") config.save_pretrained(args.save_path) # Save tokenizer based on args if args.tokenizer_name is not None: print(f"Adding {tokenizer_class} tokenizer files") tokenizer.save_pretrained(args.save_path) # Store the state_dict to file. max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size shards, index = shard_checkpoint(output_state_dict, max_shard_size=max_shard_size) # Save the model for shard_file, shard in shards.items(): torch.save(shard, os.path.join(args.save_path, shard_file)) if index is None: print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}") else: save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) print( f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def convert_checkpoint_from_transformers_to_megatron(args): """ Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers which can have multiple shards. Args: args (argparse.Namespace): the arguments to the script """ os.makedirs(args.save_path, exist_ok=True) # Search in directory above this sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) if args.megatron_path is not None: sys.path.insert(0, args.megatron_path) try: from megatron.tokenizer.tokenizer import _vocab_size_with_padding except ModuleNotFoundError: print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.") exit(1) # load the transformers model state dict and config sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")] if len(sub_dirs) == 1: checkpoint_name = "pytorch_model.bin" state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu") else: num_checkpoints = len(sub_dirs) - 1 state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints) config = GPT2Config.from_pretrained(args.load_path) # Saving the tracker file tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt") with open(tracker_filepath, "w") as f: f.write("release") # create `release` dir in args.load_path release_dir = os.path.join(args.save_path, "release") os.makedirs(release_dir, exist_ok=True) # megatron args megatron_args = { "orig_vocab_size": config.vocab_size, "max_position_embeddings": config.n_positions, "hidden_size": config.n_embd, "num_layers": config.n_layer, "num_attention_heads": config.n_head, "ffn_hidden_size": config.n_inner, "tensor_model_parallel_size": args.target_tensor_model_parallel_size, "pipeline_model_parallel_size": args.target_pipeline_model_parallel_size, "data_parallel_size": args.target_data_parallel_size, "make_vocab_size_divisible_by": args.make_vocab_size_divisible_by, "rank": 0, "tokenizer_type": "GPT2BPETokenizer", } if config.activation_function == "gelu": megatron_args["bias_gelu_fusion"] = False megatron_args["openai_gelu"] = False elif config.activation_function == "gelu_fast": megatron_args["bias_gelu_fusion"] = True megatron_args["openai_gelu"] = False elif config.activation_function == "gelu_new": megatron_args["bias_gelu_fusion"] = False megatron_args["openai_gelu"] = True margs = types.SimpleNamespace() for k, v in megatron_args.items(): setattr(margs, k, v) # params dtype if args.target_params_dtype == "fp16": dtype = torch.float16 elif args.target_params_dtype == "bf16": dtype = torch.bfloat16 else: dtype = torch.float32 setattr(margs, "params_dtype", dtype) # save dummy optim state dict dummy_optim_state_dict = {} dummy_optim_state_dict["optimizer"] = { "step": 0, "param_groups": [ { "lr": 0.0, "beta1": 0.0, "beta2": 0.0, "eps": 0.0, "weight_decay": 0.0, "correct_bias": False, "params": [], } ], } if args.use_distributed_optimizer: for i in range(args.target_pipeline_model_parallel_size): for j in range(args.target_tensor_model_parallel_size): for k in range(args.target_data_parallel_size): if args.target_pipeline_model_parallel_size == 1: checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}" else: checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}" checkpoint_dir = os.path.join(release_dir, checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) torch.save( dummy_optim_state_dict, os.path.join(checkpoint_dir, "optim.pt"), ) # Convert. print("Converting") output_state_dict = [] for i in range(args.target_tensor_model_parallel_size): output_state_dict.append({}) # Embedding layer print("converting embedding layer") pos_embedding = state_dict["transformer.wpe.weight"].to(dtype) word_embedding = state_dict["transformer.wte.weight"].to(dtype) orig_vocab_size = config.vocab_size padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs) setattr(margs, "padded_vocab_size", padded_vocab_size) # Cut out extra padding we don't need if orig_vocab_size > padded_vocab_size: full_word_embed = word_embedding[0:padded_vocab_size, :] # Expanding embedding to larger size by replicating final entry elif orig_vocab_size < padded_vocab_size: padding_size = padded_vocab_size - orig_vocab_size full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1))) # Same size! else: full_word_embed = word_embedding # Split into new tensor model parallel sizes out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0) for i in range(args.target_tensor_model_parallel_size): pos_emb_dict = get_element_from_dict_by_path( output_state_dict[i], "model.language_model.embedding.position_embeddings" ) pos_emb_dict["weight"] = pos_embedding word_emb_dict = get_element_from_dict_by_path( output_state_dict[i], "model.language_model.embedding.word_embeddings" ) word_emb_dict["weight"] = out_word_embed[i].clone() # Transformer layers print("converting transformer layers") if config.num_attention_heads % args.target_tensor_model_parallel_size != 0: raise ValueError( f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism" f" ({args.target_tensor_model_parallel_size})" ) if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0: raise ValueError( f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism" f" ({args.target_pipeline_model_parallel_size})" ) num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The number of heads. heads = config.n_head # The hidden_size per head. hidden_size_per_head = config.n_embd // config.n_head for pp_rank in range(args.target_pipeline_model_parallel_size): layer_offset = pp_rank * num_layers if pp_rank > 0: output_state_dict = [] for i in range(args.target_tensor_model_parallel_size): output_state_dict.append({}) for layer in range(num_layers): pp_layer_id = layer + layer_offset layers_to_copy = [ layer_name for layer_name in state_dict.keys() if layer_name.startswith(f"transformer.h.{pp_layer_id}.") ] for layer_name in layers_to_copy: m = layer_re.match(layer_name) # Stop if that's not a layer if m is None: break # The index of the layer. _ = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) params = state_dict[layer_name].to(dtype) # handle layernorm if op_name.startswith("ln"): out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm" layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # handle attention K, V, Q weights elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight": # transformers stores D X (3*D) but Megatron-LM expects (3*D) X D. params = params.transpose(0, 1).contiguous() params = transformers_to_megatron_fix_query_key_value_ordering( params, 3.0, 3, heads, hidden_size_per_head, ) layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}" # handle attention K, V, Q bias elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias": params = transformers_to_megatron_fix_query_key_value_ordering( params, 3.0, 3, heads, hidden_size_per_head, ) layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}" # handle attention and mlp weights elif weight_or_bias == "weight": out_name = transformers_to_megatron.get(op_name, None) if out_name is None: continue params = params.transpose(0, 1) layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # handle attention and mlp bias elif weight_or_bias == "bias": out_name = transformers_to_megatron.get(op_name, None) if out_name is None: continue layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # skip else: continue if op_name + "." + weight_or_bias in tensor_parallel_params: dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0 params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim) for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder") params_dict[layer_name] = ( params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params ) if pp_rank == args.target_pipeline_model_parallel_size - 1: # handle final layernorm for weight_or_bias in ["weight", "bias"]: params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype) layer_name = f"final_layernorm.{weight_or_bias}" for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder") params_dict[layer_name] = params # add the LM head for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head") params_dict["weight"] = out_word_embed[i].clone() # saving the state dict as per the tp_rank and pp_rank for tp_rank in range(args.target_tensor_model_parallel_size): output_state_dict[tp_rank]["checkpoint_version"] = 3.0 output_state_dict[tp_rank]["args"] = margs checkpoint_dir = ( f"mp_rank_{tp_rank:02d}" if args.target_pipeline_model_parallel_size == 1 else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}" ) if args.use_distributed_optimizer: checkpoint_name = "model_rng.pt" else: checkpoint_name = "model_optim_rng.pt" output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"] checkpoint_dir = os.path.join(release_dir, checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name) if args.print_checkpoint_structure: print( f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank" f" {pp_rank}:" ) recursive_print(None, output_state_dict[tp_rank]) torch.save(output_state_dict[tp_rank], checkpoint_path) def main(): parser = argparse.ArgumentParser() parser = add_checkpointing_args(parser) parser = add_megatron_checkpoint_args(parser) parser = add_transformers_checkpoint_args(parser) args = parser.parse_args() if args.convert_checkpoint_from_megatron_to_transformers: convert_checkpoint_from_megatron_to_transformers(args) else: convert_checkpoint_from_transformers_to_megatron(args) if __name__ == "__main__": main()
transformers/src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py/0
{ "file_path": "transformers/src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py", "repo_id": "transformers", "token_count": 16490 }
96
# coding=utf-8 # Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """ PyTorch MobileViTV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilevitv2 import MobileViTV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256" _EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "apple/mobilevitv2-1.0-imagenet1k-256" # See all MobileViTV2 models at https://huggingface.co/models?filter=mobilevitv2 ] # Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float: return max(min_val, min(max_val, value)) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2 class MobileViTV2ConvLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2 class MobileViTV2InvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2 class MobileViTV2MobileNetLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTV2LinearSelfAttention(nn.Module): """ This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper: https://arxiv.org/abs/2206.02680 Args: config (`MobileVitv2Config`): Model configuration object embed_dim (`int`): `input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)` """ def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None: super().__init__() self.qkv_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=1 + (2 * embed_dim), bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.attn_dropout = nn.Dropout(p=config.attn_dropout) self.out_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=embed_dim, bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.embed_dim = embed_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches) qkv = self.qkv_proj(hidden_states) # Project hidden_states into query, key and value # Query --> [batch_size, 1, num_pixels_in_patch, num_patches] # value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1) # apply softmax along num_patches dimension context_scores = torch.nn.functional.softmax(query, dim=-1) context_scores = self.attn_dropout(context_scores) # Compute context vector # [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches] context_vector = key * context_scores # [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1] context_vector = torch.sum(context_vector, dim=-1, keepdim=True) # combine context vector with values # [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] out = torch.nn.functional.relu(value) * context_vector.expand_as(value) out = self.out_proj(out) return out class MobileViTV2FFN(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, ffn_dropout: float = 0.0, ) -> None: super().__init__() self.conv1 = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=ffn_latent_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=True, ) self.dropout1 = nn.Dropout(ffn_dropout) self.conv2 = MobileViTV2ConvLayer( config=config, in_channels=ffn_latent_dim, out_channels=embed_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=False, ) self.dropout2 = nn.Dropout(ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv1(hidden_states) hidden_states = self.dropout1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.dropout2(hidden_states) return hidden_states class MobileViTV2TransformerLayer(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, dropout: float = 0.0, ) -> None: super().__init__() self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.attention = MobileViTV2LinearSelfAttention(config, embed_dim) self.dropout1 = nn.Dropout(p=dropout) self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layernorm_1_out = self.layernorm_before(hidden_states) attention_output = self.attention(layernorm_1_out) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.ffn(layer_output) layer_output = layer_output + hidden_states return layer_output class MobileViTV2Transformer(nn.Module): def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None: super().__init__() ffn_multiplier = config.ffn_multiplier ffn_dims = [ffn_multiplier * d_model] * n_layers # ensure that dims are multiple of 16 ffn_dims = [int((d // 16) * 16) for d in ffn_dims] self.layer = nn.ModuleList() for block_idx in range(n_layers): transformer_layer = MobileViTV2TransformerLayer( config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx] ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTV2Layer(nn.Module): """ MobileViTV2 layer: https://arxiv.org/abs/2206.02680 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, attn_unit_dim: int, n_attn_blocks: int = 2, dilation: int = 1, stride: int = 2, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size cnn_out_dim = attn_unit_dim if stride == 2: self.downsampling_layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None # Local representations self.conv_kxk = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, groups=in_channels, ) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=cnn_out_dim, kernel_size=1, use_normalization=False, use_activation=False, ) # Global representations self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks) # self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps) self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps) # Fusion self.conv_projection = MobileViTV2ConvLayer( config, in_channels=cnn_out_dim, out_channels=in_channels, kernel_size=1, use_normalization=True, use_activation=False, ) def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]: batch_size, in_channels, img_height, img_width = feature_map.shape patches = nn.functional.unfold( feature_map, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1) return patches, (img_height, img_width) def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor: batch_size, in_dim, patch_size, n_patches = patches.shape patches = patches.reshape(batch_size, in_dim * patch_size, n_patches) feature_map = nn.functional.fold( patches, output_size=output_size, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) return feature_map def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, output_size = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps # [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width] features = self.folding(patches, output_size) features = self.conv_projection(features) return features class MobileViTV2Encoder(nn.Module): def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16) layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8) layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8) layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8) layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8) layer_1 = MobileViTV2MobileNetLayer( config, in_channels=layer_0_dim, out_channels=layer_1_dim, stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTV2MobileNetLayer( config, in_channels=layer_1_dim, out_channels=layer_2_dim, stride=2, num_stages=2, ) self.layer.append(layer_2) layer_3 = MobileViTV2Layer( config, in_channels=layer_2_dim, out_channels=layer_3_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[0], ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTV2Layer( config, in_channels=layer_3_dim, out_channels=layer_4_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[1], dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTV2Layer( config, in_channels=layer_4_dim, out_channels=layer_5_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[2], dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2 class MobileViTV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTV2Config base_model_prefix = "mobilevitv2" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILEVITV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVITV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.", MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2Model(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) self.conv_stem = MobileViTV2ConvLayer( config, in_channels=config.num_channels, out_channels=layer_0_dim, kernel_size=3, stride=2, use_normalization=True, use_activation=True, ) self.encoder = MobileViTV2Encoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevitv2_layer = self.encoder.layer[layer_index] if isinstance(mobilevitv2_layer, MobileViTV2Layer): for transformer_layer in mobilevitv2_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = encoder_outputs[0] # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config) out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension # Classifier head self.classifier = ( nn.Linear(in_features=out_channels, out_features=config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2 class MobileViTV2ASPPPooling(nn.Module): def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTV2ASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension in_channels = encoder_out_channels out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTV2ConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2 class MobileViTV2DeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.aspp = MobileViTV2ASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTV2ConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config, expand_output=False) self.segmentation_head = MobileViTV2DeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevitv2( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
transformers/src/transformers/models/mobilevitv2/modeling_mobilevitv2.py/0
{ "file_path": "transformers/src/transformers/models/mobilevitv2/modeling_mobilevitv2.py", "repo_id": "transformers", "token_count": 17368 }
97
# coding=utf-8 # Copyright 2021 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax mT5 model.""" import jax.numpy as jnp from ...utils import logging from ..t5.modeling_flax_t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model from .configuration_mt5 import MT5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids class FlaxMT5Model(FlaxT5Model): r""" This class overrides [`FlaxT5Model`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import FlaxMT5Model, AutoTokenizer >>> model = FlaxMT5Model.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> summary = "Weiter Verhandlung in Syrien." >>> inputs = tokenizer(article, return_tensors="np") >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids) >>> hidden_states = outputs.last_hidden_state ```""" model_type = "mt5" config_class = MT5Config class FlaxMT5EncoderModel(FlaxT5EncoderModel): r""" This class overrides [`FlaxT5EncoderModel`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import FlaxT5EncoderModel, AutoTokenizer >>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> summary = "Weiter Verhandlung in Syrien." >>> inputs = tokenizer(article, return_tensors="np") >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids >>> outputs = model(input_ids=inputs["input_ids"]) >>> hidden_states = outputs.last_hidden_state ```""" model_type = "mt5" config_class = MT5Config class FlaxMT5ForConditionalGeneration(FlaxT5ForConditionalGeneration): r""" This class overrides [`FlaxT5ForConditionalGeneration`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer >>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> summary = "Weiter Verhandlung in Syrien." >>> inputs = tokenizer(article, return_tensors="np") >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids >>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids) >>> logits = outputs.logits ```""" model_type = "mt5" config_class = MT5Config
transformers/src/transformers/models/mt5/modeling_flax_mt5.py/0
{ "file_path": "transformers/src/transformers/models/mt5/modeling_flax_mt5.py", "repo_id": "transformers", "token_count": 1465 }
98
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_nezha"] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/nezha/__init__.py/0
{ "file_path": "transformers/src/transformers/models/nezha/__init__.py", "repo_id": "transformers", "token_count": 899 }
99
# coding=utf-8 # Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Nystromformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "uw-madison/nystromformer-512": "https://huggingface.co/uw-madison/nystromformer-512/resolve/main/config.json", # See all Nystromformer models at https://huggingface.co/models?filter=nystromformer } class NystromformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nystromformer [uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30000): Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NystromformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`]. segment_means_seq_len (`int`, *optional*, defaults to 64): Sequence length used in segment-means. num_landmarks (`int`, *optional*, defaults to 64): The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention matrix. conv_kernel_size (`int`, *optional*, defaults to 65): The kernel size of depthwise convolution used in Nystrom approximation. inv_coeff_init_option (`bool`, *optional*, defaults to `False`): Whether or not to use exact coefficient computation for the initial values for the iterative method of calculating the Moore-Penrose inverse of a matrix. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import NystromformerModel, NystromformerConfig >>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration >>> configuration = NystromformerConfig() >>> # Initializing a model from the uw-madison/nystromformer-512 style configuration >>> model = NystromformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "nystromformer" def __init__( self, vocab_size=30000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=510, type_vocab_size=2, segment_means_seq_len=64, num_landmarks=64, conv_kernel_size=65, inv_coeff_init_option=False, initializer_range=0.02, layer_norm_eps=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.segment_means_seq_len = segment_means_seq_len self.num_landmarks = num_landmarks self.conv_kernel_size = conv_kernel_size self.inv_coeff_init_option = inv_coeff_init_option self.layer_norm_eps = layer_norm_eps super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
transformers/src/transformers/models/nystromformer/configuration_nystromformer.py/0
{ "file_path": "transformers/src/transformers/models/nystromformer/configuration_nystromformer.py", "repo_id": "transformers", "token_count": 2444 }
100
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_opt"] = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_opt"] = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/opt/__init__.py/0
{ "file_path": "transformers/src/transformers/models/opt/__init__.py", "repo_id": "transformers", "token_count": 1188 }
101
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for OwlViT""" import warnings from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, center_to_corners_format, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) def _upcast(t): # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() def box_area(boxes): """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union class OwlViTImageProcessor(BaseImageProcessor): r""" Constructs an OWL-ViT image processor. This image processor inherits from [`ImageProcessingMixin`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the shorter edge of the input to a certain `size`. size (`Dict[str, int]`, *optional*, defaults to {"height": 768, "width": 768}): The size to use for resizing the image. Only has an effect if `do_resize` is set to `True`. If `size` is a sequence like (h, w), output size will be matched to this. If `size` is an int, then image will be resized to (size, size). resample (`int`, *optional*, defaults to `Resampling.BICUBIC`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `False`): Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. crop_size (`int`, *optional*, defaults to {"height": 768, "width": 768}): The size to use for center cropping the image. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input by a certain factor. rescale_factor (`float`, *optional*, defaults to `1/255`): The factor to use for rescaling the image. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with `image_mean` and `image_std`. Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. image_mean (`List[int]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): The sequence of means for each channel, to be used when normalizing images. image_std (`List[int]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): The sequence of standard deviations for each channel, to be used when normalizing images. """ model_input_names = ["pixel_values"] def __init__( self, do_resize=True, size=None, resample=PILImageResampling.BICUBIC, do_center_crop=False, crop_size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=None, image_std=None, **kwargs, ): size = size if size is not None else {"height": 768, "width": 768} size = get_size_dict(size, default_to_square=True) crop_size = crop_size if crop_size is not None else {"height": 768, "width": 768} crop_size = get_size_dict(crop_size, default_to_square=True) # Early versions of the OWL-ViT config on the hub had "rescale" as a flag. This clashes with the # vision image processor method `rescale` as it would be set as an attribute during the super().__init__ # call. This is for backwards compatibility. if "rescale" in kwargs: rescale_val = kwargs.pop("rescale") kwargs["do_rescale"] = rescale_val super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to a certain size. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The size to resize the image to. Must contain height and width keys. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): The resampling filter to use when resizing the input. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=True) if "height" not in size or "width" not in size: raise ValueError("size dictionary must contain height and width keys") return resize( image, (size["height"], size["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def center_crop( self, image: np.ndarray, crop_size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Center crop an image to a certain size. Args: image (`np.ndarray`): Image to center crop. crop_size (`Dict[str, int]`): The size to center crop the image to. Must contain height and width keys. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ crop_size = get_size_dict(crop_size, default_to_square=True) if "height" not in crop_size or "width" not in crop_size: raise ValueError("crop_size dictionary must contain height and width keys") return center_crop( image, (crop_size["height"], crop_size["width"]), data_format=data_format, input_data_format=input_data_format, **kwargs, ) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Prepares an image or batch of images for the model. Args: images (`ImageInput`): The image or batch of images to be prepared. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether or not to resize the input. If `True`, will resize the input to the size specified by `size`. size (`Dict[str, int]`, *optional*, defaults to `self.size`): The size to resize the input to. Only has an effect if `do_resize` is set to `True`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): The resampling filter to use when resizing the input. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether or not to center crop the input. If `True`, will center crop the input to the size specified by `crop_size`. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): The size to center crop the input to. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether or not to rescale the input. If `True`, will rescale the input by dividing it by `rescale_factor`. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): The factor to rescale the input by. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether or not to normalize the input. If `True`, will normalize the input by subtracting `image_mean` and dividing by `image_std`. image_mean (`Union[float, List[float]]`, *optional*, defaults to `self.image_mean`): The mean to subtract from the input when normalizing. Only has an effect if `do_normalize` is set to `True`. image_std (`Union[float, List[float]]`, *optional*, defaults to `self.image_std`): The standard deviation to divide the input by when normalizing. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image, crop_size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_inputs def post_process(self, outputs, target_sizes): """ Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`OwlViTObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ # TODO: (amy) add support for other frameworks warnings.warn( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", FutureWarning, ) logits, boxes = outputs.logits, outputs.pred_boxes if len(logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) labels = probs.indices # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(boxes) # Convert from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results def post_process_object_detection( self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None ): """ Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`OwlViTObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ # TODO: (amy) add support for other frameworks logits, boxes = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) labels = probs.indices # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(boxes) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results # TODO: (Amy) Make compatible with other frameworks def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None): """ Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO api. Args: outputs ([`OwlViTImageGuidedObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.0): Minimum confidence threshold to use to filter out predicted boxes. nms_threshold (`float`, *optional*, defaults to 0.3): IoU threshold for non-maximum suppression of overlapping boxes. target_sizes (`torch.Tensor`, *optional*): Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to None, predictions will not be unnormalized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. All labels are set to None as `OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection. """ logits, target_boxes = outputs.logits, outputs.target_pred_boxes if len(logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) # Convert to [x0, y0, x1, y1] format target_boxes = center_to_corners_format(target_boxes) # Apply non-maximum suppression (NMS) if nms_threshold < 1.0: for idx in range(target_boxes.shape[0]): for i in torch.argsort(-scores[idx]): if not scores[idx][i]: continue ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0] ious[i] = -1.0 # Mask self-IoU. scores[idx][ious > nms_threshold] = 0.0 # Convert from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(target_boxes.device) target_boxes = target_boxes * scale_fct[:, None, :] # Compute box display alphas based on prediction scores results = [] alphas = torch.zeros_like(scores) for idx in range(target_boxes.shape[0]): # Select scores for boxes matching the current query: query_scores = scores[idx] if not query_scores.nonzero().numel(): continue # Apply threshold on scores before scaling query_scores[query_scores < threshold] = 0.0 # Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1. # All other boxes will either belong to a different query, or will not be shown. max_score = torch.max(query_scores) + 1e-6 query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9) query_alphas = torch.clip(query_alphas, 0.0, 1.0) alphas[idx] = query_alphas mask = alphas[idx] > 0 box_scores = alphas[idx][mask] boxes = target_boxes[idx][mask] results.append({"scores": box_scores, "labels": None, "boxes": boxes}) return results
transformers/src/transformers/models/owlvit/image_processing_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/image_processing_owlvit.py", "repo_id": "transformers", "token_count": 12332 }
102
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model PEGASUS.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: PegasusTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/pegasus-xsum": 512, } class PegasusTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. mask_token (`str`, *optional*, defaults to `"<mask_2>"`): The token used for masking single token values. This is the token used when training this model with masked language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`): The token used for masking whole target sentences. This is the token used when training this model with gap sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and <unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66) that uses the tokens 2 - 104 only for pretraining """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = PegasusTokenizer model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, pad_token="<pad>", eos_token="</s>", unk_token="<unk>", mask_token="<mask_2>", mask_token_sent="<mask_1>", additional_special_tokens=None, offset=103, # entries 2 - 104 are only used for pretraining **kwargs, ): self.offset = offset if additional_special_tokens is not None: if not isinstance(additional_special_tokens, list): raise TypeError( f"additional_special_tokens should be of type {type(list)}, but is" f" {type(additional_special_tokens)}" ) additional_special_tokens_extended = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) ] if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) additional_special_tokens = additional_special_tokens_extended else: additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] # pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token # is different from default, we must rebuild the vocab from_slow = kwargs.pop("from_slow", None) from_slow = from_slow or str(pad_token) != "<pad>" or str(eos_token) != "</s>" or str(unk_token) != "<unk>" kwargs.pop("added_tokens_decoder", {}) super().__init__( vocab_file, tokenizer_file=tokenizer_file, pad_token=pad_token, eos_token=eos_token, unk_token=unk_token, mask_token=mask_token, mask_token_sent=mask_token_sent, offset=offset, additional_special_tokens=additional_special_tokens, from_slow=from_slow, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """ Build model inputs from a sequence by adding eos to the end. no bos token is added to the front. - single sequence: `X </s>` - pair of sequences: `A B </s>` (not intended use) Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py/0
{ "file_path": "transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py", "repo_id": "transformers", "token_count": 4338 }
103
# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Phi model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json", "microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json", "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json", } class PhiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi [microsoft/phi-1](https://huggingface.co/microsoft/phi-1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PhiModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize the Queries and Keys after projecting the hidden states. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=51200, hidden_size=2048, intermediate_size=8192, num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=None, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="gelu_new", max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.5, qk_layernorm=False, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.qk_layernorm = qk_layernorm self._rope_scaling_validation() super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/phi/configuration_phi.py/0
{ "file_path": "transformers/src/transformers/models/phi/configuration_phi.py", "repo_id": "transformers", "token_count": 3668 }
104
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RAG model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings RAG_CONFIG_DOC = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(RAG_CONFIG_DOC) class RagConfig(PretrainedConfig): model_type = "rag" is_composition = True def __init__( self, vocab_size=None, is_encoder_decoder=True, prefix=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, decoder_start_token_id=None, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, retrieval_vector_size=768, retrieval_batch_size=8, dataset="wiki_dpr", dataset_split="train", index_name="compressed", index_path=None, passages_path=None, use_dummy_dataset=False, reduce_loss=False, label_smoothing=0.0, do_deduplication=True, exclude_bos_score=False, do_marginalize=False, output_retrieved=False, use_cache=True, forced_eos_token_id=None, **kwargs, ): super().__init__( bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, is_encoder_decoder=is_encoder_decoder, prefix=prefix, vocab_size=vocab_size, **kwargs, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" question_encoder_config = kwargs.pop("question_encoder") question_encoder_model_type = question_encoder_config.pop("model_type") decoder_config = kwargs.pop("generator") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config) self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config) self.reduce_loss = reduce_loss self.label_smoothing = label_smoothing self.exclude_bos_score = exclude_bos_score self.do_marginalize = do_marginalize self.title_sep = title_sep self.doc_sep = doc_sep self.n_docs = n_docs self.max_combined_length = max_combined_length self.dataset = dataset self.dataset_split = dataset_split self.index_name = index_name self.retrieval_vector_size = retrieval_vector_size self.retrieval_batch_size = retrieval_batch_size self.passages_path = passages_path self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset self.output_retrieved = output_retrieved self.do_deduplication = do_deduplication self.use_cache = use_cache if self.forced_eos_token_id is None: self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None) @classmethod def from_question_encoder_generator_configs( cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object """ return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
transformers/src/transformers/models/rag/configuration_rag.py/0
{ "file_path": "transformers/src/transformers/models/rag/configuration_rag.py", "repo_id": "transformers", "token_count": 3331 }
105
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) }, "tokenizer_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/tokenizer.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/reformer-crime-and-punishment": 524288, } class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/reformer/tokenization_reformer_fast.py/0
{ "file_path": "transformers/src/transformers/models/reformer/tokenization_reformer_fast.py", "repo_id": "transformers", "token_count": 1954 }
106
# coding=utf-8 # Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ResNet model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class ResNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ResNet [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. embedding_size (`int`, *optional*, defaults to 64): Dimensionality (hidden size) for the embedding layer. hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): Depth (number of layers) for each stage. layer_type (`str`, *optional*, defaults to `"bottleneck"`): The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or `"bottleneck"` (used for larger models like resnet-50 and above). hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. downsample_in_first_stage (`bool`, *optional*, defaults to `False`): If `True`, the first stage will downsample the inputs using a `stride` of 2. downsample_in_bottleneck (`bool`, *optional*, defaults to `False`): If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ResNetConfig, ResNetModel >>> # Initializing a ResNet resnet-50 style configuration >>> configuration = ResNetConfig() >>> # Initializing a model (with random weights) from the resnet-50 style configuration >>> model = ResNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "resnet" layer_types = ["basic", "bottleneck"] def __init__( self, num_channels=3, embedding_size=64, hidden_sizes=[256, 512, 1024, 2048], depths=[3, 4, 6, 3], layer_type="bottleneck", hidden_act="relu", downsample_in_first_stage=False, downsample_in_bottleneck=False, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") self.num_channels = num_channels self.embedding_size = embedding_size self.hidden_sizes = hidden_sizes self.depths = depths self.layer_type = layer_type self.hidden_act = hidden_act self.downsample_in_first_stage = downsample_in_first_stage self.downsample_in_bottleneck = downsample_in_bottleneck self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) class ResNetOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-3
transformers/src/transformers/models/resnet/configuration_resnet.py/0
{ "file_path": "transformers/src/transformers/models/resnet/configuration_resnet.py", "repo_id": "transformers", "token_count": 2286 }
107
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio/Text processor class for SeamlessM4T """ from ...processing_utils import ProcessorMixin class SeamlessM4TProcessor(ProcessorMixin): r""" Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a single processor. [`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and [`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for more information. Args: feature_extractor ([`SeamlessM4TFeatureExtractor`]): The audio processor is a required input. tokenizer ([`SeamlessM4TTokenizerFast`]): The tokenizer is a required input. """ feature_extractor_class = "SeamlessM4TFeatureExtractor" tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. src_lang (`str`, *optional*): The language code of the input texts/audios. If not specified, the last `src_lang` specified will be used. tgt_lang (`str`, *optional*): The code of the target language. If not specified, the last `tgt_lang` specified will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the tokenizer. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`. """ sampling_rate = kwargs.pop("sampling_rate", None) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") elif text is not None and audios is not None: raise ValueError( "Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another." ) elif text is not None: if tgt_lang is not None: self.tokenizer.tgt_lang = tgt_lang if src_lang is not None: self.tokenizer.src_lang = src_lang encoding = self.tokenizer(text, **kwargs) return encoding else: encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
transformers/src/transformers/models/seamless_m4t/processing_seamless_m4t.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t/processing_seamless_m4t.py", "repo_id": "transformers", "token_count": 2298 }
108
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _import_structure = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_speecht5"] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_speecht5"] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speecht5 import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechT5Config, SpeechT5HifiGanConfig, ) from .feature_extraction_speecht5 import SpeechT5FeatureExtractor from .processing_speecht5 import SpeechT5Processor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speecht5 import SpeechT5Tokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speecht5 import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechT5ForSpeechToSpeech, SpeechT5ForSpeechToText, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Model, SpeechT5PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/speecht5/__init__.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/__init__.py", "repo_id": "transformers", "token_count": 1227 }
109
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SqueezeBert model.""" import math from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_squeezebert import SqueezeBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "squeezebert/squeezebert-uncased" _CONFIG_FOR_DOC = "SqueezeBertConfig" SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "squeezebert/squeezebert-uncased", "squeezebert/squeezebert-mnli", "squeezebert/squeezebert-mnli-headless", ] class SqueezeBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MatMulWrapper(nn.Module): """ Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul. """ def __init__(self): super().__init__() def forward(self, mat1, mat2): """ :param inputs: two torch tensors :return: matmul of these tensors Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K] mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N] """ return torch.matmul(mat1, mat2) class SqueezeBertLayerNorm(nn.LayerNorm): """ This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension. N = batch C = channels W = sequence length """ def __init__(self, hidden_size, eps=1e-12): nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps} def forward(self, x): x = x.permute(0, 2, 1) x = nn.LayerNorm.forward(self, x) return x.permute(0, 2, 1) class ConvDropoutLayerNorm(nn.Module): """ ConvDropoutLayerNorm: Conv, Dropout, LayerNorm """ def __init__(self, cin, cout, groups, dropout_prob): super().__init__() self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups) self.layernorm = SqueezeBertLayerNorm(cout) self.dropout = nn.Dropout(dropout_prob) def forward(self, hidden_states, input_tensor): x = self.conv1d(hidden_states) x = self.dropout(x) x = x + input_tensor x = self.layernorm(x) return x class ConvActivation(nn.Module): """ ConvActivation: Conv, Activation """ def __init__(self, cin, cout, groups, act): super().__init__() self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups) self.act = ACT2FN[act] def forward(self, x): output = self.conv1d(x) return self.act(output) class SqueezeBertSelfAttention(nn.Module): def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1): """ config = used for some things; ignored for others (work in progress...) cin = input channels = output channels groups = number of groups to use in conv1d layers """ super().__init__() if cin % config.num_attention_heads != 0: raise ValueError( f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(cin / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups) self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups) self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.softmax = nn.Softmax(dim=-1) self.matmul_qk = MatMulWrapper() self.matmul_qkv = MatMulWrapper() def transpose_for_scores(self, x): """ - input: [N, C, W] - output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents """ new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W] x = x.view(*new_x_shape) return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2] def transpose_key_for_scores(self, x): """ - input: [N, C, W] - output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents """ new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W] x = x.view(*new_x_shape) # no `permute` needed return x def transpose_output(self, x): """ - input: [N, C1, W, C2] - output: [N, C, W] """ x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W] new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W] x = x.view(*new_x_shape) return x def forward(self, hidden_states, attention_mask, output_attentions): """ expects hidden_states in [N, C, W] data layout. The attention_mask data layout is [N, W], and it does not need to be transposed. """ mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_key_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_score = self.matmul_qk(query_layer, key_layer) attention_score = attention_score / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_score = attention_score + attention_mask # Normalize the attention scores to probabilities. attention_probs = self.softmax(attention_score) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = self.matmul_qkv(attention_probs, value_layer) context_layer = self.transpose_output(context_layer) result = {"context_layer": context_layer} if output_attentions: result["attention_score"] = attention_score return result class SqueezeBertModule(nn.Module): def __init__(self, config): """ - hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for the module - intermediate_size = output chans for intermediate layer - groups = number of groups for all layers in the BertModule. (eventually we could change the interface to allow different groups for different layers) """ super().__init__() c0 = config.hidden_size c1 = config.hidden_size c2 = config.intermediate_size c3 = config.hidden_size self.attention = SqueezeBertSelfAttention( config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups ) self.post_attention = ConvDropoutLayerNorm( cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob ) self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act) self.output = ConvDropoutLayerNorm( cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob ) def forward(self, hidden_states, attention_mask, output_attentions): att = self.attention(hidden_states, attention_mask, output_attentions) attention_output = att["context_layer"] post_attention_output = self.post_attention(attention_output, hidden_states) intermediate_output = self.intermediate(post_attention_output) layer_output = self.output(intermediate_output, post_attention_output) output_dict = {"feature_map": layer_output} if output_attentions: output_dict["attention_score"] = att["attention_score"] return output_dict class SqueezeBertEncoder(nn.Module): def __init__(self, config): super().__init__() assert config.embedding_size == config.hidden_size, ( "If you want embedding_size != intermediate hidden_size, " "please insert a Conv1d layer to adjust the number of channels " "before the first SqueezeBertModule." ) self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers)) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): if head_mask is None: head_mask_is_all_none = True elif head_mask.count(None) == len(head_mask): head_mask_is_all_none = True else: head_mask_is_all_none = False assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation." # [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length] hidden_states = hidden_states.permute(0, 2, 1) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer in self.layers: if output_hidden_states: hidden_states = hidden_states.permute(0, 2, 1) all_hidden_states += (hidden_states,) hidden_states = hidden_states.permute(0, 2, 1) layer_output = layer.forward(hidden_states, attention_mask, output_attentions) hidden_states = layer_output["feature_map"] if output_attentions: all_attentions += (layer_output["attention_score"],) # [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size] hidden_states = hidden_states.permute(0, 2, 1) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class SqueezeBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class SqueezeBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class SqueezeBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = SqueezeBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class SqueezeBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = SqueezeBertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class SqueezeBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SqueezeBertConfig base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv1d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, SqueezeBertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SQUEEZEBERT_START_DOCSTRING = r""" The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the *squeezebert/squeezebert-mnli-headless* checkpoint as a starting point. Parameters: config ([`SqueezeBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Hierarchy: ``` Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm ``` Data layouts: ``` Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if `output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format. ``` """ SQUEEZEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.", SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertModel(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = SqueezeBertEmbeddings(config) self.encoder = SqueezeBertEncoder(config) self.pooler = SqueezeBertPooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""SqueezeBERT Model with a `language modeling` head on top.""", SQUEEZEBERT_START_DOCSTRING) class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.transformer = SqueezeBertModel(config) self.cls = SqueezeBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = SqueezeBertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/squeezebert/modeling_squeezebert.py/0
{ "file_path": "transformers/src/transformers/models/squeezebert/modeling_squeezebert.py", "repo_id": "transformers", "token_count": 19019 }
110
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_swin2sr": ["SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swin2SRConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_swin2sr"] = [ "SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST", "Swin2SRForImageSuperResolution", "Swin2SRModel", "Swin2SRPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_swin2sr"] = ["Swin2SRImageProcessor"] if TYPE_CHECKING: from .configuration_swin2sr import SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP, Swin2SRConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin2sr import ( SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST, Swin2SRForImageSuperResolution, Swin2SRModel, Swin2SRPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_swin2sr import Swin2SRImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/swin2sr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/__init__.py", "repo_id": "transformers", "token_count": 863 }
111
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TAPAS checkpoint.""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch( task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file config = TapasConfig.from_json_file(tapas_config_file) # set absolute/relative position embeddings parameter config.reset_position_index_per_cell = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": model = TapasForQuestionAnswering(config=config) elif task == "WTQ": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = True # hparam_utils.py hparams config.answer_loss_cutoff = 0.664694 config.cell_selection_preference = 0.207951 config.huber_loss_delta = 0.121194 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = False config.temperature = 0.0352513 model = TapasForQuestionAnswering(config=config) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = False # hparam_utils.py hparams config.answer_loss_cutoff = 36.4519 config.cell_selection_preference = 0.903421 config.huber_loss_delta = 222.088 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = True config.temperature = 0.763141 model = TapasForQuestionAnswering(config=config) elif task == "TABFACT": model = TapasForSequenceClassification(config=config) elif task == "MLM": model = TapasForMaskedLM(config=config) elif task == "INTERMEDIATE_PRETRAINING": model = TapasModel(config=config) else: raise ValueError(f"Task {task} not supported.") print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_tapas(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) tokenizer.save_pretrained(pytorch_dump_path) print("Used relative position embeddings:", model.config.reset_position_index_per_cell) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1935 }
112
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TrOCR checkpoints from the unilm repository.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(encoder_config, decoder_config): rename_keys = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, encoder_config): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) in_proj_weight = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight") state_dict[f"encoder.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : encoder_config.hidden_size, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -encoder_config.hidden_size :, : ] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of the IAM Handwriting Database def prepare_img(checkpoint_url): if "handwritten" in checkpoint_url: url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: url = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" im = Image.open(requests.get(url, stream=True).raw).convert("RGB") return im @torch.no_grad() def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure. """ # define encoder and decoder configs based on checkpoint_url encoder_config = ViTConfig(image_size=384, qkv_bias=False) decoder_config = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: decoder_config.encoder_hidden_size = 768 elif "large" in checkpoint_url: # use ViT-large encoder encoder_config.hidden_size = 1024 encoder_config.intermediate_size = 4096 encoder_config.num_hidden_layers = 24 encoder_config.num_attention_heads = 16 decoder_config.encoder_hidden_size = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: decoder_config.tie_word_embeddings = False decoder_config.activation_function = "relu" decoder_config.max_position_embeddings = 1024 decoder_config.scale_embedding = True decoder_config.use_learned_position_embeddings = False decoder_config.layernorm_embedding = False # load HuggingFace model encoder = ViTModel(encoder_config, add_pooling_layer=False) decoder = TrOCRForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() # load state_dict of original model, rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"] rename_keys = create_rename_keys(encoder_config, decoder_config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, encoder_config) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("decoder") and "output_projection" not in key: state_dict["decoder.model." + key] = val else: state_dict[key] = val # load state dict model.load_state_dict(state_dict) # Check outputs on an image image_processor = ViTImageProcessor(size=encoder_config.image_size) tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-large") processor = TrOCRProcessor(image_processor, tokenizer) pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values # verify logits decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) logits = outputs.logits expected_shape = torch.Size([1, 1, 50265]) if "trocr-base-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: expected_slice = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: expected_slice = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected" Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py", "repo_id": "transformers", "token_count": 4298 }
113
# coding=utf-8 # Copyright 2022 NAVER AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViLT model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ( find_pruneable_heads_and_indices, meshgrid, prune_linear_layer, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vilt import ViltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViltConfig" _CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm" VILT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "dandelin/vilt-b32-mlm", # See all ViLT models at https://huggingface.co/models?filter=vilt ] @dataclass class ViltForImagesAndTextClassificationOutput(ModelOutput): """ Class for outputs of [`ViltForImagesAndTextClassification`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the attention weights of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[List[Tuple[torch.FloatTensor]]] = None attentions: Optional[List[Tuple[torch.FloatTensor]]] = None class ViltEmbeddings(nn.Module): """ Construct the text and patch embeddings. Text embeddings are equivalent to BERT embeddings. Patch embeddings are equivalent to ViT embeddings. """ def __init__(self, config): super().__init__() # text embeddings self.text_embeddings = TextEmbeddings(config) # patch embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViltPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) # modality type (text/patch) embeddings self.token_type_embeddings = nn.Embedding(config.modality_type_vocab_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def visual_embed(self, pixel_values, pixel_mask, max_image_length=200): _, _, ph, pw = self.patch_embeddings.projection.weight.shape x = self.patch_embeddings(pixel_values) x_mask = pixel_mask[:, None, :, :].float() x_mask = nn.functional.interpolate(x_mask, size=(x.shape[2], x.shape[3])).long() x_h = x_mask[:, 0].sum(dim=1)[:, 0] x_w = x_mask[:, 0].sum(dim=2)[:, 0] batch_size, num_channels, height, width = x.shape patch_dim = self.config.image_size // self.config.patch_size spatial_pos = self.position_embeddings[:, 1:, :].transpose(1, 2).view(1, num_channels, patch_dim, patch_dim) pos_embed = torch.cat( [ nn.functional.pad( nn.functional.interpolate( spatial_pos, size=(h, w), mode="bilinear", align_corners=True, ), (0, width - w, 0, height - h), ) for h, w in zip(x_h, x_w) ], dim=0, ) pos_embed = pos_embed.flatten(2).transpose(1, 2) x = x.flatten(2).transpose(1, 2) # Set `device` here, otherwise `patch_index` will always be on `CPU` and will fail near the end for torch>=1.13 patch_index = torch.stack( meshgrid(torch.arange(x_mask.shape[-2]), torch.arange(x_mask.shape[-1]), indexing="ij"), dim=-1 ).to(device=x_mask.device) patch_index = patch_index[None, None, :, :, :] patch_index = patch_index.expand(x_mask.shape[0], x_mask.shape[1], -1, -1, -1) patch_index = patch_index.flatten(1, 3) x_mask = x_mask.flatten(1) if max_image_length < 0 or max_image_length is None or not isinstance(max_image_length, int): # suppose aug is 800 x 1333, then, maximum effective res is 800 x 1333 (if one side gets bigger, the other will be constrained and be shrinked) # (800 // self.patch_size) * (1333 // self.patch_size) is the maximum number of patches that single image can get. # if self.patch_size = 32, 25 * 41 = 1025 # if res is 384 x 640, 12 * 20 = 240 effective_resolution = x_h * x_w max_image_length = effective_resolution.max() else: effective_resolution = x_h * x_w max_image_length = min(effective_resolution.max(), max_image_length) valid_idx = x_mask.nonzero(as_tuple=False) non_valid_idx = (1 - x_mask).nonzero(as_tuple=False) unique_rows = valid_idx[:, 0].unique() valid_row_idx = [valid_idx[valid_idx[:, 0] == u] for u in unique_rows] non_valid_row_idx = [non_valid_idx[non_valid_idx[:, 0] == u] for u in unique_rows] valid_nums = [v.size(0) for v in valid_row_idx] non_valid_nums = [v.size(0) for v in non_valid_row_idx] pad_nums = [max_image_length - v for v in valid_nums] select = [] for i, (v, nv, p) in enumerate(zip(valid_nums, non_valid_nums, pad_nums)): if p <= 0: valid_choice = torch.multinomial(torch.ones(v).float(), max_image_length) select.append(valid_row_idx[i][valid_choice]) else: pad_choice = torch.multinomial(torch.ones(nv).float(), p, replacement=True) select.append(torch.cat([valid_row_idx[i], non_valid_row_idx[i][pad_choice]], dim=0)) select = torch.cat(select, dim=0) x = x[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) x_mask = x_mask[select[:, 0], select[:, 1]].view(batch_size, -1) # `patch_index` should be on the same device as `select` (for torch>=1.13), which is ensured at definition time. patch_index = patch_index[select[:, 0], select[:, 1]].view(batch_size, -1, 2) pos_embed = pos_embed[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = torch.cat( (self.position_embeddings[:, 0, :][:, None, :].expand(batch_size, -1, -1), pos_embed), dim=1 ) x = x + pos_embed x = self.dropout(x) x_mask = torch.cat([torch.ones(x_mask.shape[0], 1).to(x_mask), x_mask], dim=1) return x, x_mask, (patch_index, (height, width)) def forward( self, input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=1, ): # PART 1: text embeddings text_embeds = self.text_embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) # PART 2: patch embeddings (with interpolated position encodings) if image_embeds is None: image_embeds, image_masks, patch_index = self.visual_embed( pixel_values, pixel_mask, max_image_length=self.config.max_image_length ) else: image_masks = pixel_mask.flatten(1) # PART 3: add modality type embeddings # 0 indicates text, 1 indicates image, 2 is optionally used when a second image is provided (NLVR2) if image_token_type_idx is None: image_token_type_idx = 1 text_embeds = text_embeds + self.token_type_embeddings( torch.zeros_like(attention_mask, dtype=torch.long, device=text_embeds.device) ) image_embeds = image_embeds + self.token_type_embeddings( torch.full_like(image_masks, image_token_type_idx, dtype=torch.long, device=text_embeds.device) ) # PART 4: concatenate embeddings = torch.cat([text_embeds, image_embeds], dim=1) masks = torch.cat([attention_mask, image_masks], dim=1) return embeddings, masks class TextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ViltPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) target_dtype = self.projection.weight.dtype x = self.projection(pixel_values.to(dtype=target_dtype)) return x class ViltSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vilt class ViltSelfOutput(nn.Module): """ The residual connection is defined in ViltLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ViltAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = ViltSelfAttention(config) self.output = ViltSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Vilt class ViltIntermediate(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Vilt class ViltOutput(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViltLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViltAttention(config) self.intermediate = ViltIntermediate(config) self.output = ViltOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViLT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class ViltEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ViltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViltConfig base_model_prefix = "vilt" supports_gradient_checkpointing = True _no_split_modules = ["ViltEmbeddings", "ViltSelfAttention"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VILT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VILT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_images, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, num_images, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_images, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.", VILT_START_DOCSTRING, ) class ViltModel(ViltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ViltEmbeddings(config) self.encoder = ViltEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.text_embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.text_embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, image_token_type_idx: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutputWithPooling, Tuple[torch.FloatTensor]]: r""" Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltModel >>> from PIL import Image >>> import requests >>> # prepare image and text >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "hello world" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm") >>> inputs = processor(image, text, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") text_batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((text_batch_size, seq_length)), device=device) if pixel_values is not None and image_embeds is not None: raise ValueError("You cannot specify both pixel_values and image_embeds at the same time") elif pixel_values is None and image_embeds is None: raise ValueError("You have to specify either pixel_values or image_embeds") image_batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeds.shape[0] if image_batch_size != text_batch_size: raise ValueError("The text inputs and image inputs need to have the same batch size") if pixel_mask is None: pixel_mask = torch.ones((image_batch_size, self.config.image_size, self.config.image_size), device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, attention_mask = self.embeddings( input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=image_token_type_idx, ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ ViLT Model with a language modeling head on top as done during pretraining. """, VILT_START_DOCSTRING, ) class ViltForMaskedLM(ViltPreTrainedModel): _tied_weights_keys = ["mlm_score.decoder.weight", "mlm_score.decoder.bias"] def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) self.mlm_score = ViltMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_score.decoder def set_output_embeddings(self, new_embeddings): self.mlm_score.decoder = new_embeddings @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Labels for computing the masked language modeling loss. Indices should be in *[-100, 0, ..., config.vocab_size]* (see *input_ids* docstring) Tokens with indices set to *-100* are ignored (masked), the loss is only computed for the tokens with labels in *[0, ..., config.vocab_size]* Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForMaskedLM >>> import requests >>> from PIL import Image >>> import re >>> import torch >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "a bunch of [MASK] laying on a [MASK]." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> tl = len(re.findall("\[MASK\]", text)) >>> inferred_token = [text] >>> # gradually fill in the MASK tokens, one by one >>> with torch.no_grad(): ... for i in range(tl): ... encoded = processor.tokenizer(inferred_token) ... input_ids = torch.tensor(encoded.input_ids) ... encoded = encoded["input_ids"][0][1:-1] ... outputs = model(input_ids=input_ids, pixel_values=encoding.pixel_values) ... mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size) ... # only take into account text features (minus CLS and SEP token) ... mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :] ... mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) ... # only take into account text ... mlm_values[torch.tensor(encoded) != 103] = 0 ... select = mlm_values.argmax().item() ... encoded[select] = mlm_ids[select].item() ... inferred_token = [processor.decode(encoded)] >>> selected_token = "" >>> encoded = processor.tokenizer(inferred_token) >>> output = processor.decode(encoded.input_ids[0], skip_special_tokens=True) >>> print(output) a bunch of cats laying on a couch. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] # split up final hidden states into text and image features text_seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] text_features, _ = (sequence_output[:, :text_seq_len], sequence_output[:, text_seq_len:]) mlm_logits = self.mlm_score(text_features) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token # move labels to correct device to enable PP labels = labels.to(mlm_logits.device) masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (mlm_logits,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=mlm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ViltPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class ViltMLMHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = ViltPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) if weight is not None: self.decoder.weight = weight # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, x): x = self.transform(x) x = self.decoder(x) return x @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for visual question answering, e.g. for VQAv2. """, VILT_START_DOCSTRING, ) class ViltForQuestionAnswering(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head self.classifier = nn.Sequential( nn.Linear(config.hidden_size, config.hidden_size * 2), nn.LayerNorm(config.hidden_size * 2), nn.GELU(), nn.Linear(config.hidden_size * 2, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_labels)`, *optional*): Labels for computing the visual question answering loss. This tensor must be either a one-hot encoding of all answers that are applicable for a given example in the batch, or a soft encoding indicating which answers are applicable, where 1.0 is the highest score. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForQuestionAnswering >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are there?" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: 2 ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) loss = nn.functional.binary_cross_entropy_with_logits(logits, labels) * labels.shape[1] # see https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19 if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for image-to-text or text-to-image retrieval, e.g. MSCOCO and F30K. """, VILT_START_DOCSTRING, ) class ViltForImageAndTextRetrieval(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) # Classifier head self.rank_output = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels are currently not supported. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImageAndTextRetrieval >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs.logits[0, :].item() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.rank_output(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) raise NotImplementedError("Training is not yet supported.") if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top for natural language visual reasoning, e.g. NLVR2. """, VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING, ) class ViltForImagesAndTextClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head num_images = config.num_images self.classifier = nn.Sequential( nn.Linear(config.hidden_size * num_images, config.hidden_size * num_images), nn.LayerNorm(config.hidden_size * num_images), nn.GELU(), nn.Linear(config.hidden_size * num_images, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViltForImagesAndTextClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ViltForImagesAndTextClassificationOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Binary classification labels. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImagesAndTextClassification >>> import requests >>> from PIL import Image >>> image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) >>> image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw) >>> text = "The left image contains twice the number of dogs as the right image." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> # prepare inputs >>> encoding = processor([image1, image2], text, return_tensors="pt") >>> # forward pass >>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is not None and pixel_values.ndim == 4: # add dummy num_images dimension pixel_values = pixel_values.unsqueeze(1) if image_embeds is not None and image_embeds.ndim == 3: # add dummy num_images dimension image_embeds = image_embeds.unsqueeze(1) num_images = pixel_values.shape[1] if pixel_values is not None else None if num_images is None: num_images = image_embeds.shape[1] if image_embeds is not None else None if num_images != self.config.num_images: raise ValueError( "Make sure to match the number of images in the model with the number of images in the input." ) pooler_outputs = [] hidden_states = [] if output_hidden_states else None attentions = [] if output_attentions else None for i in range(num_images): # forward every image through the model outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values[:, i, :, :, :] if pixel_values is not None else None, pixel_mask=pixel_mask[:, i, :, :] if pixel_mask is not None else None, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds[:, i, :, :] if image_embeds is not None else None, image_token_type_idx=i + 1, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] pooler_outputs.append(pooler_output) if output_hidden_states: hidden_states.append(outputs.hidden_states) if output_attentions: attentions.append(outputs.attentions) pooled_output = torch.cat(pooler_outputs, dim=-1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits, hidden_states, attentions) return ((loss,) + output) if loss is not None else output return ViltForImagesAndTextClassificationOutput( loss=loss, logits=logits, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ ViLT Model with a token classification head on top (a linear layer on top of the final hidden-states of the text tokens) e.g. for Named-Entity-Recognition (NER) tasks. """, VILT_START_DOCSTRING, ) class ViltForTokenClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] text_input_size = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output[:, :text_input_size]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vilt/modeling_vilt.py/0
{ "file_path": "transformers/src/transformers/models/vilt/modeling_vilt.py", "repo_id": "transformers", "token_count": 27525 }
114
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT hybrid checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token")) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias")) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias")) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT hybrid configuration backbone_config = BitConfig( global_padding="same", layer_type="bottleneck", depths=(3, 4, 9), out_features=["stage3"], embedding_dynamic_padding=True, ) config = ViTHybridConfig(backbone_config=backbone_config, image_size=384, num_labels=1000) base_model = False # load original model from timm timm_model = timm.create_model(vit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # load HuggingFace model if vit_name[-5:] == "in21k": model = ViTHybridModel(config).eval() else: model = ViTHybridForImageClassification(config).eval() model.load_state_dict(state_dict) # create image processor transform = create_transform(**resolve_data_config({}, model=timm_model)) timm_transforms = transform.transforms pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } processor = ViTHybridImageProcessor( do_resize=True, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=True, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=True, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) image = prepare_img() timm_pixel_values = transform(image).unsqueeze(0) pixel_values = processor(image, return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(timm_pixel_values, pixel_values) # verify logits with torch.no_grad(): outputs = model(pixel_values) logits = outputs.logits print("Predicted class:", logits.argmax(-1).item()) if base_model: timm_pooled_output = timm_model.forward_features(pixel_values) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(timm_pooled_output, outputs.pooler_output, atol=1e-3) else: timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}") model.push_to_hub(f"ybelkada/{vit_name}") processor.push_to_hub(f"ybelkada/{vit_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) args = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/vit_hybrid/convert_vit_hybrid_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit_hybrid/convert_vit_hybrid_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 5670 }
115
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VitMatte model configuration""" import copy from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING logger = logging.get_logger(__name__) VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "hustvl/vitmatte-small-composition-1k": "https://huggingface.co/hustvl/vitmatte-small-composition-1k/resolve/main/config.json", } class VitMatteConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of [`VitMatteForImageMatting`]. It is used to instantiate a ViTMatte model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViTMatte [hustvl/vitmatte-small-composition-1k](https://huggingface.co/hustvl/vitmatte-small-composition-1k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitDetConfig()`): The configuration of the backbone model. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, defaults to `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. hidden_size (`int`, *optional*, defaults to 384): The number of input channels of the decoder. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch norm layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. convstream_hidden_sizes (`List[int]`, *optional*, defaults to `[48, 96, 192]`): The output channels of the ConvStream module. fusion_hidden_sizes (`List[int]`, *optional*, defaults to `[256, 128, 64, 32]`): The output channels of the Fusion blocks. Example: ```python >>> from transformers import VitMatteConfig, VitMatteForImageMatting >>> # Initializing a ViTMatte hustvl/vitmatte-small-composition-1k style configuration >>> configuration = VitMatteConfig() >>> # Initializing a model (with random weights) from the hustvl/vitmatte-small-composition-1k style configuration >>> model = VitMatteForImageMatting(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vitmatte" def __init__( self, backbone_config: PretrainedConfig = None, backbone=None, use_pretrained_backbone=False, use_timm_backbone=False, backbone_kwargs=None, hidden_size: int = 384, batch_norm_eps: float = 1e-5, initializer_range: float = 0.02, convstream_hidden_sizes: List[int] = [48, 96, 192], fusion_hidden_sizes: List[int] = [256, 128, 64, 32], **kwargs, ): super().__init__(**kwargs) if use_pretrained_backbone: raise ValueError("Pretrained backbones are not supported yet.") if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `VitDet` backbone.") backbone_config = CONFIG_MAPPING["vitdet"](out_features=["stage4"]) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") self.backbone_config = backbone_config self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.backbone_kwargs = backbone_kwargs self.batch_norm_eps = batch_norm_eps self.hidden_size = hidden_size self.initializer_range = initializer_range self.convstream_hidden_sizes = convstream_hidden_sizes self.fusion_hidden_sizes = fusion_hidden_sizes def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers/src/transformers/models/vitmatte/configuration_vitmatte.py/0
{ "file_path": "transformers/src/transformers/models/vitmatte/configuration_vitmatte.py", "repo_id": "transformers", "token_count": 2359 }
116
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( Wav2Vec2Config, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2ForCTC, Wav2Vec2ForPreTraining, Wav2Vec2Processor, logging, ) from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2ForSequenceClassification logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def read_txt_into_dict(filename): result = {} with open(filename, "r") as file: for line_number, line in enumerate(file): line = line.strip() if line: words = line.split() key = line_number value = words[0] result[key] = value return result def set_recursively(key, value, full_name, weight_type, hf_pointer): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": hf_shape = getattr(hf_pointer, weight_type).shape elif weight_type is not None and weight_type == "param": shape_pointer = hf_pointer for attribute in hf_param_name.split("."): shape_pointer = getattr(shape_pointer, attribute) hf_shape = shape_pointer.shape # let's reduce dimension value = value[0] else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value elif weight_type == "param": for attribute in hf_param_name.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_pointer.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def rename_dict(key, value, full_name, weight_type, hf_dict): hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": full_key = ".".join([key, weight_type]) elif weight_type is not None and weight_type == "param": full_key = ".".join([key, hf_param_name]) else: full_key = key hf_dict[full_key] = value if "lm_head" in full_key else value[0] PARAM_MAPPING = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def load_wav2vec2_layer(name, value, hf_model=None, hf_dict=None): is_used = False for key, mapped_key in MAPPING.items(): mapped_key = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None if hf_dict is not None: rename_dict(mapped_key, value, name, weight_type, hf_dict) else: set_recursively(mapped_key, value, name, weight_type, hf_model) return is_used return is_used def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.wav2vec2.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: is_used = load_wav2vec2_layer(name, value, hf_model) if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True, is_seq_class=False ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Wav2Vec2Config.from_pretrained(config_path) else: config = Wav2Vec2Config() if is_seq_class: id2label = read_txt_into_dict(dict_path) config.id2label = id2label hf_wav2vec = Wav2Vec2ForSequenceClassification(config) feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=True, ) feature_extractor.save_pretrained(pytorch_dump_folder_path) elif is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) vocab_dict = target_dict.indices # fairseq has the <pad> and <s> switched vocab_dict["<pad>"] = 0 vocab_dict["<s>"] = 1 with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(vocab_dict, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_wav2vec = Wav2Vec2ForCTC(config) else: hf_wav2vec = Wav2Vec2ForPreTraining(config) if is_finetuned or is_seq_class: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: task_arg = argparse.Namespace(task="audio_pretraining") task = fairseq.tasks.setup_task(task_arg) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task) model = model[0].eval() recursively_load_weights(model, hf_wav2vec, not is_finetuned) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) args = parser.parse_args() is_finetuned = not args.not_finetuned and not args.is_seq_class convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 6600 }
117
# coding=utf-8 # Copyright 2022 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2-Conformer model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_peft_available, logging, replace_return_docstrings, ) from .configuration_wav2vec2_conformer import Wav2Vec2ConformerConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2ConformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-conformer-rope-large-960h-ft" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 64.21 WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-conformer-rel-pos-large", # See all Wav2Vec2Conformer models at https://huggingface.co/models?filter=wav2vec2-conformer ] @dataclass # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2ConformerSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module): """Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf """ def __init__(self, config): super().__init__() dim = config.hidden_size // config.num_attention_heads base = config.rotary_embedding_base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states): sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length # Embeddings are computed in the dtype of the inv_freq constant time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) cos_embeddings = embeddings.cos()[:, None, None, :] sin_embeddings = embeddings.sin()[:, None, None, :] # Computed embeddings are cast to the dtype of the hidden state inputs self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states) return self.cached_rotary_positional_embedding class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module): """Relative positional encoding module.""" def __init__(self, config): super().__init__() self.max_len = config.max_source_positions self.d_model = config.hidden_size self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) def extend_pe(self, x): # Reset the positional encodings if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` is the position of query vector and `j` is the # position of key vector. We use positive relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pe_positive = torch.zeros(x.size(1), self.d_model) pe_negative = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reverse the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, hidden_states: torch.Tensor): self.extend_pe(hidden_states) start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1 end_idx = self.pe.size(1) // 2 + hidden_states.size(1) relative_position_embeddings = self.pe[:, start_idx:end_idx] return relative_position_embeddings # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2ConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=(config.conv_depthwise_kernel_size - 1) // 2, groups=config.hidden_size, bias=False, ) self.batch_norm = nn.BatchNorm1d(config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.conformer_conv_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerSelfAttention(nn.Module): """Construct an Wav2Vec2ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config): super().__init__() self.head_size = config.hidden_size // config.num_attention_heads self.num_heads = config.num_attention_heads self.position_embeddings_type = config.position_embeddings_type self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.attention_dropout) if self.position_embeddings_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_embeddings_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" ) query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) if self.position_embeddings_type == "relative": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type ==" " 'relative'" ) # apply relative_position_embeddings to qk scores # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860 scores = self._apply_relative_embeddings( query=query, key=key, relative_position_embeddings=relative_position_embeddings ) else: scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) # apply attention_mask if necessary if attention_mask is not None: scores = scores + attention_mask # => (batch, head, time1, time2) probs = torch.softmax(scores, dim=-1) probs = self.dropout(probs) # => (batch, head, time1, d_k) hidden_states = torch.matmul(probs, value) # => (batch, time1, hidden_size) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, hidden_size = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., : self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2 :] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view( relative_position_embeddings.size(0), -1, self.num_heads, self.head_size ) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class Wav2Vec2ConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.attention_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = Wav2Vec2ConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = Wav2Vec2ConformerSelfAttention(config) # Conformer Convolution self.conv_module = Wav2Vec2ConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = Wav2Vec2ConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class Wav2Vec2ConformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.position_embeddings_type == "relative": self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config) elif config.position_embeddings_type == "rotary": self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config) else: self.embed_positions = None self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2ConformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GumbelVectorQuantizer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2ConformerConfig base_model_prefix = "wav2vec2_conformer" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ConformerForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2ConformerGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2ConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, Wav2Vec2ConformerPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2ConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask WAV2VEC2_CONFORMER_START_DOCSTRING = r""" Wav2Vec2Conformer was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV2VEC2_CONFORMER_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2Conformer Model transformer outputting raw hidden-states without any specific head on top.", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config) self.feature_projection = Wav2Vec2ConformerFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = Wav2Vec2ConformerEncoder(config) self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a quantizer and `VQ` head on top.""", WAV2VEC2_CONFORMER_START_DOCSTRING ) class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @staticmethod # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ConformerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ConformerForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2Conformer Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py", "repo_id": "transformers", "token_count": 40665 }
118
# coding=utf-8 # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax whisper model.""" import math import random from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...generation.flax_logits_process import FlaxWhisperTimeStampLogitsProcessor from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, FlaxSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_whisper import WhisperConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/whisper-tiny" _CONFIG_FOR_DOC = "WhisperConfig" remat = nn_partitioning.remat def sinusoidal_embedding_init(key, shape, dtype=jnp.float_) -> jax.Array: """Returns sinusoids for positional embedding""" length, channels = shape if channels % 2 != 0: raise ValueError( f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." ) log_timescale_increment = math.log(10000) / (channels // 2 - 1) inv_timescales = jnp.exp(-log_timescale_increment * jnp.arange(channels // 2)) scaled_time = jnp.arange(length).reshape(-1, 1) * inv_timescales.reshape(1, -1) return jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1).astype(dtype) WHISPER_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ WHISPER_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't use masking, but this argument is preserved for compatibility. By default the silence in the input log mel spectrogram are ignored. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_ENCODE_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]. attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) encoder_outputs (`tuple(tuple(numpy.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxWhisperAttention(nn.Module): config: WhisperConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj = dense(use_bias=self.bias) self.k_proj = dense(use_bias=False) self.v_proj = dense(use_bias=self.bias) self.out_proj = dense(use_bias=self.bias) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_target_positions), dtype="bool"), dtype="bool" ) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] query_states = self.q_proj(hidden_states) if is_cross_attention: key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights def _split_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only # attend to those key positions that have already been generated and cached, not the # remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Whisper class FlaxWhisperEncoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxWhisperEncoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperEncoderCheckpointLayer = remat(FlaxWhisperEncoderLayer, static_argnums=(2, 3)) self.layers = [ FlaxWhisperEncoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] else: self.layers = [ FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Whisper class FlaxWhisperDecoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class FlaxWhisperDecoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperDecoderCheckpointLayer = remat(FlaxWhisperDecoderLayer, static_argnums=(4, 5, 6)) self.layers = [ FlaxWhisperDecoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] else: self.layers = [ FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxWhisperEncoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.conv1 = nn.Conv( self.config.d_model, kernel_size=(3,), padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.conv2 = nn.Conv( self.config.d_model, kernel_size=(3,), strides=2, padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layers = FlaxWhisperEncoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.embed_positions = nn.Embed( self.config.max_source_positions, self.config.d_model, dtype=self.dtype, embedding_init=sinusoidal_embedding_init, ) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_features: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: if input_features.shape[1:] != (self.config.num_mel_bins, self.config.max_source_positions * 2): raise ValueError( "input_features.shape[1:], must be equal to (self.config.num_mel_bins," f" self.config.max_source_positions * 2) (got {input_features.shape[1:]}, but should be" f" ({self.config.num_mel_bins}, {self.config.max_source_positions * 2}))" ) input_features = input_features.transpose(0, 2, 1) hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) # freeze the sinusoidal embeddings by stopping the back-prop embed_positions = jax.lax.stop_gradient(embed_positions) hidden_states = hidden_states + embed_positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=None, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxWhisperDecoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.embed_tokens = nn.Embed(self.config.vocab_size, self.config.d_model, dtype=self.dtype) self.embed_positions = nn.Embed(self.config.max_target_positions, self.config.d_model, dtype=self.dtype) self.layers = FlaxWhisperDecoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-5) def __call__( self, input_ids: jnp.ndarray, attention_mask: jnp.ndarray, position_ids: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: input_embeds = self.embed_tokens(input_ids) position_embeds = self.embed_positions(position_ids) hidden_states = input_embeds + position_embeds hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxWhisperModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.decoder = FlaxWhisperDecoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, decoder_attention_mask: jnp.ndarray, decoder_position_ids: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): config_class = WhisperConfig base_model_prefix: str = "model" main_input_name = "input_features" module_class: nn.Module = None def __init__( self, config: WhisperConfig, input_shape: Tuple[int] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) if input_shape is None: input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->Whisper def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig) def encode( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_features, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_features, **kwargs) return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> import jax.numpy as jnp >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((input_features.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare decoder inputs if decoder_position_ids is None: if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Whisper Model transformer outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) class FlaxWhisperModel(FlaxWhisperPreTrainedModel): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxWhisperModule append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) class FlaxWhisperForConditionalGenerationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.model = FlaxWhisperModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_features, decoder_input_ids, decoder_attention_mask: jnp.ndarray = None, decoder_position_ids: jnp.ndarray = None, position_ids: jnp.ndarray = None, attention_mask: jnp.ndarray = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING) class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def generate( self, input_features, generation_config=None, logits_processor=None, return_timestamps=None, task=None, language=None, is_multilingual=None, **kwargs, ): if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: generation_config.return_timestamps = return_timestamps if task is not None: generation_config.task = task if is_multilingual is not None: generation_config.is_multilingual = is_multilingual if language is not None: generation_config.language = language if kwargs is not None and "decoder_input_ids" in kwargs: decoder_input_length = len(kwargs["decoder_input_ids"]) else: decoder_input_length = 1 forced_decoder_ids = [] if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: if hasattr(generation_config, "language"): forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) else: forced_decoder_ids.append((1, None)) if hasattr(generation_config, "task"): forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) if ( hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps ) or return_timestamps: logits_processor = [ FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) ] else: if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if len(forced_decoder_ids) > 0: generation_config.forced_decoder_ids = forced_decoder_ids return super().generate( input_features, generation_config, logits_processor=logits_processor, **kwargs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> generated_ids = model.generate(input_ids=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` """ overwrite_call_docstring( FlaxWhisperForConditionalGeneration, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) class FlaxWhisperForAudioClassificationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.config.is_encoder_decoder = False num_layers = self.config.num_hidden_layers + 1 if self.config.use_weighted_layer_sum: self.layer_weights = jnp.repeat(1 / num_layers, num_layers) self.projector = nn.Dense(self.config.classifier_proj_size, dtype=self.dtype) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_features, encoder_outputs=None, output_attentions=None, output_hidden_states: bool = True, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = jnp.stack(encoder_outputs, axis=1) norm_weights = jax.nn.softmax(self.layer_weights, axis=-1) hidden_states = jnp.sum(hidden_states * jnp.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = jnp.mean(hidden_states, axis=1) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + encoder_outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("The Whisper Model with an audio classification head on top.", WHISPER_START_DOCSTRING) class FlaxWhisperForAudioClassification(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForAudioClassificationModule dtype: jnp.dtype = jnp.float32 def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoFeatureExtractor, FlaxWhisperForAudioClassification >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> model = FlaxWhisperForAudioClassification.from_pretrained( ... "sanchit-gandhi/whisper-medium-fleurs-lang-id", from_pt=True ... ) >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> sample = next(iter(ds)) >>> inputs = feature_extractor( ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="np" ... ) >>> input_features = inputs.input_features >>> logits = model(input_features).logits >>> predicted_class_ids = jnp.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'af_za' ``` """ overwrite_call_docstring( FlaxWhisperForAudioClassification, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForAudioClassification, output_type=FlaxSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/whisper/modeling_flax_whisper.py/0
{ "file_path": "transformers/src/transformers/models/whisper/modeling_flax_whisper.py", "repo_id": "transformers", "token_count": 32247 }
119
# coding=utf-8 # Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XGLM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xglm import XGLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xglm-564M" _CONFIG_FOR_DOC = "XGLMConfig" XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/xglm-564M", # See all XGLM models at https://huggingface.co/models?filter=xglm ] XGLM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XGLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class XGLMSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, position_ids: torch.Tensor = None, past_key_values_length: int = 0): bsz, seq_len = position_ids.size() position_ids += self.offset # Expand embeddings if needed. `position_ids.max()` is NOT used to keep torch.fx compatibility. max_pos = 2 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() class XGLMAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 if attn_weights.dtype == torch.float16: attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) else: attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class XGLMDecoderLayer(nn.Module): def __init__(self, config: XGLMConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = XGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout if config.add_cross_attention: self.encoder_attn = XGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class XGLMPreTrainedModel(PreTrainedModel): config_class = XGLMConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["XGLMDecoderLayer"] def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @add_start_docstrings( "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", XGLM_START_DOCSTRING, ) class XGLMModel(XGLMPreTrainedModel): """ Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`XGLMDecoderLayer`] Args: config: XGLMConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: XGLMConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = XGLMSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, config.pad_token_id, ) self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if position_ids is None: position_ids = torch.arange( past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) hidden_states = inputs_embeds + self.embed_positions(position_ids, past_key_values_length) hidden_states = nn.functional.dropout(hidden_states, p=float(self.dropout), training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache =" " False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XGLM_START_DOCSTRING, ) class XGLMForCausalLM(XGLMPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = XGLMModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: # shift labels and add a pad token to the end shift_labels = labels.new_zeros(labels.shape) shift_labels[:, :-1] = labels[:, 1:].clone() shift_labels[:, -1] = self.config.pad_token_id loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/xglm/modeling_xglm.py/0
{ "file_path": "transformers/src/transformers/models/xglm/modeling_xglm.py", "repo_id": "transformers", "token_count": 17039 }
120
# coding=utf-8 # Copyright 2023 The Meta AI Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ X-MOD configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class XmodConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XmodModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply layer normalization before each block. adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2): The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`. adapter_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply a new layer normalization before the adapter modules (shared across all adapters). adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`): Whether to reuse the second layer normalization and apply it before the adapter modules as well. ln_before_adapter (`bool`, *optional*, defaults to `True`): Whether to apply the layer normalization before the residual connection around the adapter module. languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`): An iterable of language codes for which adapter modules should be initialized. default_language (`str`, *optional*): Language code of a default language. It will be assumed that the input is in this language if no language codes are explicitly passed to the forward method. Examples: ```python >>> from transformers import XmodConfig, XmodModel >>> # Initializing an X-MOD facebook/xmod-base style configuration >>> configuration = XmodConfig() >>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration >>> model = XmodModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xmod" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, pre_norm=False, adapter_reduction_factor=2, adapter_layer_norm=False, adapter_reuse_layer_norm=True, ln_before_adapter=True, languages=("en_XX",), default_language=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.pre_norm = pre_norm self.adapter_reduction_factor = adapter_reduction_factor self.adapter_layer_norm = adapter_layer_norm self.adapter_reuse_layer_norm = adapter_reuse_layer_norm self.ln_before_adapter = ln_before_adapter self.languages = list(languages) self.default_language = default_language # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Xmod class XmodOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/xmod/configuration_xmod.py/0
{ "file_path": "transformers/src/transformers/models/xmod/configuration_xmod.py", "repo_id": "transformers", "token_count": 3839 }
121
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from inspect import signature from itertools import chain from pathlib import Path from typing import TYPE_CHECKING, Iterable, List, Tuple, Union import numpy as np from packaging.version import Version, parse from ..tokenization_utils_base import PreTrainedTokenizerBase from ..utils import ( TensorType, is_tf_available, is_torch_available, logging, ) from .config import OnnxConfig if is_torch_available(): from ..modeling_utils import PreTrainedModel if is_tf_available(): from ..modeling_tf_utils import TFPreTrainedModel if TYPE_CHECKING: from ..feature_extraction_utils import FeatureExtractionMixin from ..processing_utils import ProcessorMixin from ..tokenization_utils import PreTrainedTokenizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name # This is the minimal required version to support some ONNX Runtime features ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0") def check_onnxruntime_requirements(minimum_version: Version): """ Check onnxruntime is installed and if the installed version match is recent enough Raises: ImportError: If onnxruntime is not installed or too old version is found """ try: import onnxruntime # Parse the version of the installed onnxruntime ort_version = parse(onnxruntime.__version__) # We require 1.4.0 minimum if ort_version < ORT_QUANTIZE_MINIMUM_VERSION: raise ImportError( f"We found an older version of onnxruntime ({onnxruntime.__version__}) " f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n" "Please update onnxruntime by running `pip install --upgrade onnxruntime`" ) except ImportError: raise ImportError( "onnxruntime doesn't seem to be currently installed. " "Please install the onnxruntime by running `pip install onnxruntime`" " and relaunch the conversion." ) def export_pytorch( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: "PreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a PyTorch model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer if issubclass(type(model), PreTrainedModel): import torch from torch.onnx import export as onnx_export logger.info(f"Using framework PyTorch: {torch.__version__}") with torch.no_grad(): model.config.return_dict = True model.eval() # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match # TODO: Check when exporting QA we provide "is_pair=True" model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH) device = torch.device(device) if device.type == "cuda" and torch.cuda.is_available(): model.to(device) model_inputs_device = {} for k, v in model_inputs.items(): if isinstance(v, Tuple): model_inputs_device[k] = tuple( x.to(device) if isinstance(x, torch.Tensor) else None for x in v ) elif isinstance(v, List): model_inputs_device[k] = [ tuple(x.to(device) if isinstance(x, torch.Tensor) else None for x in t) for t in v ] else: model_inputs_device[k] = v.to(device) model_inputs = model_inputs_device inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) if not inputs_match: raise ValueError("Model and config inputs doesn't match") config.patch_ops() onnx_export( model, (model_inputs,), f=output.as_posix(), input_names=list(config.inputs.keys()), output_names=onnx_outputs, dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())), do_constant_folding=True, opset_version=opset, ) config.restore_ops() return matched_inputs, onnx_outputs def export_tensorflow( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"], model: "TFPreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, ) -> Tuple[List[str], List[str]]: """ Export a TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]): The preprocessor used for encoding the data. model ([`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ import onnx import tensorflow as tf import tf2onnx if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer model.config.return_dict = True # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.TENSORFLOW) inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) input_signature = [ tf.TensorSpec([None] * tensor.ndim, dtype=tensor.dtype, name=key) for key, tensor in model_inputs.items() ] onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature, opset=opset) onnx.save(onnx_model, output.as_posix()) config.restore_ops() return matched_inputs, onnx_outputs def export( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: Union["PreTrainedModel", "TFPreTrainedModel"], config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a Pytorch or TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Only PyTorch is supported for export on CUDA devices. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if not (is_torch_available() or is_tf_available()): raise ImportError( "Cannot convert because neither PyTorch nor TensorFlow are not installed. " "Please install torch or tensorflow first." ) if is_tf_available() and isinstance(model, TFPreTrainedModel) and device == "cuda": raise RuntimeError("`tf2onnx` does not support export on CUDA device.") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer if is_torch_available(): from ..utils import get_torch_version if not config.is_torch_support_available: logger.warning( f"Unsupported PyTorch version for this model. Minimum required is {config.torch_onnx_minimum_version}," f" got: {get_torch_version()}" ) if is_torch_available() and issubclass(type(model), PreTrainedModel): return export_pytorch(preprocessor, model, config, opset, output, tokenizer=tokenizer, device=device) elif is_tf_available() and issubclass(type(model), TFPreTrainedModel): return export_tensorflow(preprocessor, model, config, opset, output, tokenizer=tokenizer) def validate_model_outputs( config: OnnxConfig, preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], reference_model: Union["PreTrainedModel", "TFPreTrainedModel"], onnx_model: Path, onnx_named_outputs: List[str], atol: float, tokenizer: "PreTrainedTokenizer" = None, ): from onnxruntime import InferenceSession, SessionOptions logger.info("Validating ONNX model...") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to validate the model outputs.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer # generate inputs with a different batch_size and seq_len that was used for conversion to properly test # dynamic input shapes. if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.PYTORCH, ) else: reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.TENSORFLOW, ) # Create ONNX Runtime session options = SessionOptions() session = InferenceSession(onnx_model.as_posix(), options, providers=["CPUExecutionProvider"]) # Compute outputs from the reference model if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model.to("cpu") ref_outputs = reference_model(**reference_model_inputs) ref_outputs_dict = {} # We flatten potential collection of outputs (i.e. past_keys) to a flat structure for name, value in ref_outputs.items(): # Overwriting the output name as "present" since it is the name used for the ONNX outputs # ("past_key_values" being taken for the ONNX inputs) if name == "past_key_values": name = "present" if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) ref_outputs_dict.update(value) else: ref_outputs_dict[name] = value # Create onnxruntime inputs from the reference model inputs reference_model_inputs_onnxruntime = config.generate_dummy_inputs_onnxruntime(reference_model_inputs) # We flatten potential collection of inputs (i.e. past_keys) onnx_inputs = {} for name, value in reference_model_inputs_onnxruntime.items(): if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()}) else: onnx_inputs[name] = value.numpy() # Compute outputs from the ONNX model onnx_outputs = session.run(onnx_named_outputs, onnx_inputs) # Check we have a subset of the keys into onnx_outputs against ref_outputs ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs) if not onnx_outputs_set.issubset(ref_outputs_set): logger.info( f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}" ) raise ValueError( "Outputs doesn't match between reference model and ONNX exported model: " f"{onnx_outputs_set.difference(ref_outputs_set)}" ) else: logger.info(f"\t-[✓] ONNX model output names match reference model ({onnx_outputs_set})") # Check the shape and values match for name, ort_value in zip(onnx_named_outputs, onnx_outputs): if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): ref_value = ref_outputs_dict[name].detach().numpy() else: ref_value = ref_outputs_dict[name].numpy() logger.info(f'\t- Validating ONNX Model output "{name}":') # Shape if not ort_value.shape == ref_value.shape: logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}") raise ValueError( "Outputs shape doesn't match between reference model and ONNX exported model: " f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)" ) else: logger.info(f"\t\t-[✓] {ort_value.shape} matches {ref_value.shape}") # Values if not np.allclose(ref_value, ort_value, atol=atol): bad_indices = np.logical_not(np.isclose(ref_value, ort_value, atol=atol)) logger.info(f"\t\t-[x] values not close enough (atol: {atol})") raise ValueError( "Outputs values doesn't match between reference model and ONNX exported model: " f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))} for " f"{ref_value[bad_indices]} vs {ort_value[bad_indices]}" ) else: logger.info(f"\t\t-[✓] all values close (atol: {atol})") def ensure_model_and_config_inputs_match( model: Union["PreTrainedModel", "TFPreTrainedModel"], model_inputs: Iterable[str] ) -> Tuple[bool, List[str]]: """ :param model_inputs: :param config_inputs: :return: """ if is_torch_available() and issubclass(type(model), PreTrainedModel): forward_parameters = signature(model.forward).parameters else: forward_parameters = signature(model.call).parameters model_inputs_set = set(model_inputs) # We are fine if config_inputs has more keys than model_inputs forward_inputs_set = set(forward_parameters.keys()) is_ok = model_inputs_set.issubset(forward_inputs_set) # Make sure the input order match (VERY IMPORTANT !!!!) matching_inputs = forward_inputs_set.intersection(model_inputs_set) ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs] return is_ok, ordered_inputs
transformers/src/transformers/onnx/convert.py/0
{ "file_path": "transformers/src/transformers/onnx/convert.py", "repo_id": "transformers", "token_count": 7864 }
122
from typing import Dict from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
transformers/src/transformers/pipelines/image_feature_extraction.py/0
{ "file_path": "transformers/src/transformers/pipelines/image_feature_extraction.py", "repo_id": "transformers", "token_count": 1780 }
123
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import Pipeline, build_pipeline_init_args logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_feature_extractor=True, has_tokenizer=True)) class ZeroShotAudioClassificationPipeline(Pipeline): """ Zero shot audio classification pipeline using `ClapModel`. This pipeline predicts the class of an audio when you provide an audio and a set of `candidate_labels`. Example: ```python >>> from transformers import pipeline >>> from datasets import load_dataset >>> dataset = load_dataset("ashraq/esc50") >>> audio = next(iter(dataset["train"]["audio"]))["array"] >>> classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-unfused") >>> classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) [{'score': 0.9996, 'label': 'Sound of a dog'}, {'score': 0.0004, 'label': 'Sound of vaccum cleaner'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This audio classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-audio-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-audio-classification). """ def __init__(self, **kwargs): super().__init__(**kwargs) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch.") # No specific FOR_XXX available yet def __call__(self, audios: Union[np.ndarray, bytes, str], **kwargs): """ Assign labels to the audio(s) passed as inputs. Args: audios (`str`, `List[str]`, `np.array` or `List[np.array]`): The pipeline handles three types of inputs: - A string containing a http link pointing to an audio - A string containing a local path to an audio - An audio loaded in numpy candidate_labels (`List[str]`): The candidate labels for this audio hypothesis_template (`str`, *optional*, defaults to `"This is a sound of {}"`): The sentence used in cunjunction with *candidate_labels* to attempt the audio classification by replacing the placeholder with the candidate_labels. Then likelihood is estimated by using logits_per_audio Return: A list of dictionaries containing result, one dictionary per proposed label. The dictionaries contain the following keys: - **label** (`str`) -- The label identified by the model. It is one of the suggested `candidate_label`. - **score** (`float`) -- The score attributed by the model for that label (between 0 and 1). """ return super().__call__(audios, **kwargs) def _sanitize_parameters(self, **kwargs): preprocess_params = {} if "candidate_labels" in kwargs: preprocess_params["candidate_labels"] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def preprocess(self, audio, candidate_labels=None, hypothesis_template="This is a sound of {}."): if isinstance(audio, str): if audio.startswith("http://") or audio.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png audio = requests.get(audio).content else: with open(audio, "rb") as f: audio = f.read() if isinstance(audio, bytes): audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate) if not isinstance(audio, np.ndarray): raise ValueError("We expect a numpy ndarray as input") if len(audio.shape) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline") inputs = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" ) inputs["candidate_labels"] = candidate_labels sequences = [hypothesis_template.format(x) for x in candidate_labels] text_inputs = self.tokenizer(sequences, return_tensors=self.framework, padding=True) inputs["text_inputs"] = [text_inputs] return inputs def _forward(self, model_inputs): candidate_labels = model_inputs.pop("candidate_labels") text_inputs = model_inputs.pop("text_inputs") if isinstance(text_inputs[0], UserDict): text_inputs = text_inputs[0] else: # Batching case. text_inputs = text_inputs[0][0] outputs = self.model(**text_inputs, **model_inputs) model_outputs = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def postprocess(self, model_outputs): candidate_labels = model_outputs.pop("candidate_labels") logits = model_outputs["logits"][0] if self.framework == "pt": probs = logits.softmax(dim=0) scores = probs.tolist() else: raise ValueError("`tf` framework not supported.") result = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0]) ] return result
transformers/src/transformers/pipelines/zero_shot_audio_classification.py/0
{ "file_path": "transformers/src/transformers/pipelines/zero_shot_audio_classification.py", "repo_id": "transformers", "token_count": 2571 }
124
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings logger = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__) class Seq2SeqTrainingArguments(TrainingArguments): """ Args: sortish_sampler (`bool`, *optional*, defaults to `False`): Whether to use a *sortish sampler* or not. Only possible if the underlying datasets are *Seq2SeqDataset* for now but will become generally available in the near future. It sorts the inputs according to lengths in order to minimize the padding size, with a bit of randomness for the training set. predict_with_generate (`bool`, *optional*, defaults to `False`): Whether to use generate to calculate generative metrics (ROUGE, BLEU). generation_max_length (`int`, *optional*): The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default to the `max_length` value of the model configuration. generation_num_beams (`int`, *optional*): The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default to the `num_beams` value of the model configuration. generation_config (`str` or `Path` or [`~generation.GenerationConfig`], *optional*): Allows to load a [`~generation.GenerationConfig`] from the `from_pretrained` method. This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`. - a [`~generation.GenerationConfig`] object. """ sortish_sampler: bool = field(default=False, metadata={"help": "Whether to use SortishSampler or not."}) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) generation_max_length: Optional[int] = field( default=None, metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) }, ) generation_num_beams: Optional[int] = field( default=None, metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) }, ) generation_config: Optional[Union[str, Path, GenerationConfig]] = field( default=None, metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." }, ) def to_dict(self): """ Serializes this instance while replace `Enum` by their values and `GenerationConfig` by dictionaries (for JSON serialization support). It obfuscates the token values by removing their value. """ # filter out fields that are defined as field(init=False) d = super().to_dict() for k, v in d.items(): if isinstance(v, GenerationConfig): d[k] = v.to_dict() return d
transformers/src/transformers/training_args_seq2seq.py/0
{ "file_path": "transformers/src/transformers/training_args_seq2seq.py", "repo_id": "transformers", "token_count": 1579 }
125
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class TFBertTokenizer(metaclass=DummyObject): _backends = ["tensorflow_text"] def __init__(self, *args, **kwargs): requires_backends(self, ["tensorflow_text"])
transformers/src/transformers/utils/dummy_tensorflow_text_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_tensorflow_text_objects.py", "repo_id": "transformers", "token_count": 109 }
126
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for working with package versions """ import importlib.metadata import operator import re import sys from typing import Optional from packaging import version ops = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _compare_versions(op, got_ver, want_ver, requirement, pkg, hint): if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(got_ver), version.parse(want_ver)): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def require_version(requirement: str, hint: Optional[str] = None) -> None: """ Perform a runtime check of the dependency versions, using the exact same syntax used by pip. The installed module version comes from the *site-packages* dir via *importlib.metadata*. Args: requirement (`str`): pip style definition, e.g., "tokenizers==0.9.4", "tqdm>=4.27", "numpy" hint (`str`, *optional*): what suggestion to print in case of requirements not being met Example: ```python require_version("pandas>1.1.2") require_version("numpy>1.18.5", "this is important to have for whatever reason") ```""" hint = f"\n{hint}" if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$", requirement): pkg, op, want_ver = requirement, None, None else: match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", requirement) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f" got {requirement}" ) pkg, want_full = match[0] want_range = want_full.split(",") # there could be multiple requirements wanted = {} for w in want_range: match = re.findall(r"^([\s!=<>]{1,2})(.+)", w) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f" but got {requirement}" ) op, want_ver = match[0] wanted[op] = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys())}, but got {op}") # special case if pkg == "python": got_ver = ".".join([str(x) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(op, got_ver, want_ver, requirement, pkg, hint) return # check if any version is installed try: got_ver = importlib.metadata.version(pkg) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(op, got_ver, want_ver, requirement, pkg, hint) def require_version_core(requirement): """require_version wrapper which emits a core-specific hint on failure""" hint = "Try: `pip install transformers -U` or `pip install -e '.[dev]'` if you're working with git main" return require_version(requirement, hint)
transformers/src/transformers/utils/versions.py/0
{ "file_path": "transformers/src/transformers/utils/versions.py", "repo_id": "transformers", "token_count": 1705 }
127
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. {% if cookiecutter.is_encoder_decoder_model == "False" %} import unittest from transformers import is_tf_available, {{cookiecutter.camelcase_modelname}}Config from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import ( TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}Model, ) class TF{{cookiecutter.camelcase_modelname}}ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = {{cookiecutter.camelcase_modelname}}Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TF{{cookiecutter.camelcase_modelname}}Model(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_base_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TF{{cookiecutter.camelcase_modelname}}Model(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TF{{cookiecutter.camelcase_modelname}}Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } prediction_scores = model(inputs)["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) prediction_scores = result["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_past( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_with_attn_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) past_key_values = outputs.past_key_values # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) output_from_no_past = model( next_input_ids, attention_mask=attn_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] encoder_hidden_states = encoder_hidden_states[:1, :, :] encoder_attention_mask = encoder_attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( ( TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, ) if is_tf_available() else () ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self) self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Template classes interact badly with this test.") def test_keras_fit(self): pass def test_causal_lm_base_model(self): """Test the base model of the causal LM model is_deocder=True, no cross_attention, no encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm(self): """Test the causal LM model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) def test_causal_lm_model_as_decoder(self): """Test the causal LM model as a decoder""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) def test_causal_lm_model_past(self): """Test causal LM model with `past_key_values`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) def test_causal_lm_model_past_with_attn_mask(self): """Test the causal LM model with `past_key_values` and `attention_mask`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) def test_causal_lm_model_past_with_large_inputs(self): """Test the causal LM model with `past_key_values` and a longer decoder sequence length""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained("{{cookiecutter.checkpoint_identifier}}") self.assertIsNotNone(model) @require_tf class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TF{{cookiecutter.camelcase_modelname}}ForMaskedLM.from_pretrained("{{cookiecutter.checkpoint_identifier}}") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] # TODO Replace vocab size vocab_size = 32000 expected_shape = [1, 6, vocab_size] self.assertEqual(output.shape, expected_shape) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. expected_slice = tf.constant( [ [ [-0.05243197, -0.04498899, 0.05512108], [-0.07444685, -0.01064632, 0.04352357], [-0.05020351, 0.05530146, 0.00700043], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) {% else %} import unittest from transformers import ( is_tf_available, {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer, ) from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import ( TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model, ) @require_tf class TF{{cookiecutter.camelcase_modelname}}ModelTester: config_cls = {{cookiecutter.camelcase_modelname}}Config config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TF{{cookiecutter.camelcase_modelname}}Model(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int32) if decoder_attention_mask is None: decoder_attention_mask = tf.concat([tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int32), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int32)], axis=-1) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_tf class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model) if is_tf_available() else () all_generative_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,) if is_tf_available() else () is_encoder_decoder = True test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self) self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip(reason="Template classes interact badly with this test.") def test_keras_fit(self): pass def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if tf.debugging.assert_near(a, b, atol=atol): return True raise except Exception: if len(prefix) > 0: prefix = f"{prefix}: " raise AssertionError(f"{prefix}{a} != {b}") def _long_tensor(tok_lst): return tf.constant(tok_lst, dtype=tf.int32) TOLERANCE = 1e-4 @slow @require_sentencepiece @require_tokenizers @require_tf class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase): def test_inference_no_head(self): model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained('{{cookiecutter.checkpoint_identifier}}') # change to intended input here input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids) output = model(**inputs_dict)[0] expected_shape = (1, 11, 1024) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = tf.Tensor( [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE) def test_inference_with_head(self): model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}') # change to intended input here input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids) output = model(**inputs_dict)[0] expected_shape = (1, 11, 1024) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = tf.Tensor( [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE) def test_seq_to_seq_generation(self): hf = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}') tok = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}') batch_input = [ # string 1, # string 2, # string 3, # string 4, ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tok.batch_encode_plus( batch_input, max_length=512, padding="max_length", truncation_strategy="only_first", truncation=True, return_tensors="tf", ) hypotheses_batch = hf.generate( input_ids=dct["input_ids"], attention_mask=dct["attention_mask"], num_beams=2, ) EXPECTED = [ # here expected 1, # here expected 2, # here expected 3, # here expected 4, ] generated = tok.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == EXPECTED {%- endif %}
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/test_modeling_tf_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/test_modeling_tf_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 17346 }
128
{ "modelname": "NewTFENCDEC", "uppercase_modelname": "NEW_TF_ENC_DEC", "lowercase_modelname": "new_tf_enc_dec_template", "camelcase_modelname": "NewTFEncDec", "authors": "The HuggingFace Team", "checkpoint_identifier": "new-tf-enc-dec-base_template", "tokenizer_type": "Based on BART", "generate_tensorflow_pytorch_and_flax": "TensorFlow", "is_encoder_decoder_model": "True" }
transformers/templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json/0
{ "file_path": "transformers/templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json", "repo_id": "transformers", "token_count": 159 }
129
# coding=utf-8 # Copyright 2023 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class StreamerTester(unittest.TestCase): def test_text_streamer_matches_non_streaming(self): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) model.config.eos_token_id = -1 input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) greedy_text = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: streamer = TextStreamer(tokenizer) model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) # The greedy text should be printed to stdout, except for the final "\n" in the streamer streamer_text = cs.out[:-1] self.assertEqual(streamer_text, greedy_text) def test_iterator_streamer_matches_non_streaming(self): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) model.config.eos_token_id = -1 input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) greedy_text = tokenizer.decode(greedy_ids[0]) streamer = TextIteratorStreamer(tokenizer) generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() streamer_text = "" for new_text in streamer: streamer_text += new_text self.assertEqual(streamer_text, greedy_text) def test_text_streamer_skip_prompt(self): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) model.config.eos_token_id = -1 input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) new_greedy_ids = greedy_ids[:, input_ids.shape[1] :] new_greedy_text = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: streamer = TextStreamer(tokenizer, skip_prompt=True) model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) # The greedy text should be printed to stdout, except for the final "\n" in the streamer streamer_text = cs.out[:-1] self.assertEqual(streamer_text, new_greedy_text) def test_text_streamer_decode_kwargs(self): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2") model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2").to(torch_device) model.config.eos_token_id = -1 input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id with CaptureStdout() as cs: streamer = TextStreamer(tokenizer, skip_special_tokens=True) model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token streamer_text = cs.out[:-1] # Remove the final "\n" streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1)) def test_iterator_streamer_timeout(self): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) model.config.eos_token_id = -1 input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) streamer = TextIteratorStreamer(tokenizer, timeout=0.001) generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(Empty): streamer_text = "" for new_text in streamer: streamer_text += new_text
transformers/tests/generation/test_streamers.py/0
{ "file_path": "transformers/tests/generation/test_streamers.py", "repo_id": "transformers", "token_count": 2348 }
130
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import random import tempfile import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin global_rng = random.Random() if is_torch_available(): import torch # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class ASTFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=1, padding_value=0.0, sampling_rate=16000, return_attention_mask=True, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size speech_inputs = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class ASTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = ASTFeatureExtractor def setUp(self): self.feat_extract_tester = ASTFeatureExtractionTester(self) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test not batched input encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feat_extract(speech_inputs, padding=True, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs, padding=True, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) @require_torch def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.float32) def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def test_integration(self): # fmt: off EXPECTED_INPUT_VALUES = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = ASTFeatureExtractor() input_values = feature_extractor(input_speech, return_tensors="pt").input_values self.assertEquals(input_values.shape, (1, 1024, 128)) self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-4)) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() self.assertDictEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() self.assertEqual(dict_first, dict_second) # exact same tests than before, except that we simulate that torchaudio is not available @require_torch @unittest.mock.patch( "transformers.models.audio_spectrogram_transformer.feature_extraction_audio_spectrogram_transformer.is_speech_available", lambda: False, ) class ASTFeatureExtractionWithoutTorchaudioTest(ASTFeatureExtractionTest): def test_using_audio_utils(self): # Tests that it uses audio_utils instead of torchaudio feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) self.assertTrue(hasattr(feat_extract, "window")) self.assertTrue(hasattr(feat_extract, "mel_filters")) from transformers.models.audio_spectrogram_transformer.feature_extraction_audio_spectrogram_transformer import ( is_speech_available, ) self.assertFalse(is_speech_available())
transformers/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.py/0
{ "file_path": "transformers/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.py", "repo_id": "transformers", "token_count": 3869 }
131
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class BarkProcessorTest(unittest.TestCase): def setUp(self): self.checkpoint = "suno/bark-small" self.tmpdirname = tempfile.mkdtemp() self.voice_preset = "en_speaker_1" self.input_string = "This is a test string" self.speaker_embeddings_dict_path = "speaker_embeddings_path.json" self.speaker_embeddings_directory = "speaker_embeddings" def get_tokenizer(self, **kwargs): return AutoTokenizer.from_pretrained(self.checkpoint, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() processor = BarkProcessor(tokenizer=tokenizer) processor.save_pretrained(self.tmpdirname) processor = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) @slow def test_save_load_pretrained_additional_features(self): processor = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) processor.save_pretrained( self.tmpdirname, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, speaker_embeddings_directory=self.speaker_embeddings_directory, ) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") processor = BarkProcessor.from_pretrained( self.tmpdirname, self.speaker_embeddings_dict_path, bos_token="(BOS)", eos_token="(EOS)", ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) def test_speaker_embeddings(self): processor = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) seq_len = 35 nb_codebooks_coarse = 2 nb_codebooks_total = 8 voice_preset = { "semantic_prompt": np.ones(seq_len), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset inputs = processor(text=self.input_string, voice_preset=voice_preset) processed_voice_preset = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist()) # test loading voice preset from npz file tmpfilename = os.path.join(self.tmpdirname, "file.npz") np.savez(tmpfilename, **voice_preset) inputs = processor(text=self.input_string, voice_preset=tmpfilename) processed_voice_preset = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist()) # test loading voice preset from the hub inputs = processor(text=self.input_string, voice_preset=self.voice_preset) def test_tokenizer(self): tokenizer = self.get_tokenizer() processor = BarkProcessor(tokenizer=tokenizer) encoded_processor = processor(text=self.input_string) encoded_tok = tokenizer( self.input_string, padding="max_length", max_length=256, add_special_tokens=False, return_attention_mask=True, return_token_type_ids=False, ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())
transformers/tests/models/bark/test_processor_bark.py/0
{ "file_path": "transformers/tests/models/bark/test_processor_bark.py", "repo_id": "transformers", "token_count": 1928 }
132
# coding=utf-8 # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BridgeTower model. """ import tempfile import unittest import numpy as np from transformers import ( BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, is_torch_available, is_vision_available, ) from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, ) from transformers.models.bridgetower.modeling_bridgetower import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import BridgeTowerProcessor class BridgeTowerTextModelTester: def __init__( self, parent, hidden_act="gelu", hidden_size=64, initializer_factor=1, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=2, intermediate_size=128, tie_word_embeddings=False, output_hidden_states=False, ): self.parent = parent self.hidden_act = hidden_act self.hidden_size = hidden_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.tie_word_embeddings = tie_word_embeddings self.vocab_size = 99 self.seq_length = 4 self.batch_size = 1 self.is_training = False self.output_hidden_states = output_hidden_states def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_ids, attention_mask def get_config(self): return BridgeTowerTextConfig( hidden_act=self.hidden_act, hidden_size=self.hidden_size, initializer_factor=self.initializer_factor, layer_norm_eps=self.layer_norm_eps, num_attention_heads=self.num_attention_heads, num_hidden_layers=self.num_hidden_layers, intermediate_size=self.intermediate_size, tie_word_embeddings=self.tie_word_embeddings, output_hidden_states=self.output_hidden_states, vocab_size=self.vocab_size, ) class BridgeTowerImageModelTester: def __init__( self, parent, hidden_size=64, initializer_factor=1, layer_norm_eps=1e-05, num_hidden_layers=2, init_layernorm_from_vision_encoder=False, output_hidden_states=False, image_size=64, ): self.parent = parent self.hidden_size = hidden_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.num_hidden_layers = num_hidden_layers self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder self.num_channels = 3 self.num_image_features = 17 self.batch_size = 1 self.image_size = image_size self.is_training = False self.output_hidden_states = output_hidden_states def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_mask = random_attention_mask([self.batch_size, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values, pixel_mask def get_config(self): return BridgeTowerVisionConfig( hidden_size=self.hidden_size, initializer_factor=self.initializer_factor, layer_norm_eps=self.layer_norm_eps, num_hidden_layers=self.num_hidden_layers, init_layernorm_from_vision_encoder=self.init_layernorm_from_vision_encoder, num_channels=self.num_channels, num_image_features=self.num_image_features, batch_size=self.batch_size, image_size=self.image_size, is_training=self.is_training, output_hidden_states=self.output_hidden_states, ) class BridgeTowerModelTester: def __init__( self, parent, text_kwargs=None, vision_kwargs=None, share_cross_modal_transformer_layers=True, share_link_tower_layers=False, link_tower_type="add", init_layernorm_from_vision_encoder=False, contrastive_hidden_size=512, logit_scale_init_value=2.6592, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=128, ): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = BridgeTowerTextModelTester(parent, **text_kwargs) self.vision_model_tester = BridgeTowerImageModelTester(parent, **vision_kwargs) self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers self.share_link_tower_layers = share_link_tower_layers self.link_tower_type = link_tower_type self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder self.contrastive_hidden_size = contrastive_hidden_size self.logit_scale_init_value = logit_scale_init_value self.batch_size = 1 self.expected_num_hidden_layers = 8 self.is_training = False self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values, pixel_mask = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return (config, input_ids, attention_mask, pixel_values, pixel_mask) def get_config(self): return BridgeTowerConfig.from_text_vision_configs( text_config=self.text_model_tester.get_config(), vision_config=self.vision_model_tester.get_config(), share_cross_modal_transformer_layers=self.share_cross_modal_transformer_layers, share_link_tower_layers=self.share_link_tower_layers, link_tower_type=self.link_tower_type, init_layernorm_from_vision_encoder=self.init_layernorm_from_vision_encoder, contrastive_hidden_size=self.contrastive_hidden_size, logit_scale_init_value=self.logit_scale_init_value, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, ) def create_and_check_model( self, config, input_ids, attention_mask, pixel_values, pixel_mask, ): model = BridgeTowerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) self.parent.assertEqual( result["text_features"].shape, (self.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size), ) self.parent.assertEqual( result["image_features"].shape, (self.batch_size, self.vision_model_tester.num_image_features, self.vision_model_tester.hidden_size), ) self.parent.assertEqual( result["pooler_output"].shape, (self.batch_size, self.text_model_tester.hidden_size + self.vision_model_tester.hidden_size), ) def create_and_check_for_image_and_text_retrieval( self, config, input_ids, attention_mask, pixel_values, pixel_mask, ): bridgetower_itm_output_last_dimension = 2 model = BridgeTowerForImageAndTextRetrieval(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, bridgetower_itm_output_last_dimension)) def create_and_check_for_masked_language_modeling( self, config, input_ids, attention_mask, pixel_values, pixel_mask, ): model = BridgeTowerForMaskedLM(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.text_model_tester.seq_length, self.text_model_tester.vocab_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, attention_mask, pixel_values, pixel_mask) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "pixel_mask": pixel_mask, } return config, inputs_dict @require_torch class BridgeTowerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( BridgeTowerModel, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerForContrastiveLearning, ) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": BridgeTowerModel} if is_torch_available() else {} is_training = False test_headmasking = False test_pruning = False test_torchscript = False test_resize_embeddings = False has_attentions = False @unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.") def test_cpu_offload(self): pass @unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload(self): pass @unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.") def test_model_parallelism(self): pass # function to extract meaningful tensor from output per different model_class def extract_output(self, outputs, model_class): return outputs["pooler_output"] if model_class == "BridgeTowerModel" else outputs["logits"] def setUp(self): self.model_tester = BridgeTowerModelTester(self) self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_and_text_retrieval(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_and_text_retrieval(*config_and_inputs) def test_for_masked_language_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_language_modeling(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BridgeTowerModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow def test_save_load_fast_init_from_base(self): # Override as it is a slow test on this model super().test_save_load_fast_init_from_base() # Override as extracting meaningful tensor from output is different for BridgeTower def test_save_load(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**input_dict) out_2 = self.extract_output(outputs, model_class.__name__) out_2 = out_2.cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**input_dict) # Make sure we don't have nans out_1 = self.extract_output(after_outputs, model_class.__name__) out_1 = out_1.cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) # Override this as `hidden states output` is different for BridgeTower def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states_text, hidden_states_vision, hidden_states_cross = ( outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states ) expected_num_layers = self.model_tester.expected_num_hidden_layers self.assertEqual( sum((len(hidden_states_text), len(hidden_states_vision), len(hidden_states_cross))), expected_num_layers, ) seq_length = self.model_tester.text_model_tester.seq_length num_image_features = self.model_tester.vision_model_tester.num_image_features self.assertListEqual( list(hidden_states_text[0].shape[-2:]), [seq_length, self.model_tester.text_model_tester.hidden_size], ) self.assertListEqual( list(hidden_states_vision[0].shape), [num_image_features, 1, self.model_tester.vision_model_tester.hidden_size], ) self.assertListEqual( list(hidden_states_cross[0][0].shape[-2:]), [seq_length, self.model_tester.text_model_tester.hidden_size], ) self.assertListEqual( list(hidden_states_cross[0][1].shape[-2:]), [num_image_features, self.model_tester.vision_model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Override as `hidden states output` is different for BridgeTower def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0][0] hidden_states.retain_grad() if self.has_attentions: attentions = outputs.attentions[0][0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) # override as the `logit_scale` parameter initilization is different for BRIDGE TOWER def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if name == "logit_scale": self.assertAlmostEqual( param.data.item(), config.logit_scale_init_value, delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""Bridge Tower does not have input/output embeddings. So this test is not applicable.""") def test_model_common_attributes(self): pass @unittest.skip(reason="""Bridge Tower does not have input/output embeddings. Thus this test is not applicable.""") def test_inputs_embeds(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BridgeTowerModelIntegrationTest(unittest.TestCase): @cached_property def default_processor(self): return ( BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") if is_vision_available() else None ) @slow def test_image_and_text_retrieval(self): model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to( torch_device ) model.eval() processor = self.default_processor image = prepare_img() text = "a bunch of cats laying on a tower." inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 2]) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(outputs.logits[0, 1].item() > outputs.logits[0, 0].item()) # verify loss inputs["labels"] = torch.ones(1, dtype=torch.long, device=torch_device) inputs = inputs.to(torch_device) with torch.no_grad(): outputs = model(**inputs) self.assertAlmostEqual(outputs.loss.item(), 0.5108, places=4) @slow def test_masked_language_modeling(self): model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to(torch_device) model.eval() processor = self.default_processor image = prepare_img() text = "a bunch of <mask> laying on a tower." inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 11, 50265]) self.assertEqual(outputs.logits.shape, expected_shape) # verify predicted word predicted_id = outputs.logits.argmax(dim=-1).squeeze(0).tolist()[4] self.assertTrue(processor.decode([predicted_id]) == " cats") # verify loss inputs["labels"] = inputs["input_ids"].clone() inputs = inputs.to(torch_device) with torch.no_grad(): outputs = model(**inputs) self.assertAlmostEqual(outputs.loss.item(), 5.7373, places=4) @slow def test_constrastive_learning(self): model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc").to( torch_device ) model.eval() processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") image = prepare_img() text = "a bunch of cats laying on a tower." inputs = processor(image, text, padding=True, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs, output_hidden_states=True, return_loss=True) # verify the logits expected_shape = torch.Size([1, 3, 512]) self.assertEqual(outputs.logits.shape, expected_shape) @slow @require_torch class BridgeTowerModelTrainingTest(unittest.TestCase): all_training_supported_model_classes = ( (BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerForContrastiveLearning) if is_torch_available() else () ) def setUp(self): self.model_tester = BridgeTowerModelTester(self) self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) def _prepare_inputs_for_training(self, model_class): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if model_class == BridgeTowerForMaskedLM: inputs_dict["labels"] = inputs_dict["input_ids"] elif model_class == BridgeTowerForImageAndTextRetrieval: inputs_dict["labels"] = ids_tensor([1], 2) elif model_class == BridgeTowerForContrastiveLearning: inputs_dict["return_loss"] = True return config, inputs_dict def _get_non_used_layer_names(self, model_class): non_used_layer_names = ["text_model.pooler"] if model_class == BridgeTowerForMaskedLM: non_used_layer_names = non_used_layer_names + [ # This number `1` actually depends on the number of layers in `cross_modal_image_layers` (by minus 1) "cross_modal_image_layers.1", "cross_modal_image_pooler", "cross_modal_text_pooler", ] return non_used_layer_names def _is_layer_used(self, model_class, layer_name): non_used_layer_names = self._get_non_used_layer_names(model_class) for non_used_layer_name in non_used_layer_names: if non_used_layer_name in layer_name: return False return True def test_training(self): for model_class in self.all_training_supported_model_classes: config, inputs_dict = self._prepare_inputs_for_training(model_class) model = model_class(config) model.to(torch_device) model.train() loss = model(**inputs_dict).loss loss.backward() # verify the gradients of used layers' weight are not None for name, param in model.named_parameters(): if self._is_layer_used(model_class, name): self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}")
transformers/tests/models/bridgetower/test_modeling_bridgetower.py/0
{ "file_path": "transformers/tests/models/bridgetower/test_modeling_bridgetower.py", "repo_id": "transformers", "token_count": 11285 }
133
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Clvp model. """ import gc import tempfile import unittest import datasets import numpy as np from transformers import ClvpConfig, ClvpDecoderConfig, ClvpEncoderConfig from transformers.testing_utils import ( require_torch, slow, torch_device, ) from transformers.utils import is_torch_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ClvpEncoder, ClvpForCausalLM, ClvpModel, ClvpModelForConditionalGeneration from transformers.models.clvp.modeling_clvp import CLVP_PRETRAINED_MODEL_ARCHIVE_LIST from transformers import ClvpFeatureExtractor, ClvpTokenizer class ClvpEncoderTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=False, use_input_mask=True, use_labels=True, vocab_size=50, hidden_size=128, projection_dim=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=32, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 def get_config(self): encoder_config = ClvpEncoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, ) return encoder_config def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 encoder_config = self.get_config() return encoder_config, input_ids, input_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() speech_config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids.to(torch_device), "attention_mask": input_mask.to(torch_device)} return speech_config, inputs_dict def create_and_check_model(self, speech_config, input_ids, input_mask): text_config = ClvpEncoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) text_encoder_model = ClvpEncoder(config=text_config) text_encoder_model.to(torch_device) text_encoder_model.eval() with torch.no_grad(): result = text_encoder_model(input_ids, attention_mask=input_mask) result = text_encoder_model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim)) # now check with speech config speech_encoder_model = ClvpEncoder(config=speech_config) speech_encoder_model.to(torch_device) speech_encoder_model.eval() with torch.no_grad(): result = speech_encoder_model(input_ids, attention_mask=input_mask) result = speech_encoder_model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim)) @require_torch class ClvpEncoderTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ClvpEncoder,) if is_torch_available() else () test_pruning = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = ClvpEncoderTester(self) self.encoder_config_tester = ConfigTester(self, config_class=ClvpEncoderConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_config(self): self.encoder_config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="ClvpEncoder does not output loss") def test_training(self): pass @unittest.skip(reason="ClvpEncoder does not output loss") def test_training_gradient_checkpointing(self): pass class ClvpDecoderTester: def __init__( self, parent, batch_size=2, seq_length=3, is_training=False, vocab_size=300, max_position_embeddings=256, max_text_tokens=256, use_input_mask=True, hidden_size=128, num_hidden_layers=2, num_attention_heads=2, bos_token_id=97, eos_token_id=98, relative_attention_num_buckets=4, relative_attention_max_distance=16, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.max_text_tokens = max_text_tokens self.use_input_mask = use_input_mask self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance def get_config(self): decoder_config = ClvpDecoderConfig( vocab_size=self.vocab_size, max_position_embeddings=self.max_position_embeddings, max_text_tokens=self.max_text_tokens, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, relative_attention_num_buckets=self.relative_attention_num_buckets, relative_attention_max_distance=self.relative_attention_max_distance, ) return decoder_config def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 decoder_config = self.get_config() return decoder_config, input_ids, input_mask def create_and_check_model(self, config, input_ids, attention_mask): model = ClvpForCausalLM(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids=input_ids, attention_mask=attention_mask) self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = { "input_ids": input_ids.to(torch_device), "attention_mask": attention_mask.to(torch_device), } return config, inputs_dict @require_torch class ClvpDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (ClvpModel, ClvpForCausalLM) if is_torch_available() else () all_generative_model_classes = (ClvpForCausalLM,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": ClvpModelForConditionalGeneration} if is_torch_available() else {} test_pruning = False def setUp(self): self.model_tester = ClvpDecoderTester(self) self.decoder_config_tester = ConfigTester(self, config_class=ClvpDecoderConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): if return_labels and model_class == ClvpForCausalLM: inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, self.model_tester.seq_length], device=torch_device ).long() return inputs_dict def test_training(self): # we will only test the ClvpForCausalLM since it outputs loss config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = ClvpForCausalLM(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): # we will only test the ClvpForCausalLM since it outputs loss config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = ClvpForCausalLM(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True) loss = model(**inputs).loss loss.backward() class ClvpModelForConditionalGenerationTester: def __init__(self, parent, is_training=False): self.parent = parent self.clvp_encoder_tester = ClvpEncoderTester(parent) self.is_training = is_training def get_config(self): decoder_config = ClvpDecoderConfig( vocab_size=50, max_position_embeddings=30, max_text_tokens=30, hidden_size=128, num_hidden_layers=1, num_attention_heads=2, bos_token_id=97, eos_token_id=98, relative_attention_num_buckets=4, relative_attention_max_distance=16, ) text_config = self.clvp_encoder_tester.get_config() speech_config = self.clvp_encoder_tester.get_config() speech_config.vocab_size = 300 return ClvpConfig.from_sub_model_configs( text_config, speech_config, decoder_config, projection_dim=16, ) def prepare_config_and_inputs(self): _, input_ids, attention_mask = self.clvp_encoder_tester.prepare_config_and_inputs() ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() feature_extractor = ClvpFeatureExtractor() input_features = feature_extractor(raw_speech=audio, sampling_rate=sr, return_tensors="pt")[ "input_features" ].to(torch_device) config = self.get_config() return config, input_ids, attention_mask, input_features def create_and_check_model(self, config, input_ids, attention_mask, input_features): model = ClvpModelForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids=input_ids, input_features=input_features, attention_mask=attention_mask) self.parent.assertEqual(result.logits_per_speech.shape, (2, self.clvp_encoder_tester.batch_size)) self.parent.assertEqual(result.logits_per_text.shape, (self.clvp_encoder_tester.batch_size, 2)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, input_features = config_and_inputs inputs_dict = { "input_ids": input_ids.to(torch_device), "attention_mask": attention_mask.to(torch_device), "input_features": input_features.to(torch_device), "return_loss": False, } return config, inputs_dict @require_torch class ClvpModelForConditionalGenerationTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ClvpModelForConditionalGeneration,) if is_torch_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = ClvpModelForConditionalGenerationTester(self) self.clvp_config_tester = ConfigTester(self, config_class=ClvpConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # check for decoder model, text encoder model and speech encoder model hidden states decoder_hidden_states = outputs.decoder_hidden_states text_encoder_hidden_states = outputs.text_encoder_hidden_states speech_encoder_hidden_states = outputs.speech_encoder_hidden_states # check length of the hidden states expected_decoder_num_layers = config.decoder_config.num_hidden_layers + 1 self.assertEqual(len(decoder_hidden_states), expected_decoder_num_layers) expected_speech_encoder_num_layers = config.text_config.num_hidden_layers + 1 self.assertEqual(len(text_encoder_hidden_states), expected_speech_encoder_num_layers) expected_text_encoder_num_layers = config.speech_config.num_hidden_layers + 1 self.assertEqual(len(speech_encoder_hidden_states), expected_text_encoder_num_layers) # check shapes of each hidden state # for the decoder model we will only test the dimension because the ClvpConditioningEncoder could increase # the sequence lengths. self.assertEqual(decoder_hidden_states[0].shape[-1], config.decoder_config.hidden_size) # the testing for text encoder stays standard because we just pass the text tokens here. self.assertListEqual( list(text_encoder_hidden_states[0].shape[-2:]), [self.model_tester.clvp_encoder_tester.seq_length, config.text_config.hidden_size], ) # for the decoder model we will only test the dimension because the fix_decoder_outputs method could increase # the sequence lengths by adding `decoder_fixing_codes` tokens at the end. self.assertEqual(speech_encoder_hidden_states[0].shape[-1], config.speech_config.hidden_size) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for Clvp def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": expected_value = np.log(1 / 0.07) returned_value = param.data.item() self.assertAlmostEqual( returned_value, expected_value, delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: expected_range = [0.0, 1.0] returned_range = ((param.data.mean() * 1e9).round() / 1e9).item() self.assertIn( returned_range, expected_range, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_load_speech_text_decoder_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save ClvpConfig and check if we can load ClvpEncoderConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) encoder_config = ClvpEncoderConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), encoder_config.to_dict()) # Save ClvpConfig and check if we can load ClvpDecoderConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) decoder_config = ClvpDecoderConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.decoder_config.to_dict(), decoder_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in CLVP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClvpModelForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) # Since Clvp has a lot of different models connected with each other it's better to test each of them individually along # with a test_full_model_integration. If the model breaks in future, it could be of a great help to identify the broken part. @slow @require_torch class ClvpIntegrationTest(unittest.TestCase): def setUp(self): self.text = "This is an example text." ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) _, self.speech_samples, self.sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() self.model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev").to(torch_device) self.model.eval() tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev") feature_extractor = ClvpFeatureExtractor.from_pretrained("susnato/clvp_dev") tokenizer_output = tokenizer(self.text, return_tensors="pt") self.text_tokens = tokenizer_output["input_ids"].to(torch_device) self.input_features = feature_extractor( raw_speech=self.speech_samples, sampling_rate=self.sr, return_tensors="pt" )["input_features"].to(torch_device) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_conditional_encoder(self): with torch.no_grad(): conditioning_encoder_outputs = self.model.conditioning_encoder( input_features=self.input_features, input_ids=self.text_tokens ).to("cpu") self.assertEqual( conditioning_encoder_outputs.shape, torch.Size((self.input_features.shape[0], 18, self.model.config.decoder_config.hidden_size)), ) EXPECTED_OUTPUTS = torch.tensor( [[-0.8582, 0.5228, 1.9944], [-0.0465, -1.1017, -0.0093], [-0.0466, -0.6030, -0.1280]] ) self.assertTrue(torch.allclose(conditioning_encoder_outputs[0, :3, :3], EXPECTED_OUTPUTS, atol=1e-4)) def test_decoder_model_generate(self): autoregressive_model_output = self.model.speech_decoder_model.generate(input_ids=self.text_tokens).cpu() EXPECTED_OUTPUTS = torch.tensor([[147, 2, 54, 2, 43, 2, 169, 122, 29, 64, 2, 136, 37, 33, 9, 8193]]) self.assertTrue(torch.allclose(autoregressive_model_output, EXPECTED_OUTPUTS)) def test_text_and_speech_encoder_models(self): # check for text embeds text_embeds = self.model.text_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu() # fmt: off EXPECTED_TEXT_EMBEDS = torch.tensor([1.4798, -2.0005, 2.3902, -0.5042, 1.6401, -2.4135, -1.4800, 3.0118, -2.4422, 1.3266, 2.2339, 1.4761, -4.8983, -1.3592, 6.0251, 6.7364, 2.2576, 3.7229, -10.0436, 4.6676]) # fmt: on self.assertTrue(torch.allclose(text_embeds[0, :20], EXPECTED_TEXT_EMBEDS, atol=1e-4)) # check for speech embeds speech_embeds = self.model.speech_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu() # fmt: off EXPECTED_SPEECH_EMBEDS = torch.tensor([3.1202, -3.1183, -1.4264, -6.1339, 1.8885, -0.1983, 0.9461, -1.7414, 0.3320, -3.8400, -1.5715, 1.5096, -1.7576, 0.2387, 4.9758, 5.8450, -6.2534, 2.8587, -5.5816, 4.7821]) # fmt: on self.assertTrue(torch.allclose(speech_embeds[0, :20], EXPECTED_SPEECH_EMBEDS, atol=1e-4)) def test_full_model_integration(self): full_model_output = self.model.generate( input_ids=self.text_tokens, input_features=self.input_features, do_sample=False, num_beams=4, num_return_sequences=4, max_new_tokens=10, ) EXPECTED_SPEECH_IDS = torch.tensor([[1953, 1080, 612], [1953, 612, 493], [1953, 612, 716]]) EXPECTED_SIMILARITY_SCORES = torch.tensor([[14.7660, 14.4569, 13.6472, 13.5683]]) self.assertTrue(torch.allclose(full_model_output.speech_ids.cpu()[-3:, -3:], EXPECTED_SPEECH_IDS)) self.assertTrue(torch.allclose(full_model_output.logits_per_text.cpu(), EXPECTED_SIMILARITY_SCORES))
transformers/tests/models/clvp/test_modeling_clvp.py/0
{ "file_path": "transformers/tests/models/clvp/test_modeling_clvp.py", "repo_id": "transformers", "token_count": 11682 }
134
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ConvNext model. """ import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class ConvNextModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_labels = num_labels self.initializer_range = initializer_range self.out_features = out_features self.out_indices = out_indices self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = ConvNextModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = ConvNextForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = ConvNextBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = ConvNextBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ConvNextModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = ConvNextModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvNextConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="ConvNext does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ConvNext does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="ConvNext does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ConvNextModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ConvNextModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.0260, -0.4739, 0.1911]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class ConvNextBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (ConvNextBackbone,) if is_torch_available() else () config_class = ConvNextConfig has_attentions = False def setUp(self): self.model_tester = ConvNextModelTester(self)
transformers/tests/models/convnext/test_modeling_convnext.py/0
{ "file_path": "transformers/tests/models/convnext/test_modeling_convnext.py", "repo_id": "transformers", "token_count": 4658 }
135
""" Testing suite for the Tensorflow CvT model. """ from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.modeling_tf_utils import keras from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TFCvtConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "embed_dim")) self.parent.assertTrue(hasattr(config, "num_heads")) class TFCvtModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, embed_dim=[16, 32, 48], num_heads=[1, 2, 3], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], stride_kv=[2, 2, 2], cls_token=[False, False, True], attention_drop_rate=[0.0, 0.0, 0.0], initializer_range=0.02, layer_norm_eps=1e-12, is_training=True, use_labels=True, num_labels=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.num_channels = num_channels self.embed_dim = embed_dim self.num_heads = num_heads self.stride_kv = stride_kv self.depth = depth self.cls_token = cls_token self.attention_drop_rate = attention_drop_rate self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: # create a random int32 tensor of given shape labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = TFCvtModel(config=config) result = model(pixel_values, training=False) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for i in range(len(self.depth)): height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = TFCvtForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFCvtModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False test_onnx = False def setUp(self): self.model_tester = TFCvtModelTester(self) self.config_tester = TFCvtConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Cvt does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Cvt does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def test_dataset_conversion(self): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def test_keras_fit_mixed_precision(self): policy = keras.mixed_precision.Policy("mixed_float16") keras.mixed_precision.set_global_policy(policy) super().test_keras_fit() keras.mixed_precision.set_global_policy("float32") def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depth) self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFCvtModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFCvtModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def test_inference_image_classification_head(self): model = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([0.9285, 0.9015, -0.3150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
transformers/tests/models/cvt/test_modeling_tf_cvt.py/0
{ "file_path": "transformers/tests/models/cvt/test_modeling_tf_cvt.py", "repo_id": "transformers", "token_count": 4675 }
136
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Dinat model. """ import collections import unittest from transformers import DinatConfig from transformers.testing_utils import require_natten, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import DinatBackbone, DinatForImageClassification, DinatModel from transformers.models.dinat.modeling_dinat import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class DinatModelTester: def __init__( self, parent, batch_size=13, image_size=64, patch_size=4, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 4, 8], kernel_size=3, dilations=[[3], [1, 2], [1]], mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, num_labels=10, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.kernel_size = kernel_size self.dilations = dilations self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.num_labels = num_labels self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return DinatConfig( num_labels=self.num_labels, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, kernel_size=self.kernel_size, dilations=self.dilations, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, patch_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = DinatModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = (config.image_size // config.patch_size) // (2 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, expected_height, expected_width, expected_dim) ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = DinatForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) # test greyscale images config.num_channels = 1 model = DinatForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = DinatBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = DinatBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_natten @require_torch class DinatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DinatModel, DinatForImageClassification, DinatBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": DinatModel, "image-classification": DinatForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_torchscript = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DinatModelTester(self) self.config_tester = ConfigTester(self, config_class=DinatConfig, embed_dim=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) @unittest.skip(reason="Dinat does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Dinat does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_attention_outputs(self): self.skipTest("Dinat's attention operation is handled entirely by NATTEN.") def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Dinat has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) height = image_size[0] // patch_size[0] width = image_size[1] // patch_size[1] self.assertListEqual( list(hidden_states[0].shape[-3:]), [height, width, self.model_tester.embed_dim], ) if model_class.__name__ != "DinatBackbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height, width).permute(0, 2, 3, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-3:]), [height, width, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) @slow def test_model_from_pretrained(self): for model_name in DINAT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DinatModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_natten @require_vision @require_torch class DinatModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224").to(torch_device) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.1545, -0.7667, 0.4642]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch @require_natten class DinatBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (DinatBackbone,) if is_torch_available() else () config_class = DinatConfig def setUp(self): self.model_tester = DinatModelTester(self)
transformers/tests/models/dinat/test_modeling_dinat.py/0
{ "file_path": "transformers/tests/models/dinat/test_modeling_dinat.py", "repo_id": "transformers", "token_count": 6347 }
137
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class TFDPRModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, projection_dim=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.projection_dim = projection_dim def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) config = DPRConfig(projection_dim=self.projection_dim, **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_dpr_context_encoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDPRContextEncoder(config=config) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) def create_and_check_dpr_question_encoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDPRQuestionEncoder(config=config) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) def create_and_check_dpr_reader( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDPRReader(config=config) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids} return config, inputs_dict @require_tf class TFDPRModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) pipeline_model_mapping = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} test_resize_embeddings = False test_missing_keys = False test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDPRModelTester(self) self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_dpr_context_encoder_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*config_and_inputs) def test_dpr_question_encoder_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*config_and_inputs) def test_dpr_reader_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFDPRContextEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFDPRContextEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFDPRQuestionEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFDPRReader.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFDPRModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") input_ids = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] output = model(input_ids)[0] # embedding shape = (1, 768) # compare the actual values for a slice. expected_slice = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/dpr/test_modeling_tf_dpr.py/0
{ "file_path": "transformers/tests/models/dpr/test_modeling_tf_dpr.py", "repo_id": "transformers", "token_count": 4568 }
138
import unittest import numpy as np from transformers import ElectraConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.electra.modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, ) class FlaxElectraModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=24, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = ElectraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, embedding_size=self.embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxElectraModelTest(FlaxModelTesterMixin, unittest.TestCase): test_head_masking = True all_model_classes = ( ( FlaxElectraModel, FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForPreTraining, FlaxElectraForTokenClassification, FlaxElectraForQuestionAnswering, FlaxElectraForMultipleChoice, FlaxElectraForSequenceClassification, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxElectraModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: if model_class_name == FlaxElectraForMaskedLM: model = model_class_name.from_pretrained("google/electra-small-generator") else: model = model_class_name.from_pretrained("google/electra-small-discriminator") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
transformers/tests/models/electra/test_modeling_flax_electra.py/0
{ "file_path": "transformers/tests/models/electra/test_modeling_flax_electra.py", "repo_id": "transformers", "token_count": 2277 }
139
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ESM model. """ import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) # copied from tests.test_modeling_roberta class EsmModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=False, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=33, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): model = EsmModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = EsmForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = EsmForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, gradient_checkpointing=False, ): model = EsmForMaskedLM(config) if gradient_checkpointing: model.gradient_checkpointing_enable() model.to(torch_device) result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_mismatched_shapes = False all_model_classes = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = () pipeline_model_mapping = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) test_sequence_classification_problem_types = True model_split_percents = [0.5, 0.8, 0.9] def setUp(self): self.model_tester = EsmModelTester(self) self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_esm_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) @slow def test_model_from_pretrained(self): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = EsmModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is EsmEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = EsmEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is EsmEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = EsmEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @unittest.skip("Esm does not support embedding resizing") def test_resize_embeddings_untied(self): pass @unittest.skip("Esm does not support embedding resizing") def test_resize_tokens_embeddings(self): pass @require_torch class EsmModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): with torch.no_grad(): model = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") model.eval() input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] vocab_size = 33 expected_shape = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): with torch.no_grad(): model = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") model.eval() input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/esm/test_modeling_esm.py/0
{ "file_path": "transformers/tests/models/esm/test_modeling_esm.py", "repo_id": "transformers", "token_count": 5965 }
140
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_torchvision, require_vision from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_torchvision_available(): import torchvision.transforms as transforms if is_vision_available(): from PIL import Image from transformers import IdeficsImageProcessor class IdeficsImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, size=None, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], ): size = size if size is not None else {"shortest_edge": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution # self.size = size self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "image_size": self.image_size, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to IdeficsImageProcessor, assuming do_resize is set to True with a scalar size and size_divisor. """ if not batched: size = self.image_size image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = size / min(w, h) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size max_size = int((1333 / 800) * size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return (self.num_channels, height, width) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class IdeficsImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = IdeficsImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = IdeficsImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "image_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertNotEqual(image_processor.image_size, 30) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, image_size=42) self.assertEqual(image_processor.image_size, 42) @require_torchvision def test_torchvision_numpy_transforms_equivalency(self): # as we had to reimplement the torchvision transforms using transformers utils we must check # they both do the same image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) image_processor = self.image_processing_class(**self.image_processor_dict) print(image_inputs) def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite image_size = image_processor.image_size image_mean = image_processor.image_mean image_std = image_processor.image_std transform = transforms.Compose( [ convert_to_rgb, transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std), ] ) pixel_values_transform_implied = image_processor(image_inputs, transform=None) pixel_values_transform_supplied = image_processor(image_inputs, transform=transform) torch.testing.assert_close(pixel_values_transform_implied, pixel_values_transform_supplied, rtol=0.0, atol=0.0) @unittest.skip("not supported") def test_call_numpy(self): pass @unittest.skip("not supported") def test_call_numpy_4_channels(self): pass @unittest.skip("not supported") def test_call_pil(self): pass @unittest.skip("not supported") def test_call_pytorch(self): pass
transformers/tests/models/idefics/test_image_processing_idefics.py/0
{ "file_path": "transformers/tests/models/idefics/test_image_processing_idefics.py", "repo_id": "transformers", "token_count": 3182 }
141
# coding=utf-8 # Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile import unittest import numpy as np import pytest import requests from transformers.testing_utils import ( get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, require_vision, ) from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, CLIPImageProcessor, Kosmos2Processor, PreTrainedTokenizerFast, XLMRobertaTokenizer, XLMRobertaTokenizerFast, ) SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers @require_vision class Kosmos2ProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = CLIPImageProcessor() # We have a SentencePiece fixture for testing slow_tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB) fast_tokenizer = XLMRobertaTokenizerFast(__slow_tokenizer=slow_tokenizer) processor = Kosmos2Processor(image_processor, fast_tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = Kosmos2Processor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Kosmos2Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, CLIPImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_processor = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_processor.keys(): self.assertAlmostEqual(input_image_processor[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "This is a test" encoded_processor = processor(text=input_str, add_eos_token=True) encoded_tok = tokenizer(input_str, return_token_type_ids=False) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "This is a test" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask", "image_embeds_position_mask"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "This is a test" image_input = self.prepare_image_inputs() # both image and text inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask", "image_embeds_position_mask"] ) # only text inputs = processor(text=input_str) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) # only image inputs = processor(images=image_input) self.assertListEqual(list(inputs.keys()), ["pixel_values"]) @require_torch def test_full_processor(self): url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/two_dogs.jpg" processor = Kosmos2Processor.from_pretrained("microsoft/kosmos-2-patch14-224") # test with different input formats. # fmt: off texts = [ # no phrase "<grounding> Two puppies sit in a field of grass.", # 1 phrase "<grounding> <phrase> Two puppies </phrase> sit in a field of grass.", # 2 phrases "<grounding> <phrase> Two puppies </phrase> sit in a field of <phrase> grass </phrase>.", # 2 phrases: bboxes already specified for the 1st phrase "<grounding> <phrase> Two puppies </phrase> <object> <patch_index_0079> <patch_index_1016> </delimiter_of_multi_objects/> <patch_index_0135> <patch_index_1008> </object> sit in a field of <phrase> grass </phrase>.", ] # fmt: on image = Image.open(requests.get(url, stream=True).raw) # To match the official (microsoft) Kosmos-2 demo from which the expected values here are grabbed image_path = os.path.join(self.tmpdirname, "image.jpg") image.save(image_path) image = Image.open(image_path) # fmt: off bboxes = [ [None, []], [[None], [[]], [(79, 1016)], [[(79, 1016)]], [[(79, 1016), (135, 1008)]]], [[[(79, 1016), (135, 1008)], None], [[(79, 1016), (135, 1008)], []], [[(79, 1016), (135, 1008)], (480, 1023)], [[(79, 1016), (135, 1008)], [(480, 1023)]]], [[None, [(480, 1023)]]], ] # fmt: on batch_image = [image] * 4 batch_text = [texts[0], texts[1], texts[1], texts[2]] batch_bboxes = [ None, # no phrase [[]], # 1 phrase: no bbox [(79, 1016)], # 1 phrase: 1 bbox [[(79, 1016), (135, 1008)], (480, 1023)], # 2 phrase: 2 bboxes + 1 bbox ] # fmt: off expected_input_ids = [ [0, 64012, 1264, 17772, 1357, 12, 10, 770, 9, 4464, 4, 2], [0, 64012, 64007, 1264, 17772, 64008, 1357, 12, 10, 770, 9, 4464, 4, 2], [0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64010, 1357, 12, 10, 770, 9, 4464, 4, 2], [0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 4464, 4, 2], [0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 64007, 4464, 64008, 106, 4, 2], [0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 64007, 4464, 64008, 64009, 64493, 65036, 64010, 106, 4, 2], ] # fmt: on EXPECTED_PIXEL_VALUES_1 = np.array( [ [ [-0.6535852551460266, -0.6389868259429932, -0.6243883967399597], [-0.6535852551460266, -0.6389868259429932, -0.6243883967399597], [-0.6243883967399597, -0.6243883967399597, -0.5951915383338928], ], [ [-0.20629698038101196, -0.19128920137882233, -0.19128920137882233], [-0.20629698038101196, -0.19128920137882233, -0.17628143727779388], [-0.2213047444820404, -0.20629698038101196, -0.16127367317676544], ], [ [-0.5843556523323059, -0.5701355338096619, -0.5701355338096619], [-0.5843556523323059, -0.5701355338096619, -0.5559154152870178], [-0.5843556523323059, -0.5559154152870178, -0.5416953563690186], ], ] ) EXPECTED_PIXEL_VALUES_2 = np.array( [ [ [-0.4346088469028473, -0.47840413451194763, -0.7849710583686829], [-0.5221993923187256, -0.5076009631156921, -0.755774199962616], [-0.5221993923187256, -0.5076009631156921, -0.7411757707595825], ], [ [-0.2813358008861542, -0.2963435649871826, -0.431413471698761], [-0.26632803678512573, -0.2963435649871826, -0.4764367938041687], [-0.2213047444820404, -0.2813358008861542, -0.49144455790519714], ], [ [-0.5701355338096619, -0.641235888004303, -0.7549964189529419], [-0.5843556523323059, -0.641235888004303, -0.7834365367889404], [-0.5559154152870178, -0.641235888004303, -0.7834365367889404], ], ] ) def check(texts, bboxes, expected_input_ids): outputs = processor(images=None, text=texts, bboxes=bboxes, add_eos_token=True) self.assertListEqual(outputs.input_ids, expected_input_ids) # no phrase check(texts[0], bboxes[0][0], expected_input_ids[0]) # no phrase check(texts[0], bboxes[0][1], expected_input_ids[0]) # 1 phrase: no bbox check(texts[1], bboxes[1][0], expected_input_ids[1]) # 1 phrase: no bbox check(texts[1], bboxes[1][1], expected_input_ids[1]) # 1 phrase: 1 bbox check(texts[1], bboxes[1][2], expected_input_ids[2]) # 1 phrase: 1 bbox check(texts[1], bboxes[1][3], expected_input_ids[2]) # 1 phrase: 2 bboxes check(texts[1], bboxes[1][4], expected_input_ids[3]) # could not contain `[None]` with pytest.raises(ValueError): _ = processor.preprocess_examples(images=None, texts=texts[1], bboxes=[[None]]) # 2 phrase: 2 bboxes + no bbox check(texts[2], bboxes[2][0], expected_input_ids[4]) # 2 phrase: 2 bboxes + no bbox check(texts[2], bboxes[2][1], expected_input_ids[4]) # 2 phrase: 2 bboxes + 1 bbox check(texts[2], bboxes[2][2], expected_input_ids[5]) # 2 phrase: 2 bboxes + 1 bbox check(texts[2], bboxes[2][3], expected_input_ids[5]) # 2 phrase: no box (as already specified in the text) + 1 bbox check(texts[3], bboxes[3][0], expected_input_ids[5]) # could not contain `[None]` with pytest.raises(ValueError): _ = processor.preprocess_examples(images=None, texts=texts[2], bboxes=[[(79, 1016), (135, 1008)], [None]]) # test batch outputs = processor( images=None, text=batch_text, bboxes=batch_bboxes, add_eos_token=True, ) self.assertListEqual( outputs.input_ids, [expected_input_ids[0], expected_input_ids[1], expected_input_ids[2], expected_input_ids[5]], ) # test batch with padding (without `return_tensors`) outputs = processor( images=None, text=batch_text, bboxes=batch_bboxes, padding=True, add_eos_token=True, ) # padding on the right self.assertListEqual( outputs.input_ids[0], expected_input_ids[0] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), ) self.assertListEqual( outputs.attention_mask[0], [1] * len(expected_input_ids[0]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), ) # no padding for the longest sequence self.assertListEqual(outputs.input_ids[-1], expected_input_ids[5]) self.assertListEqual(outputs.attention_mask[-1], [1] * len(expected_input_ids[5])) # test batch with padding (with `return_tensors`) outputs = processor( images=None, text=batch_text, bboxes=batch_bboxes, return_tensors="pt", padding=True, add_eos_token=True, ) # padding on the right self.assertListEqual( outputs.input_ids.numpy().tolist()[0], expected_input_ids[0] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), ) self.assertListEqual( outputs.attention_mask.numpy().tolist()[0], [1] * len(expected_input_ids[0]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), ) # no padding for the longest sequence self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], expected_input_ids[5]) self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], [1] * len(expected_input_ids[5])) # test with image num_image_tokens = 64 outputs = processor(images=image, text=texts[0], bboxes=None, add_eos_token=True) self.assertTupleEqual(outputs.pixel_values[0].shape, (3, 224, 224)) self.assertListEqual( outputs.input_ids, [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:], ) self.assertListEqual( outputs.image_embeds_position_mask, [0] * 2 + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[0]) - 1), ) np.testing.assert_allclose(outputs.pixel_values[0][:3, :3, :3], EXPECTED_PIXEL_VALUES_1, atol=1e-9) np.testing.assert_allclose(outputs.pixel_values[0][:3, -3:, -3:], EXPECTED_PIXEL_VALUES_2, atol=1e-9) # test with image in batch (right padding) outputs = processor( images=batch_image, text=batch_text, bboxes=batch_bboxes, return_tensors="pt", padding=True, add_eos_token=True, ) self.assertTupleEqual(outputs.pixel_values.shape, (4, 3, 224, 224)) np.testing.assert_allclose( outputs.pixel_values[:, :3, :3, :3].numpy(), [EXPECTED_PIXEL_VALUES_1] * len(batch_image), atol=1e-9 ) np.testing.assert_allclose( outputs.pixel_values[:, :3, -3:, -3:].numpy(), [EXPECTED_PIXEL_VALUES_2] * len(batch_image), atol=1e-9 ) # padding on the right: the `[1:]` below is because the part for `BOS` is already added in the beginning of each (dynamically computed) expected value # noqa # fmt: off EXPECTED_IDS_BATCH_RIGHT_PADDING = [ [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[5][1:], ] EXPECTED_MASK_BATCH_RIGHT_PADDING = [ [1, 1] + [1] * num_image_tokens + [1] + [1] * len(expected_input_ids[0][1:]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])), [1] * (2 + num_image_tokens + len(expected_input_ids[5])), ] # fmt: on self.assertListEqual(outputs.input_ids.numpy().tolist()[0], EXPECTED_IDS_BATCH_RIGHT_PADDING[0]) self.assertListEqual(outputs.attention_mask.numpy().tolist()[0], EXPECTED_MASK_BATCH_RIGHT_PADDING[0]) self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], EXPECTED_IDS_BATCH_RIGHT_PADDING[-1]) self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], EXPECTED_MASK_BATCH_RIGHT_PADDING[-1]) self.assertListEqual( outputs.image_embeds_position_mask.numpy().tolist(), [[0, 0] + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[5]) - 1)] * len(batch_image), ) processor = Kosmos2Processor.from_pretrained("microsoft/kosmos-2-patch14-224", padding_side="left") # test with image in batch (left padding) outputs = processor( images=batch_image, text=batch_text, bboxes=batch_bboxes, return_tensors="pt", padding=True, add_eos_token=True, ) # padding on the left: the `[1:]` below is because the part for `BOS` is already added in the beginning of each (dynamically computed) expected value # noqa # fmt: off EXPECTED_IDS_BATCH = [ [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:], [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[5][1:], ] EXPECTED_MASK_BATCH =[ [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [1, 1] + [1] * num_image_tokens + [1] + [1] * len(expected_input_ids[0][1:]), [1] * (2 + num_image_tokens + len(expected_input_ids[5])), ] EXPECTED_IMG_POS_MASK_BATCH = [ [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [0, 0] + [1] * num_image_tokens + [0] + [0] * len(expected_input_ids[0][1:]), [0, 0] + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[5]) - 1), ] # fmt: on self.assertListEqual(outputs.input_ids.numpy().tolist()[0], EXPECTED_IDS_BATCH[0]) self.assertListEqual(outputs.attention_mask.numpy().tolist()[0], EXPECTED_MASK_BATCH[0]) self.assertListEqual(outputs.image_embeds_position_mask.numpy().tolist()[0], EXPECTED_IMG_POS_MASK_BATCH[0]) # no padding for the longest sequence self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], EXPECTED_IDS_BATCH[-1]) self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], EXPECTED_MASK_BATCH[-1]) self.assertListEqual(outputs.image_embeds_position_mask.numpy().tolist()[-1], EXPECTED_IMG_POS_MASK_BATCH[-1])
transformers/tests/models/kosmos2/test_processor_kosmos2.py/0
{ "file_path": "transformers/tests/models/kosmos2/test_processor_kosmos2.py", "repo_id": "transformers", "token_count": 9619 }
142
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): import torch from transformers import GPT2LMHeadModel @require_torch @require_sentencepiece @require_tokenizers class MegatronGPT2IntegrationTest(unittest.TestCase): @slow @unittest.skip("Model is not available.") def test_inference_no_head(self): directory = "nvidia/megatron-gpt2-345m/" if "MYDIR" in os.environ: directory = os.path.join(os.environ["MYDIR"], directory) model = GPT2LMHeadModel.from_pretrained(directory) model.to(torch_device) model.half() input_ids = torch.tensor( [[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]], device=torch_device, dtype=torch.long, ) with torch.no_grad(): output = model(input_ids).logits expected_shape = torch.Size((1, 9, 50257)) self.assertEqual(output.shape, expected_shape) expected_diag = torch.tensor( [ 4.9414, -0.2920, -1.2148, -4.0273, -0.5161, -5.2109, -1.2412, -1.8301, -1.7734, -4.7148, -0.2317, -1.0811, -2.1777, 0.4141, -3.7969, -4.0586, -2.5332, -3.3809, 4.3867, ], device=torch_device, dtype=torch.half, ) for i in range(19): r, c = 8 * i // 17, 2792 * i # along the diagonal computed, expected = output[0, r, c], expected_diag[i] msg = f"row={r} col={c} computed={computed} expected={expected}" self.assertAlmostEqual(computed, expected, delta=1e-4, msg=msg)
transformers/tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py/0
{ "file_path": "transformers/tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py", "repo_id": "transformers", "token_count": 1284 }
143
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class OpenAIGPTModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range pad_token_id=self.pad_token_id, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTDoubleHeadsModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_openai_gpt_for_sequence_classification( self, config, input_ids, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels model = OpenAIGPTForSequenceClassification(config) model.to(torch_device) model.eval() sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class OpenAIGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) all_generative_model_classes = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly pipeline_model_mapping = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False # special case for DoubleHeads model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["input_ids"] = inputs_dict["labels"] inputs_dict["token_type_ids"] = inputs_dict["labels"] inputs_dict["mc_token_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=torch_device, ) inputs_dict["mc_labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = OpenAIGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_openai_gpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs) def test_openai_gpt_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_openai_gpt_double_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs) def test_openai_gpt_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = OpenAIGPTModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_openai_gpt(self): model = OpenAIGPTLMHeadModel.from_pretrained("openai-community/openai-gpt") model.to(torch_device) input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device) # the president is expected_output_ids = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
transformers/tests/models/openai/test_modeling_openai.py/0
{ "file_path": "transformers/tests/models/openai/test_modeling_openai.py", "repo_id": "transformers", "token_count": 5455 }
144
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Please note that Pop2PianoTokenizer is too far from our usual tokenizers and thus cannot use the TokenizerTesterMixin class. """ import os import pickle import shutil import tempfile import unittest from transformers.feature_extraction_utils import BatchFeature from transformers.testing_utils import ( is_pretty_midi_available, is_torch_available, require_pretty_midi, require_torch, ) from transformers.tokenization_utils import BatchEncoding if is_torch_available(): import torch requirements_available = is_torch_available() and is_pretty_midi_available() if requirements_available: import pretty_midi from transformers import Pop2PianoTokenizer @require_torch @require_pretty_midi class Pop2PianoTokenizerTest(unittest.TestCase): def setUp(self): super().setUp() self.tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") def get_input_notes(self): notes = [ [ pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77), pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77), pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77), pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77), pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77), ], [ pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77), ], ] return notes def test_call(self): notes = self.get_input_notes() output = self.tokenizer( notes, return_tensors="pt", padding="max_length", truncation=True, max_length=10, return_attention_mask=True, ) # check the output type self.assertTrue(isinstance(output, BatchEncoding)) # check the values expected_output_token_ids = torch.tensor( [[134, 133, 74, 135, 77, 132, 77, 133, 77, 82], [134, 133, 74, 136, 132, 74, 134, 134, 134, 134]] ) expected_output_attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]]) self.assertTrue(torch.allclose(output["token_ids"], expected_output_token_ids, atol=1e-4)) self.assertTrue(torch.allclose(output["attention_mask"], expected_output_attention_mask, atol=1e-4)) def test_batch_decode(self): # test batch decode with model, feature-extractor outputs(beatsteps, extrapolated_beatstep) # Please note that this test does not test the accuracy of the outputs, instead it is designed to make sure that # the tokenizer's batch_decode can deal with attention_mask in feature-extractor outputs. For the accuracy check # please see the `test_batch_decode_outputs` test. model_output = torch.concatenate( [ torch.randint(size=[120, 96], low=0, high=70, dtype=torch.long), torch.zeros(size=[1, 96], dtype=torch.long), torch.randint(size=[50, 96], low=0, high=40, dtype=torch.long), torch.zeros(size=[1, 96], dtype=torch.long), ], axis=0, ) input_features = BatchFeature( { "beatsteps": torch.ones([2, 955]), "extrapolated_beatstep": torch.ones([2, 1000]), "attention_mask": torch.concatenate( [ torch.ones([120, 96], dtype=torch.long), torch.zeros([1, 96], dtype=torch.long), torch.ones([50, 96], dtype=torch.long), torch.zeros([1, 96], dtype=torch.long), ], axis=0, ), "attention_mask_beatsteps": torch.ones([2, 955]), "attention_mask_extrapolated_beatstep": torch.ones([2, 1000]), } ) output = self.tokenizer.batch_decode(token_ids=model_output, feature_extractor_output=input_features)[ "pretty_midi_objects" ] # check length self.assertTrue(len(output) == 2) # check object type self.assertTrue(isinstance(output[0], pretty_midi.pretty_midi.PrettyMIDI)) self.assertTrue(isinstance(output[1], pretty_midi.pretty_midi.PrettyMIDI)) def test_batch_decode_outputs(self): # test batch decode with model, feature-extractor outputs(beatsteps, extrapolated_beatstep) # Please note that this test tests the accuracy of the outputs of the tokenizer's `batch_decode` method. model_output = torch.tensor( [ [134, 133, 74, 135, 77, 82, 84, 136, 132, 74, 77, 82, 84], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ] ) input_features = BatchEncoding( { "beatsteps": torch.tensor([[0.0697, 0.1103, 0.1509, 0.1916]]), "extrapolated_beatstep": torch.tensor([[0.0000, 0.0406, 0.0813, 0.1219]]), } ) output = self.tokenizer.batch_decode(token_ids=model_output, feature_extractor_output=input_features) # check outputs self.assertEqual(len(output["notes"]), 4) predicted_start_timings, predicted_end_timings = [], [] for i in output["notes"]: predicted_start_timings.append(i.start) predicted_end_timings.append(i.end) # Checking note start timings expected_start_timings = torch.tensor( [ 0.069700, 0.110300, 0.110300, 0.110300, ] ) predicted_start_timings = torch.tensor(predicted_start_timings) self.assertTrue(torch.allclose(expected_start_timings, predicted_start_timings, atol=1e-4)) # Checking note end timings expected_end_timings = torch.tensor( [ 0.191600, 0.191600, 0.191600, 0.191600, ] ) predicted_end_timings = torch.tensor(predicted_end_timings) self.assertTrue(torch.allclose(expected_end_timings, predicted_end_timings, atol=1e-4)) def test_get_vocab(self): vocab_dict = self.tokenizer.get_vocab() self.assertIsInstance(vocab_dict, dict) self.assertGreaterEqual(len(self.tokenizer), len(vocab_dict)) vocab = [self.tokenizer.convert_ids_to_tokens(i) for i in range(len(self.tokenizer))] self.assertEqual(len(vocab), len(self.tokenizer)) self.tokenizer.add_tokens(["asdfasdfasdfasdf"]) vocab = [self.tokenizer.convert_ids_to_tokens(i) for i in range(len(self.tokenizer))] self.assertEqual(len(vocab), len(self.tokenizer)) def test_save_and_load_tokenizer(self): tmpdirname = tempfile.mkdtemp() sample_notes = self.get_input_notes() self.tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = self.tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) before_token_ids = self.tokenizer(sample_notes)["token_ids"] before_vocab = self.tokenizer.get_vocab() self.tokenizer.save_pretrained(tmpdirname) after_tokenizer = self.tokenizer.__class__.from_pretrained(tmpdirname) after_token_ids = after_tokenizer(sample_notes)["token_ids"] after_vocab = after_tokenizer.get_vocab() self.assertDictEqual(before_vocab, after_vocab) self.assertListEqual(before_token_ids, after_token_ids) self.assertIn("bim", after_vocab) self.assertIn("bambam", after_vocab) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) shutil.rmtree(tmpdirname) def test_pickle_tokenizer(self): tmpdirname = tempfile.mkdtemp() notes = self.get_input_notes() subwords = self.tokenizer(notes)["token_ids"] filename = os.path.join(tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(self.tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) subwords_loaded = tokenizer_new(notes)["token_ids"] self.assertListEqual(subwords, subwords_loaded) def test_padding_side_in_kwargs(self): tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", padding_side="left") self.assertEqual(tokenizer_p.padding_side, "left") tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", padding_side="right") self.assertEqual(tokenizer_p.padding_side, "right") self.assertRaises( ValueError, Pop2PianoTokenizer.from_pretrained, "sweetcocoa/pop2piano", padding_side="unauthorized", ) def test_truncation_side_in_kwargs(self): tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", truncation_side="left") self.assertEqual(tokenizer_p.truncation_side, "left") tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", truncation_side="right") self.assertEqual(tokenizer_p.truncation_side, "right") self.assertRaises( ValueError, Pop2PianoTokenizer.from_pretrained, "sweetcocoa/pop2piano", truncation_side="unauthorized", ) def test_right_and_left_padding(self): tokenizer = self.tokenizer notes = self.get_input_notes() notes = notes[0] max_length = 20 padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" padded_notes = tokenizer(notes, padding="max_length", max_length=max_length)["token_ids"] padded_notes_length = len(padded_notes) notes_without_padding = tokenizer(notes, padding="do_not_pad")["token_ids"] padding_size = max_length - len(notes_without_padding) self.assertEqual(padded_notes_length, max_length) self.assertEqual(notes_without_padding + [padding_idx] * padding_size, padded_notes) # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" padded_notes = tokenizer(notes, padding="max_length", max_length=max_length)["token_ids"] padded_notes_length = len(padded_notes) notes_without_padding = tokenizer(notes, padding="do_not_pad")["token_ids"] padding_size = max_length - len(notes_without_padding) self.assertEqual(padded_notes_length, max_length) self.assertEqual([padding_idx] * padding_size + notes_without_padding, padded_notes) # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' notes_without_padding = tokenizer(notes)["token_ids"] tokenizer.padding_side = "right" padded_notes_right = tokenizer(notes, padding=False)["token_ids"] self.assertEqual(len(padded_notes_right), len(notes_without_padding)) self.assertEqual(padded_notes_right, notes_without_padding) tokenizer.padding_side = "left" padded_notes_left = tokenizer(notes, padding="longest")["token_ids"] self.assertEqual(len(padded_notes_left), len(notes_without_padding)) self.assertEqual(padded_notes_left, notes_without_padding) tokenizer.padding_side = "right" padded_notes_right = tokenizer(notes, padding="longest")["token_ids"] self.assertEqual(len(padded_notes_right), len(notes_without_padding)) self.assertEqual(padded_notes_right, notes_without_padding) tokenizer.padding_side = "left" padded_notes_left = tokenizer(notes, padding=False)["token_ids"] self.assertEqual(len(padded_notes_left), len(notes_without_padding)) self.assertEqual(padded_notes_left, notes_without_padding) def test_right_and_left_truncation(self): tokenizer = self.tokenizer notes = self.get_input_notes() notes = notes[0] truncation_size = 3 # RIGHT TRUNCATION - Check that it correctly truncates when a maximum length is specified along with the truncation flag set to True tokenizer.truncation_side = "right" full_encoded_notes = tokenizer(notes)["token_ids"] full_encoded_notes_length = len(full_encoded_notes) truncated_notes = tokenizer(notes, max_length=full_encoded_notes_length - truncation_size, truncation=True)[ "token_ids" ] self.assertEqual(full_encoded_notes_length, len(truncated_notes) + truncation_size) self.assertEqual(full_encoded_notes[:-truncation_size], truncated_notes) # LEFT TRUNCATION - Check that it correctly truncates when a maximum length is specified along with the truncation flag set to True tokenizer.truncation_side = "left" full_encoded_notes = tokenizer(notes)["token_ids"] full_encoded_notes_length = len(full_encoded_notes) truncated_notes = tokenizer(notes, max_length=full_encoded_notes_length - truncation_size, truncation=True)[ "token_ids" ] self.assertEqual(full_encoded_notes_length, len(truncated_notes) + truncation_size) self.assertEqual(full_encoded_notes[truncation_size:], truncated_notes) # RIGHT & LEFT TRUNCATION - Check that nothing is done for 'longest' and 'no_truncation' tokenizer.truncation_side = "right" truncated_notes_right = tokenizer(notes, truncation=True)["token_ids"] self.assertEqual(full_encoded_notes_length, len(truncated_notes_right)) self.assertEqual(full_encoded_notes, truncated_notes_right) tokenizer.truncation_side = "left" truncated_notes_left = tokenizer(notes, truncation="longest_first")["token_ids"] self.assertEqual(len(truncated_notes_left), full_encoded_notes_length) self.assertEqual(truncated_notes_left, full_encoded_notes) tokenizer.truncation_side = "right" truncated_notes_right = tokenizer(notes, truncation="longest_first")["token_ids"] self.assertEqual(len(truncated_notes_right), full_encoded_notes_length) self.assertEqual(truncated_notes_right, full_encoded_notes) tokenizer.truncation_side = "left" truncated_notes_left = tokenizer(notes, truncation=True)["token_ids"] self.assertEqual(len(truncated_notes_left), full_encoded_notes_length) self.assertEqual(truncated_notes_left, full_encoded_notes) def test_padding_to_multiple_of(self): notes = self.get_input_notes() if self.tokenizer.pad_token is None: self.skipTest("No padding token.") else: normal_tokens = self.tokenizer(notes[0], padding=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = self.tokenizer(notes[0], pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = self.tokenizer(notes[0], padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # truncation to something which is not a multiple of pad_to_multiple_of raises an error self.assertRaises( ValueError, self.tokenizer.__call__, notes[0], padding=True, truncation=True, max_length=12, pad_to_multiple_of=8, ) def test_padding_with_attention_mask(self): if self.tokenizer.pad_token is None: self.skipTest("No padding token.") if "attention_mask" not in self.tokenizer.model_input_names: self.skipTest("This model does not use attention mask.") features = [ {"token_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]}, {"token_ids": [1, 2, 3], "attention_mask": [1, 1, 0]}, ] padded_features = self.tokenizer.pad(features) if self.tokenizer.padding_side == "right": self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]]) else: self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]])
transformers/tests/models/pop2piano/test_tokenization_pop2piano.py/0
{ "file_path": "transformers/tests/models/pop2piano/test_tokenization_pop2piano.py", "repo_id": "transformers", "token_count": 7905 }
145