Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Vietnamese
Size:
10K - 100K
ArXiv:
update README and process script
Browse files- README.md +16 -2
- process_viquad.py +44 -24
README.md
CHANGED
@@ -71,7 +71,21 @@ The original UIT-ViQuAD contains over 23,000 QA pairs based on 174 Vietnamese Wi
|
|
71 |
|
72 |
The dataset has been processed to remove a few duplicated questions and answers.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
### Languages
|
77 |
|
@@ -131,4 +145,4 @@ Shared task where version 2.0 was published:
|
|
131 |
|
132 |
### Acknowledgements
|
133 |
|
134 |
-
We thank the authors of ViQuAD for releasing this dataset to the community.
|
|
|
71 |
|
72 |
The dataset has been processed to remove a few duplicated questions and answers.
|
73 |
|
74 |
+
Version 2.0 contains the fields `is_impossible` and `plausible`, which the authors [explained](https://vlsp.org.vn/vlsp2021/eval/mrc) in the shared task announcement:
|
75 |
+
|
76 |
+
```
|
77 |
+
Context: Khác với nhiều ngôn ngữ Ấn-Âu khác, tiếng Anh đã gần như loại bỏ hệ thống biến tố dựa trên cách để thay bằng cấu trúc phân tích. Đại từ nhân xưng duy trì hệ thống cách hoàn chỉnh hơn những lớp từ khác. Tiếng Anh có bảy lớp từ chính: động từ, danh từ, tính từ, trạng từ, hạn định từ (tức mạo từ), giới từ, và liên từ. Có thể tách đại từ khỏi danh từ, và thêm vào thán từ.
|
78 |
+
|
79 |
+
question: Tiếng Anh có bao nhiêu loại từ?
|
80 |
+
is_impossible: False. // There exists an answer to the question.
|
81 |
+
answer: bảy.
|
82 |
+
|
83 |
+
question: Ngôn ngữ Ấn-Âu có bao nhiêu loại từ?
|
84 |
+
is_impossible: True. // There are no correct answers extracted from the Context.
|
85 |
+
plausible_answer: bảy. // A plausible but incorrect answer extracted from the Context has the same type which the question aims to.
|
86 |
+
```
|
87 |
+
|
88 |
+
Specific questions about the test set or the dataset should be directed to the [authors](https://nlp.uit.edu.vn/datasets).
|
89 |
|
90 |
### Languages
|
91 |
|
|
|
145 |
|
146 |
### Acknowledgements
|
147 |
|
148 |
+
We thank the authors of ViQuAD and VLSP for releasing this dataset to the community.
|
process_viquad.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6 |
import json
|
7 |
import pandas as pd
|
8 |
from itertools import groupby
|
9 |
-
from datasets import Dataset, DatasetDict
|
10 |
|
11 |
def deduplicate_answers(answers):
|
12 |
answers_sorted = sorted(answers, key=lambda x: (x['text'], x['answer_start']))
|
@@ -15,35 +15,46 @@ def deduplicate_answers(answers):
|
|
15 |
|
16 |
data_dir = "UIT-ViQuAD 2.0"
|
17 |
dataset_dict = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
for split in ["train", "dev", "test"]:
|
20 |
fname = os.path.join(data_dir, f"{split}.json")
|
21 |
data = json.load(open(fname))
|
22 |
-
rows = []
|
23 |
-
title_i = 0
|
24 |
|
|
|
|
|
|
|
25 |
for title_data in data["data"]:
|
26 |
title = title_data["title"]
|
27 |
ctx_i = 0
|
28 |
title_i += 1
|
29 |
|
30 |
for ctx_and_qs in title_data["paragraphs"]:
|
31 |
-
|
32 |
context = ctx_and_qs["context"]
|
33 |
q_i = 0
|
34 |
ctx_i += 1
|
35 |
question_set = set()
|
36 |
-
|
37 |
-
answer_default: list = [{'answer_start': -1, 'text': ''}]
|
38 |
-
for q in questions:
|
39 |
question = q["question"]
|
40 |
-
answers = q
|
41 |
-
plausible_answers = q
|
42 |
# Dedup answers
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
uit_id = q["id"]
|
46 |
-
is_impossible = q
|
47 |
|
48 |
# Check duplicate questions
|
49 |
if question in question_set:
|
@@ -55,20 +66,29 @@ for split in ["train", "dev", "test"]:
|
|
55 |
|
56 |
q_i += 1
|
57 |
overall_id = f"{title_i:04d}-{ctx_i:04d}-{q_i:04d}"
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
})
|
68 |
question_set.add(question)
|
|
|
69 |
# Convert to Dataset
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
print(dataset_dict)
|
74 |
hf_dataset = DatasetDict(dataset_dict)
|
|
|
6 |
import json
|
7 |
import pandas as pd
|
8 |
from itertools import groupby
|
9 |
+
from datasets import Dataset, DatasetDict, Features, Sequence, Value
|
10 |
|
11 |
def deduplicate_answers(answers):
|
12 |
answers_sorted = sorted(answers, key=lambda x: (x['text'], x['answer_start']))
|
|
|
15 |
|
16 |
data_dir = "UIT-ViQuAD 2.0"
|
17 |
dataset_dict = {}
|
18 |
+
features = Features({
|
19 |
+
'id': Value('string'),
|
20 |
+
'uit_id': Value('string'),
|
21 |
+
'title': Value('string'),
|
22 |
+
'context': Value('string'),
|
23 |
+
'question': Value('string'),
|
24 |
+
'answers': Sequence(feature={'text': Value('string'), 'answer_start': Value('int32')}),
|
25 |
+
'is_impossible': Value('bool'),
|
26 |
+
'plausible_answers': Sequence(feature={'text': Value('string'), 'answer_start': Value('int32')})
|
27 |
+
})
|
28 |
|
29 |
for split in ["train", "dev", "test"]:
|
30 |
fname = os.path.join(data_dir, f"{split}.json")
|
31 |
data = json.load(open(fname))
|
|
|
|
|
32 |
|
33 |
+
ids, uit_ids, titles, contexts, questions, all_answers, impossibles, all_plausible_answers = [], [], [], [], [], [], [], []
|
34 |
+
title_i = 0
|
35 |
+
print("-"*20, split, len(data["data"]), "-"*20)
|
36 |
for title_data in data["data"]:
|
37 |
title = title_data["title"]
|
38 |
ctx_i = 0
|
39 |
title_i += 1
|
40 |
|
41 |
for ctx_and_qs in title_data["paragraphs"]:
|
42 |
+
qas = ctx_and_qs["qas"]
|
43 |
context = ctx_and_qs["context"]
|
44 |
q_i = 0
|
45 |
ctx_i += 1
|
46 |
question_set = set()
|
47 |
+
for q in qas:
|
|
|
|
|
48 |
question = q["question"]
|
49 |
+
answers = q.get("answers", [])
|
50 |
+
plausible_answers = q.get("plausible_answers", [])
|
51 |
# Dedup answers
|
52 |
+
if answers:
|
53 |
+
answers = deduplicate_answers(answers)
|
54 |
+
if plausible_answers:
|
55 |
+
plausible_answers = deduplicate_answers(plausible_answers)
|
56 |
uit_id = q["id"]
|
57 |
+
is_impossible = q.get("is_impossible", False)
|
58 |
|
59 |
# Check duplicate questions
|
60 |
if question in question_set:
|
|
|
66 |
|
67 |
q_i += 1
|
68 |
overall_id = f"{title_i:04d}-{ctx_i:04d}-{q_i:04d}"
|
69 |
+
# Append data to lists
|
70 |
+
ids.append(overall_id)
|
71 |
+
uit_ids.append(uit_id)
|
72 |
+
titles.append(title)
|
73 |
+
contexts.append(context)
|
74 |
+
questions.append(question)
|
75 |
+
all_answers.append(answers)
|
76 |
+
impossibles.append(is_impossible)
|
77 |
+
all_plausible_answers.append(plausible_answers)
|
|
|
78 |
question_set.add(question)
|
79 |
+
|
80 |
# Convert to Dataset
|
81 |
+
dataset = Dataset.from_dict({
|
82 |
+
'id': ids,
|
83 |
+
'uit_id': uit_ids,
|
84 |
+
'title': titles,
|
85 |
+
'context': contexts,
|
86 |
+
'question': questions,
|
87 |
+
'answers': all_answers,
|
88 |
+
'is_impossible': impossibles,
|
89 |
+
'plausible_answers': all_plausible_answers
|
90 |
+
}, features=features)
|
91 |
+
dataset_dict[split if split!="dev" else "validation"] = dataset
|
92 |
|
93 |
print(dataset_dict)
|
94 |
hf_dataset = DatasetDict(dataset_dict)
|