thbndi commited on
Commit
39f9178
·
1 Parent(s): 2167e0f

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +25 -7
Mimic4Dataset.py CHANGED
@@ -110,7 +110,7 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
110
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
111
 
112
 
113
- def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
114
  meds=data['Med']
115
  proc = data['Proc']
116
  out = data['Out']
@@ -257,7 +257,7 @@ def getXY_deep(X_df,task,feat_cond=True,feat_chart=True,feat_proc=True, feat_med
257
  y_df=[]
258
 
259
  for index,sample in tqdm(X_df.iterrows(),desc='Encoding Splits Data for '+task+' task'):
260
- dyn,stat,demo=onehot(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
261
  dyn_k=dyn.copy()
262
  keys=dyn_k.columns.levels[0]
263
  if index==0:
@@ -368,7 +368,7 @@ def encoding(X_data):
368
  X_data['insurance']=ins_encoder.transform(X_data['insurance'])
369
  return X_data
370
 
371
- def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=True, feat_meds=True, feat_out=False):
372
  with open(path, 'rb') as fp:
373
  dico = pickle.load(fp)
374
  df = pd.DataFrame.from_dict(dico, orient='index')
@@ -377,7 +377,7 @@ def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=Tru
377
  for _, data in tqdm(df.iterrows(),desc='Encoding Splits Data for '+task+' task'):
378
  concat_cols=[]
379
  sample=data
380
- dyn_df,cond_df,demo=onehot(sample,taskf,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
381
  dyn=dyn_df.copy()
382
  dyn.columns=dyn.columns.droplevel(0)
383
  cols=dyn.columns
@@ -395,6 +395,24 @@ def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=Tru
395
  X_df = encoding(X_df)
396
  return X_df
397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
 
399
  class Mimic4DatasetConfig(datasets.BuilderConfig):
400
  """BuilderConfig for Mimic4Dataset."""
@@ -810,9 +828,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
810
  X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
811
  return self._info_encoded(X_train_encoded)
812
  elif self.encoding == 'deep' :
813
- X_train_deep = getXY_deep(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
814
- X_test_deep = getXY_deep(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
815
- X_val_deep = getXY_deep(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
816
 
817
  X_train_deep.to_csv(self.path+"/X_train_deep.csv", index=False)
818
  X_test_deep.to_csv(self.path+"/X_test_deep.csv", index=False)
 
110
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
111
 
112
 
113
+ def concat_data(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
114
  meds=data['Med']
115
  proc = data['Proc']
116
  out = data['Out']
 
257
  y_df=[]
258
 
259
  for index,sample in tqdm(X_df.iterrows(),desc='Encoding Splits Data for '+task+' task'):
260
+ dyn,stat,demo=concat_data(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
261
  dyn_k=dyn.copy()
262
  keys=dyn_k.columns.levels[0]
263
  if index==0:
 
368
  X_data['insurance']=ins_encoder.transform(X_data['insurance'])
369
  return X_data
370
 
371
+ def generate_split(path,task,concat,feat_cond,feat_chart,feat_proc, feat_meds, feat_out):
372
  with open(path, 'rb') as fp:
373
  dico = pickle.load(fp)
374
  df = pd.DataFrame.from_dict(dico, orient='index')
 
377
  for _, data in tqdm(df.iterrows(),desc='Encoding Splits Data for '+task+' task'):
378
  concat_cols=[]
379
  sample=data
380
+ dyn_df,cond_df,demo=concat_data(sample,taskf,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
381
  dyn=dyn_df.copy()
382
  dyn.columns=dyn.columns.droplevel(0)
383
  cols=dyn.columns
 
395
  X_df = encoding(X_df)
396
  return X_df
397
 
398
+ def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out):
399
+ with open(path, 'rb') as fp:
400
+ dico = pickle.load(fp)
401
+ df = pd.DataFrame.from_dict(dico, orient='index')
402
+ X_df=pd.DataFrame()
403
+ taskf=task.replace(" ","_")
404
+ meds,chart,out,proc,lab ,stat_df, demo_df, y_df = getXY_deep(df,taskf,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
405
+ X_df=pd.concat([X_df,meds],axis=1)
406
+ X_df=pd.concat([X_df,chart],axis=1)
407
+ X_df=pd.concat([X_df,out],axis=1)
408
+ X_df=pd.concat([X_df,proc],axis=1)
409
+ X_df=pd.concat([X_df,lab],axis=1)
410
+ X_df=pd.concat([X_df,stat_df],axis=1)
411
+ X_df=pd.concat([X_df,demo_df],axis=1)
412
+ X_df=pd.concat([X_df,y_df],axis=1)
413
+ X_df=X_df.fillna(0)
414
+ X_df = encoding(X_df)
415
+ return X_df
416
 
417
  class Mimic4DatasetConfig(datasets.BuilderConfig):
418
  """BuilderConfig for Mimic4Dataset."""
 
828
  X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
829
  return self._info_encoded(X_train_encoded)
830
  elif self.encoding == 'deep' :
831
+ X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
832
+ X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
833
+ X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
834
 
835
  X_train_deep.to_csv(self.path+"/X_train_deep.csv", index=False)
836
  X_test_deep.to_csv(self.path+"/X_test_deep.csv", index=False)