File size: 26,808 Bytes
93f39a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import numpy as np
import pandas as pd
from tqdm import tqdm
from datetime import datetime
from sklearn.preprocessing import LabelEncoder
import pickle
import datetime
import os
import sys
from pathlib import Path
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..')
if not os.path.exists("./data/dict"):
os.makedirs("./data/dict")
if not os.path.exists("./data/csv"):
os.makedirs("./data/csv")
class Generator():
def __init__(self,task,cohort_output,if_mort,if_admn,if_los,feat_cond,feat_proc,feat_out,feat_chart,feat_med,impute,include_time=24,bucket=1,predW=6):
self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_med = feat_cond,feat_proc,feat_out,feat_chart,feat_med
self.cohort_output=cohort_output
self.impute=impute
self.task = task
self.data = self.generate_adm()
if not os.path.exists("./data/dict/"+self.cohort_output):
os.makedirs("./data/dict/"+self.cohort_output)
print("[ READ COHORT ]")
self.generate_feat()
print("[ READ ALL FEATURES ]")
if if_mort:
self.mortality_length(include_time,predW)
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
elif if_admn:
self.readmission_length(include_time)
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
elif if_los:
self.los_length(include_time)
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
self.smooth_meds(bucket)
print("[ SUCCESSFULLY SAVED DATA DICTIONARIES ]")
def generate_feat(self):
if(self.feat_cond):
print("[ ======READING DIAGNOSIS ]")
self.generate_cond()
if(self.feat_proc):
print("[ ======READING PROCEDURES ]")
self.generate_proc()
if(self.feat_out):
print("[ ======READING OUT EVENTS ]")
self.generate_out()
if(self.feat_chart):
print("[ ======READING CHART EVENTS ]")
self.generate_chart()
if(self.feat_med):
print("[ ======READING MEDICATIONS ]")
self.generate_meds()
def generate_adm(self):
data=pd.read_csv(f"./data/cohort/{self.cohort_output}.csv.gz", compression='gzip', header=0, index_col=None)
data['intime'] = pd.to_datetime(data['intime'])
data['outtime'] = pd.to_datetime(data['outtime'])
data['los']=pd.to_timedelta(data['outtime']-data['intime'],unit='h')
data['los']=data['los'].astype(str)
data[['days', 'dummy','hours']] = data['los'].str.split(' ', expand=True)
data[['hours','min','sec']] = data['hours'].str.split(':', expand=True)
data['los']=pd.to_numeric(data['days'])*24+pd.to_numeric(data['hours'])
data=data.drop(columns=['days', 'dummy','hours','min','sec'])
data=data[data['los']>0]
data['Age']=data['Age'].astype(int)
#print(data.head())
#print(data.shape)
return data
def generate_cond(self):
cond=pd.read_csv("./data/features/preproc_diag_icu.csv.gz", compression='gzip', header=0, index_col=None)
cond=cond[cond['stay_id'].isin(self.data['stay_id'])]
cond_per_adm = cond.groupby('stay_id').size().max()
self.cond, self.cond_per_adm = cond, cond_per_adm
def generate_proc(self):
proc=pd.read_csv("./data/features/preproc_proc_icu.csv.gz", compression='gzip', header=0, index_col=None)
proc=proc[proc['stay_id'].isin(self.data['stay_id'])]
proc[['start_days', 'dummy','start_hours']] = proc['event_time_from_admit'].str.split(' ', -1, expand=True)
proc[['start_hours','min','sec']] = proc['start_hours'].str.split(':', -1, expand=True)
proc['start_time']=pd.to_numeric(proc['start_days'])*24+pd.to_numeric(proc['start_hours'])
proc=proc.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
proc=proc[proc['start_time']>=0]
###Remove where event time is after discharge time
proc=pd.merge(proc,self.data[['stay_id','los']],on='stay_id',how='left')
proc['sanity']=proc['los']-proc['start_time']
proc=proc[proc['sanity']>0]
del proc['sanity']
self.proc=proc
def generate_out(self):
out=pd.read_csv("./data/features/preproc_out_icu.csv.gz", compression='gzip', header=0, index_col=None)
out=out[out['stay_id'].isin(self.data['stay_id'])]
out[['start_days', 'dummy','start_hours']] = out['event_time_from_admit'].str.split(' ', -1, expand=True)
out[['start_hours','min','sec']] = out['start_hours'].str.split(':', -1, expand=True)
out['start_time']=pd.to_numeric(out['start_days'])*24+pd.to_numeric(out['start_hours'])
out=out.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
out=out[out['start_time']>=0]
###Remove where event time is after discharge time
out=pd.merge(out,self.data[['stay_id','los']],on='stay_id',how='left')
out['sanity']=out['los']-out['start_time']
out=out[out['sanity']>0]
del out['sanity']
self.out=out
def generate_chart(self):
chunksize = 5000000
final=pd.DataFrame()
for chart in tqdm(pd.read_csv("./data/features/preproc_chart_icu.csv.gz", compression='gzip', header=0, index_col=None,chunksize=chunksize)):
chart=chart[chart['stay_id'].isin(self.data['stay_id'])]
chart[['start_days', 'dummy','start_hours']] = chart['event_time_from_admit'].str.split(' ', -1, expand=True)
chart[['start_hours','min','sec']] = chart['start_hours'].str.split(':', -1, expand=True)
chart['start_time']=pd.to_numeric(chart['start_days'])*24+pd.to_numeric(chart['start_hours'])
chart=chart.drop(columns=['start_days', 'dummy','start_hours','min','sec','event_time_from_admit'])
chart=chart[chart['start_time']>=0]
###Remove where event time is after discharge time
chart=pd.merge(chart,self.data[['stay_id','los']],on='stay_id',how='left')
chart['sanity']=chart['los']-chart['start_time']
chart=chart[chart['sanity']>0]
del chart['sanity']
del chart['los']
if final.empty:
final=chart
else:
final=final.append(chart, ignore_index=True)
self.chart=final
def generate_meds(self):
meds=pd.read_csv("./data/features/preproc_med_icu.csv.gz", compression='gzip', header=0, index_col=None)
meds[['start_days', 'dummy','start_hours']] = meds['start_hours_from_admit'].str.split(' ', -1, expand=True)
meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True)
meds['start_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours'])
meds[['start_days', 'dummy','start_hours']] = meds['stop_hours_from_admit'].str.split(' ', -1, expand=True)
meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True)
meds['stop_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours'])
meds=meds.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
#####Sanity check
meds['sanity']=meds['stop_time']-meds['start_time']
meds=meds[meds['sanity']>0]
del meds['sanity']
#####Select hadm_id as in main file
meds=meds[meds['stay_id'].isin(self.data['stay_id'])]
meds=pd.merge(meds,self.data[['stay_id','los']],on='stay_id',how='left')
#####Remove where start time is after end of visit
meds['sanity']=meds['los']-meds['start_time']
meds=meds[meds['sanity']>0]
del meds['sanity']
####Any stop_time after end of visit is set at end of visit
meds.loc[meds['stop_time'] > meds['los'],'stop_time']=meds.loc[meds['stop_time'] > meds['los'],'los']
del meds['los']
meds['rate']=meds['rate'].apply(pd.to_numeric, errors='coerce')
meds['amount']=meds['amount'].apply(pd.to_numeric, errors='coerce')
self.meds=meds
def mortality_length(self,include_time,predW):
print("include_time",include_time)
self.los=include_time
self.data=self.data[(self.data['los']>=include_time+predW)]
self.hids=self.data['stay_id'].unique()
if(self.feat_cond):
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
self.data['los']=include_time
####Make equal length input time series and remove data for pred window if needed
###MEDS
if(self.feat_med):
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
self.meds=self.meds[self.meds['start_time']<=include_time]
self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time
###PROCS
if(self.feat_proc):
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
self.proc=self.proc[self.proc['start_time']<=include_time]
###OUT
if(self.feat_out):
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
self.out=self.out[self.out['start_time']<=include_time]
###CHART
if(self.feat_chart):
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
self.chart=self.chart[self.chart['start_time']<=include_time]
#self.los=include_time
def los_length(self,include_time):
print("include_time",include_time)
self.los=include_time
self.data=self.data[(self.data['los']>=include_time)]
self.hids=self.data['stay_id'].unique()
if(self.feat_cond):
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
self.data['los']=include_time
####Make equal length input time series and remove data for pred window if needed
###MEDS
if(self.feat_med):
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
self.meds=self.meds[self.meds['start_time']<=include_time]
self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time
###PROCS
if(self.feat_proc):
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
self.proc=self.proc[self.proc['start_time']<=include_time]
###OUT
if(self.feat_out):
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
self.out=self.out[self.out['start_time']<=include_time]
###CHART
if(self.feat_chart):
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
self.chart=self.chart[self.chart['start_time']<=include_time]
def readmission_length(self,include_time):
self.los=include_time
self.data=self.data[(self.data['los']>=include_time)]
self.hids=self.data['stay_id'].unique()
if(self.feat_cond):
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
self.data['select_time']=self.data['los']-include_time
self.data['los']=include_time
####Make equal length input time series and remove data for pred window if needed
###MEDS
if(self.feat_med):
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
self.meds=pd.merge(self.meds,self.data[['stay_id','select_time']],on='stay_id',how='left')
self.meds['stop_time']=self.meds['stop_time']-self.meds['select_time']
self.meds['start_time']=self.meds['start_time']-self.meds['select_time']
self.meds=self.meds[self.meds['stop_time']>=0]
self.meds.loc[self.meds.start_time <0, 'start_time']=0
###PROCS
if(self.feat_proc):
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
self.proc=pd.merge(self.proc,self.data[['stay_id','select_time']],on='stay_id',how='left')
self.proc['start_time']=self.proc['start_time']-self.proc['select_time']
self.proc=self.proc[self.proc['start_time']>=0]
###OUT
if(self.feat_out):
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
self.out=pd.merge(self.out,self.data[['stay_id','select_time']],on='stay_id',how='left')
self.out['start_time']=self.out['start_time']-self.out['select_time']
self.out=self.out[self.out['start_time']>=0]
###CHART
if(self.feat_chart):
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
self.chart=pd.merge(self.chart,self.data[['stay_id','select_time']],on='stay_id',how='left')
self.chart['start_time']=self.chart['start_time']-self.chart['select_time']
self.chart=self.chart[self.chart['start_time']>=0]
def smooth_meds(self,bucket):
final_meds=pd.DataFrame()
final_proc=pd.DataFrame()
final_out=pd.DataFrame()
final_chart=pd.DataFrame()
if(self.feat_med):
self.meds=self.meds.sort_values(by=['start_time'])
if(self.feat_proc):
self.proc=self.proc.sort_values(by=['start_time'])
if(self.feat_out):
self.out=self.out.sort_values(by=['start_time'])
if(self.feat_chart):
self.chart=self.chart.sort_values(by=['start_time'])
t=0
for i in tqdm(range(0,self.los,bucket)):
###MEDS
if(self.feat_med):
sub_meds=self.meds[(self.meds['start_time']>=i) & (self.meds['start_time']<i+bucket)].groupby(['stay_id','itemid','orderid']).agg({'stop_time':'max','subject_id':'max','rate':np.nanmean,'amount':np.nanmean})
sub_meds=sub_meds.reset_index()
sub_meds['start_time']=t
sub_meds['stop_time']=sub_meds['stop_time']/bucket
if final_meds.empty:
final_meds=sub_meds
else:
final_meds=final_meds.append(sub_meds)
###PROC
if(self.feat_proc):
sub_proc=self.proc[(self.proc['start_time']>=i) & (self.proc['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'subject_id':'max'})
sub_proc=sub_proc.reset_index()
sub_proc['start_time']=t
if final_proc.empty:
final_proc=sub_proc
else:
final_proc=final_proc.append(sub_proc)
###OUT
if(self.feat_out):
sub_out=self.out[(self.out['start_time']>=i) & (self.out['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'subject_id':'max'})
sub_out=sub_out.reset_index()
sub_out['start_time']=t
if final_out.empty:
final_out=sub_out
else:
final_out=final_out.append(sub_out)
###CHART
if(self.feat_chart):
sub_chart=self.chart[(self.chart['start_time']>=i) & (self.chart['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'valuenum':np.nanmean})
sub_chart=sub_chart.reset_index()
sub_chart['start_time']=t
if final_chart.empty:
final_chart=sub_chart
else:
final_chart=final_chart.append(sub_chart)
t=t+1
print("bucket",bucket)
los=int(self.los/bucket)
###MEDS
if(self.feat_med):
f2_meds=final_meds.groupby(['stay_id','itemid','orderid']).size()
self.med_per_adm=f2_meds.groupby('stay_id').sum().reset_index()[0].max()
self.medlength_per_adm=final_meds.groupby('stay_id').size().max()
###PROC
if(self.feat_proc):
f2_proc=final_proc.groupby(['stay_id','itemid']).size()
self.proc_per_adm=f2_proc.groupby('stay_id').sum().reset_index()[0].max()
self.proclength_per_adm=final_proc.groupby('stay_id').size().max()
###OUT
if(self.feat_out):
f2_out=final_out.groupby(['stay_id','itemid']).size()
self.out_per_adm=f2_out.groupby('stay_id').sum().reset_index()[0].max()
self.outlength_per_adm=final_out.groupby('stay_id').size().max()
###chart
if(self.feat_chart):
f2_chart=final_chart.groupby(['stay_id','itemid']).size()
self.chart_per_adm=f2_chart.groupby('stay_id').sum().reset_index()[0].max()
self.chartlength_per_adm=final_chart.groupby('stay_id').size().max()
print("[ PROCESSED TIME SERIES TO EQUAL TIME INTERVAL ]")
###CREATE DICT
# if(self.feat_chart):
# self.create_chartDict(final_chart,los)
# else:
self.create_Dict(final_meds,final_proc,final_out,final_chart,los)
def create_Dict(self,meds,proc,out,chart,los):
dataDic={}
for hid in self.hids:
grp=self.data[self.data['stay_id']==hid]
dataDic[hid]={'Cond':{},'Proc':{},'Med':{},'Out':{},'Chart':{},'ethnicity':grp['ethnicity'].iloc[0],'age':int(grp['Age']),'gender':grp['gender'].iloc[0],'label':int(grp['label'])}
for hid in tqdm(self.hids):
grp=self.data[self.data['stay_id']==hid]
###MEDS
if(self.feat_med):
feat=meds['itemid'].unique()
df2=meds[meds['stay_id']==hid]
if df2.shape[0]==0:
amount=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
amount=amount.fillna(0)
amount.columns=pd.MultiIndex.from_product([["MEDS"], amount.columns])
else:
rate=df2.pivot_table(index='start_time',columns='itemid',values='rate')
#print(rate)
amount=df2.pivot_table(index='start_time',columns='itemid',values='amount')
df2=df2.pivot_table(index='start_time',columns='itemid',values='stop_time')
#print(df2.shape)
add_indices = pd.Index(range(los)).difference(df2.index)
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
df2=pd.concat([df2, add_df])
df2=df2.sort_index()
df2=df2.ffill()
df2=df2.fillna(0)
rate=pd.concat([rate, add_df])
rate=rate.sort_index()
rate=rate.ffill()
rate=rate.fillna(-1)
amount=pd.concat([amount, add_df])
amount=amount.sort_index()
amount=amount.ffill()
amount=amount.fillna(-1)
#print(df2.head())
df2.iloc[:,0:]=df2.iloc[:,0:].sub(df2.index,0)
df2[df2>0]=1
df2[df2<0]=0
rate.iloc[:,0:]=df2.iloc[:,0:]*rate.iloc[:,0:]
amount.iloc[:,0:]=df2.iloc[:,0:]*amount.iloc[:,0:]
#print(df2.head())
dataDic[hid]['Med']['signal']=df2.iloc[:,0:].to_dict(orient="list")
dataDic[hid]['Med']['rate']=rate.iloc[:,0:].to_dict(orient="list")
dataDic[hid]['Med']['amount']=amount.iloc[:,0:].to_dict(orient="list")
###PROCS
if(self.feat_proc):
feat=proc['itemid'].unique()
df2=proc[proc['stay_id']==hid]
if df2.shape[0]==0:
df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
df2=df2.fillna(0)
df2.columns=pd.MultiIndex.from_product([["PROC"], df2.columns])
else:
df2['val']=1
#print(df2)
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
#print(df2.shape)
add_indices = pd.Index(range(los)).difference(df2.index)
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
df2=pd.concat([df2, add_df])
df2=df2.sort_index()
df2=df2.fillna(0)
df2[df2>0]=1
#print(df2.head())
dataDic[hid]['Proc']=df2.to_dict(orient="list")
###OUT
if(self.feat_out):
feat=out['itemid'].unique()
df2=out[out['stay_id']==hid]
if df2.shape[0]==0:
df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
df2=df2.fillna(0)
df2.columns=pd.MultiIndex.from_product([["OUT"], df2.columns])
else:
df2['val']=1
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
#print(df2.shape)
add_indices = pd.Index(range(los)).difference(df2.index)
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
df2=pd.concat([df2, add_df])
df2=df2.sort_index()
df2=df2.fillna(0)
df2[df2>0]=1
#print(df2.head())
dataDic[hid]['Out']=df2.to_dict(orient="list")
###CHART
if(self.feat_chart):
feat=chart['itemid'].unique()
df2=chart[chart['stay_id']==hid]
if df2.shape[0]==0:
val=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
val=val.fillna(0)
val.columns=pd.MultiIndex.from_product([["CHART"], val.columns])
else:
val=df2.pivot_table(index='start_time',columns='itemid',values='valuenum')
df2['val']=1
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
#print(df2.shape)
add_indices = pd.Index(range(los)).difference(df2.index)
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
df2=pd.concat([df2, add_df])
df2=df2.sort_index()
df2=df2.fillna(0)
val=pd.concat([val, add_df])
val=val.sort_index()
if self.impute=='Mean':
val=val.ffill()
val=val.bfill()
val=val.fillna(val.mean())
elif self.impute=='Median':
val=val.ffill()
val=val.bfill()
val=val.fillna(val.median())
val=val.fillna(0)
df2[df2>0]=1
df2[df2<0]=0
#print(df2.head())
dataDic[hid]['Chart']['signal']=df2.iloc[:,0:].to_dict(orient="list")
dataDic[hid]['Chart']['val']=val.iloc[:,0:].to_dict(orient="list")
##########COND#########
if(self.feat_cond):
feat=self.cond['new_icd_code'].unique()
grp=self.cond[self.cond['stay_id']==hid]
if(grp.shape[0]==0):
dataDic[hid]['Cond']={'fids':list(['<PAD>'])}
else:
dataDic[hid]['Cond']={'fids':list(grp['new_icd_code'])}
######SAVE DICTIONARIES##############
metaDic={'Cond':{},'Proc':{},'Med':{},'Out':{},'Chart':{},'LOS':{}}
metaDic['LOS']=los
with open("./data/dict/dataDic", 'wb') as fp:
pickle.dump(dataDic, fp)
with open("./data/dict/hadmDic", 'wb') as fp:
pickle.dump(self.hids, fp)
with open("./data/dict/ethVocab", 'wb') as fp:
pickle.dump(list(self.data['ethnicity'].unique()), fp)
self.eth_vocab = self.data['ethnicity'].nunique()
with open("./data/dict/ageVocab", 'wb') as fp:
pickle.dump(list(self.data['Age'].unique()), fp)
self.age_vocab = self.data['Age'].nunique()
with open("./data/dict/insVocab", 'wb') as fp:
pickle.dump(list(self.data['insurance'].unique()), fp)
self.ins_vocab = self.data['insurance'].nunique()
if(self.feat_med):
with open("./data/dict/medVocab", 'wb') as fp:
pickle.dump(list(meds['itemid'].unique()), fp)
self.med_vocab = meds['itemid'].nunique()
metaDic['Med']=self.med_per_adm
if(self.feat_out):
with open("./data/dict/outVocab", 'wb') as fp:
pickle.dump(list(out['itemid'].unique()), fp)
self.out_vocab = out['itemid'].nunique()
metaDic['Out']=self.out_per_adm
if(self.feat_chart):
with open("./data/dict/chartVocab", 'wb') as fp:
pickle.dump(list(chart['itemid'].unique()), fp)
self.chart_vocab = chart['itemid'].nunique()
metaDic['Chart']=self.chart_per_adm
if(self.feat_cond):
with open("./data/dict/condVocab", 'wb') as fp:
pickle.dump(list(self.cond['new_icd_code'].unique()), fp)
self.cond_vocab = self.cond['new_icd_code'].nunique()
metaDic['Cond']=self.cond_per_adm
if(self.feat_proc):
with open("./data/dict/procVocab", 'wb') as fp:
pickle.dump(list(proc['itemid'].unique()), fp)
self.proc_vocab = proc['itemid'].nunique()
metaDic['Proc']=self.proc_per_adm
with open("./data/dict/metaDic", 'wb') as fp:
pickle.dump(metaDic, fp) |