|
import csv |
|
import json |
|
import os |
|
import pandas as pd |
|
import datasets |
|
import pickle |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset for mimic4 data, by default for the Mortality task. |
|
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype. |
|
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main' |
|
mimic path should have this form : |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset" |
|
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html" |
|
_GITHUB = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main" |
|
|
|
class Mimic4DatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Mimic4Dataset.""" |
|
|
|
def __init__( |
|
self, |
|
mimic_path, |
|
|
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.mimic_path =mimic_path |
|
|
|
|
|
|
|
|
|
class Mimic4Dataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
Mimic4DatasetConfig( |
|
name="Phenotype", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/dict/cohort_icu_readmission_30_I50"), |
|
description="Dataset for mimic4 Phenotype task", |
|
mimic_path = None |
|
), |
|
Mimic4DatasetConfig( |
|
name="Readmission", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/dict"), |
|
description="Dataset for mimic4 Readmission task", |
|
mimic_path = None |
|
), |
|
Mimic4DatasetConfig( |
|
name="Length of Stay", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/dict"), |
|
description="Dataset for mimic4 Length of Stay task", |
|
mimic_path = None |
|
), |
|
Mimic4DatasetConfig( |
|
name="Mortality", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/dict"), |
|
description="Dataset for mimic4 Mortality task", |
|
mimic_path = None |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "Mortality" |
|
|
|
def _info(self): |
|
|
|
|
|
features = datasets.Features( |
|
{ |
|
"gender": datasets.Value("string"), |
|
"ethnicity": datasets.Value("string"), |
|
"age": datasets.Value("int32"), |
|
"COND": datasets.Sequence(datasets.Value("string")), |
|
|
|
"PROC": { |
|
"id": datasets.Sequence(datasets.Value("int32")), |
|
"value": datasets.Sequence(datasets.Value("float32")) |
|
}, |
|
"CHART": datasets.Sequence( |
|
{ |
|
"signal" : datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"value": datasets.Sequence(datasets.Value("float32")) |
|
} |
|
), |
|
"val" : datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"value": datasets.Sequence(datasets.Value("float32")) |
|
} |
|
), |
|
}), |
|
"OUT": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"value": datasets.Sequence(datasets.Value("float32")) |
|
} |
|
), |
|
"label": datasets.ClassLabel(names=["0", "1"]), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = self.config.data_dir + "/dataDic" |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir}), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, 'rb') as fp: |
|
dataDic = pickle.load(fp) |
|
for hid, data in dataDic.items(): |
|
proc_features = data['Proc'] |
|
chart_features = data['Chart'] |
|
meds_features = data['Med'] |
|
out_features = data['Out'] |
|
cond_features = data['Cond']['fids'] |
|
eth= data['ethnicity'] |
|
age = data['age'] |
|
gender = data['gender'] |
|
label = data['label'] |
|
items = list(proc_features.keys()) |
|
values =[proc_features[i] for i in items ] |
|
procs = {"id" : id, |
|
"value": values} |
|
|
|
|
|
yield hid, { |
|
"gender" : gender, |
|
"ethnicity" : eth, |
|
"age" : age, |
|
"PROC" : procs, |
|
"CHART" : None, |
|
"OUT" : None, |
|
"COND" : cond_features, |
|
"label" : label |
|
} |
|
|
|
|