File size: 5,728 Bytes
93f39a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import ipywidgets as widgets
import sys
from pathlib import Path
import os
import importlib
sys.path.append('preprocessing/day_intervals_preproc')
sys.path.append('utils')
sys.path.append('preprocessing/hosp_module_preproc')
sys.path.append('model')
#print(sys.path)
root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
import day_intervals_cohort_v2
import day_intervals_cohort
import feature_selection_icu
import data_generation_icu_modify
import time
import yaml

def task_cohort(task,mimic_path):
    version_path = mimic_path
    version = version_path.split('/')[-1][0]
    start = time.time()
    #----------------------------------------------config----------------------------------------------------
    if task=='Mortality':
        with open('./config/mortality.config') as f:
            config = yaml.safe_load(f)

    elif task == 'Phenotype':
        with open('./config/phenotype.config') as f:
            config = yaml.safe_load(f)

    elif task == 'Length of Stay':
        with open('./config/los.config') as f:
            config = yaml.safe_load(f)

    elif task == 'Readmission':
        with open('./config/readmission.config') as f:
            config = yaml.safe_load(f)

    disease_label =  config['disease_label']
    tim = config['time']
    label = config['label']
    timeW = config['timeW']
    include=int(timeW.split()[1])
    bucket = config['bucket']
    radimp = config['radimp']
    predW = config['predW']
    diag_flag = config['diagnosis']
    out_flag = config['output']
    chart_flag = config['chart']
    proc_flag= config['proc']
    med_flag = config['meds']
    disease_filter = config['disease_filter']
    icu_no_icu = config['icu_no_icu']
    groupingICD = config['groupingICD']
    # -------------------------------------------------------------------------------------------------------------

    data_icu=icu_no_icu=="ICU"
    data_mort=label=="Mortality"
    data_admn=label=='Readmission'
    data_los=label=='Length of Stay'

    if (disease_filter=="Heart Failure"):
        icd_code='I50'
    elif (disease_filter=="CKD"):
        icd_code='N18'
    elif (disease_filter=="COPD"):
        icd_code='J44'
    elif (disease_filter=="CAD"):
        icd_code='I25'
    else:
        icd_code='No Disease Filter'

    #-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
    if version == '2':
        cohort_output = day_intervals_cohort_v2.extract_data(icu_no_icu,label,tim,icd_code, root_dir,disease_label)
    elif version == '1':
        cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,disease_label)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    #----------------------------------------------FEATURES-------------------------------------------------------
    if data_icu :
        feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    #----------------------------------------------GROUPING-------------------------------------------------------
    group_diag=False
    group_med=False
    group_proc=False
    if data_icu:
        if diag_flag:
            group_diag=groupingICD
        feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    #----------------------------------------------SUMMARY-------------------------------------------------------
    if data_icu:
        feature_selection_icu.generate_summary_icu(cohort_output,diag_flag,proc_flag,med_flag,out_flag,chart_flag)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    #----------------------------------------------FEATURE SELECTION---------------------------------------------

    select_diag= config['select_diag']
    select_med= config['select_med']
    select_proc=  config['select_proc']
    #select_lab= config['select_lab']
    select_out= config['select_out']
    select_chart=  config['select_chart']

    feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    #---------------------------------------CLEANING OF FEATURES-----------------------------------------------
    thresh=0
    if data_icu:
        if chart_flag:
            outlier_removal=config['outlier_removal']
            clean_chart=outlier_removal!='No outlier detection'
            impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
            thresh=config['outlier']
            left_thresh=config['left_outlier']
        feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    # ---------------------------------------tim-Series Representation--------------------------------------------
    if radimp == 'forward fill and mean' :
        impute='Mean'
    elif radimp =='forward fill and median':
        impute = 'Median'
    else :
        impute = False
    
    if data_icu:
        gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
    print("[============TASK COHORT SUCCESSFULLY CREATED============]")