Update dataset_utils.py
Browse files- dataset_utils.py +17 -13
dataset_utils.py
CHANGED
@@ -279,16 +279,25 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
279 |
lab=lab.to_numpy()
|
280 |
lab = torch.tensor(lab, dtype=torch.long)
|
281 |
lab = lab.tolist()
|
282 |
-
|
283 |
-
stat=cond_df
|
284 |
-
stat = stat.to_numpy()
|
285 |
-
stat = torch.tensor(stat)
|
286 |
-
if stat_df[0].nelement():
|
287 |
-
stat_df = torch.cat((stat_df,stat),0)
|
288 |
-
else:
|
289 |
-
stat_df = stat
|
290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
y = int(demo['label'])
|
|
|
|
|
|
|
292 |
demo["gender"].replace(gender_vocab, inplace=True)
|
293 |
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
294 |
demo["insurance"].replace(ins_vocab, inplace=True)
|
@@ -300,14 +309,9 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
300 |
demo_df = torch.cat((demo_df,demo),0)
|
301 |
else:
|
302 |
demo_df = demo
|
303 |
-
stat_df = torch.tensor(stat_df)
|
304 |
-
stat_df = stat_df.type(torch.LongTensor)
|
305 |
-
stat_df = stat_df.squeeze()
|
306 |
demo_df = torch.tensor(demo_df)
|
307 |
demo_df = demo_df.type(torch.LongTensor)
|
308 |
demo_df=demo_df.squeeze()
|
309 |
-
y_df = torch.tensor(y)
|
310 |
-
y_df = y_df.type(torch.LongTensor)
|
311 |
|
312 |
return stat_df, demo_df, meds, charts, out, proc, lab, y
|
313 |
|
|
|
279 |
lab=lab.to_numpy()
|
280 |
lab = torch.tensor(lab, dtype=torch.long)
|
281 |
lab = lab.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
if feat_cond:
|
284 |
+
stat=cond_df
|
285 |
+
stat = stat.to_numpy()
|
286 |
+
stat = torch.tensor(stat)
|
287 |
+
if stat_df[0].nelement():
|
288 |
+
stat_df = torch.cat((stat_df,stat),0)
|
289 |
+
else:
|
290 |
+
stat_df = stat
|
291 |
+
|
292 |
+
stat_df = torch.tensor(stat_df)
|
293 |
+
stat_df = stat_df.type(torch.LongTensor)
|
294 |
+
stat_df = stat_df.squeeze()
|
295 |
+
|
296 |
+
|
297 |
y = int(demo['label'])
|
298 |
+
y_df = torch.tensor(y)
|
299 |
+
y_df = y_df.type(torch.LongTensor)
|
300 |
+
|
301 |
demo["gender"].replace(gender_vocab, inplace=True)
|
302 |
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
303 |
demo["insurance"].replace(ins_vocab, inplace=True)
|
|
|
309 |
demo_df = torch.cat((demo_df,demo),0)
|
310 |
else:
|
311 |
demo_df = demo
|
|
|
|
|
|
|
312 |
demo_df = torch.tensor(demo_df)
|
313 |
demo_df = demo_df.type(torch.LongTensor)
|
314 |
demo_df=demo_df.squeeze()
|
|
|
|
|
315 |
|
316 |
return stat_df, demo_df, meds, charts, out, proc, lab, y
|
317 |
|