|
import csv |
|
import json |
|
import os |
|
import pandas as pd |
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
Dataset for mimic4 data, by default for the Mortality task. |
|
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype. |
|
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main' |
|
#TODO ADD DESCRIPTION COHORTS |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset" |
|
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html" |
|
|
|
class Mimic4Dataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="Phenotype", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/csv/Phenotype"), |
|
description="Dataset for mimic4 Phenotype task", |
|
), |
|
datasets.BuilderConfig( |
|
name="Readmission", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/csv/Readmission"), |
|
description="Dataset for mimic4 Readmission task", |
|
), |
|
datasets.BuilderConfig( |
|
name="Length of Stay", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/csv/Lenght_of_Stay"), |
|
description="Dataset for mimic4 Length of Stay task", |
|
), |
|
datasets.BuilderConfig( |
|
name="Mortality", |
|
version=VERSION, |
|
data_dir=os.path.abspath("./data/csv/Mortality"), |
|
description="Dataset for mimic4 Mortality task", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "Mortality" |
|
|
|
def _info(self): |
|
|
|
|
|
features = datasets.Features( |
|
{ |
|
"gender": datasets.Value("string"), |
|
"ethnicity": datasets.Value("string"), |
|
"insurance": datasets.Value("string"), |
|
"age": datasets.Value("int32"), |
|
"COND": datasets.Sequence(datasets.Value("int32"), length=None), |
|
"MEDS": datasets.Sequence(datasets.Value("int32"), length=None), |
|
"PROC": datasets.Sequence(datasets.Value("int32"), length=None), |
|
"CHART": datasets.Sequence(datasets.Value("int32"), length=None), |
|
"OUT": datasets.Sequence(datasets.Value("int32"), length=None), |
|
"label": datasets.ClassLabel(names=["0", "1"]), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = self.config.data_dir |
|
|
|
|
|
train_files = [] |
|
for split_name in os.listdir(data_dir): |
|
split_dir = os.path.join(data_dir, split_name) |
|
if os.path.isdir(split_dir): |
|
for file_name in os.listdir(split_dir): |
|
if file_name.endswith(".csv"): |
|
file_path = os.path.join(split_dir, file_name) |
|
train_files.append(file_path) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": train_files, |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepaths, split): |
|
|
|
labels = pd.read_csv("./data/csv/"+self.config.name +"labels.csv") |
|
for i in range(0, len(filepaths), 3): |
|
file1, file2, file3 = filepaths[i:i+3] |
|
static_file = file1 if "static.csv" in file1 else file2 if "static.csv" in file2 else file3 |
|
demographic_file = file1 if "demo.csv" in file1 else file2 if "demo.csv" in file2 else file3 |
|
dynamic_file = file1 if "dynamic.csv" in file1 else file2 if "dynamic.csv" in file2 else file3 |
|
|
|
|
|
dyn = pd.read_csv(dynamic_file, header=[0, 1]) |
|
meds = dyn['MEDS'] |
|
proc = dyn['PROC'] |
|
chart = dyn['CHART'] |
|
out = dyn['OUT'] |
|
|
|
|
|
stat = pd.read_csv(static_file, header=[0, 1]) |
|
stat = stat['COND'] |
|
|
|
|
|
demo = pd.read_csv(demographic_file, header=0) |
|
|
|
|
|
stat_dict = stat.iloc[0].to_dict() |
|
demo_dict = demo.iloc[0].to_dict() |
|
meds_dict = meds.iloc[0].to_dict() |
|
proc_dict = proc.iloc[0].to_dict() |
|
chart_dict = chart.iloc[0].to_dict() |
|
out_dict = out.iloc[0].to_dict() |
|
|
|
|
|
stay_id = demographic_file.split("/")[-2] |
|
|
|
label = int(labels.loc[labels['stay_id'] == stay_id]['label']) |
|
|
|
yield stay_id, { |
|
"gender" : demo_dict['gender'], |
|
"ethnicity" : demo_dict['ethnicity'], |
|
"insurance" : demo_dict['insurance'], |
|
"age" : demo_dict['age'], |
|
"MEDS" : meds_dict, |
|
"PROC" : proc_dict, |
|
"CHART" : chart_dict, |
|
"OUT" : out_dict, |
|
"COND" : stat_dict, |
|
"label" : label |
|
} |
|
|