Update dataset_utils.py
Browse files- dataset_utils.py +11 -24
dataset_utils.py
CHANGED
@@ -77,7 +77,7 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
|
77 |
|
78 |
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
79 |
|
80 |
-
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
81 |
meds=data['Med']
|
82 |
proc = data['Proc']
|
83 |
out = data['Out']
|
@@ -98,9 +98,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
98 |
##########COND#########
|
99 |
if (feat_cond):
|
100 |
#get all conds
|
101 |
-
|
102 |
-
conDict = pickle.load(fp)
|
103 |
-
conds=pd.DataFrame(conDict,columns=['COND'])
|
104 |
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
|
105 |
|
106 |
#onehot encode
|
@@ -122,13 +120,11 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
122 |
|
123 |
##########PROC#########
|
124 |
if (feat_proc):
|
125 |
-
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
126 |
-
procDic = pickle.load(fp)
|
127 |
|
128 |
if proc :
|
129 |
feat=proc.keys()
|
130 |
proc_val=[proc[key] for key in feat]
|
131 |
-
procedures=pd.DataFrame(
|
132 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
133 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
134 |
procs=pd.DataFrame(columns=feat)
|
@@ -144,13 +140,11 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
144 |
|
145 |
##########OUT#########
|
146 |
if (feat_out):
|
147 |
-
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
148 |
-
outDic = pickle.load(fp)
|
149 |
|
150 |
if out :
|
151 |
feat=out.keys()
|
152 |
out_val=[out[key] for key in feat]
|
153 |
-
outputs=pd.DataFrame(
|
154 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
155 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
156 |
outs=pd.DataFrame(columns=feat)
|
@@ -159,21 +153,19 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
159 |
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
|
160 |
out_df = pd.concat([features,outs],ignore_index=True).fillna(0)
|
161 |
else:
|
162 |
-
outputs=pd.DataFrame(
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
164 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
165 |
out_df=features.fillna(0)
|
166 |
|
167 |
##########CHART#########
|
168 |
if (feat_chart):
|
169 |
-
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
170 |
-
chartDic = pickle.load(fp)
|
171 |
|
172 |
if chart:
|
173 |
charts=chart['val']
|
174 |
feat=charts.keys()
|
175 |
chart_val=[charts[key] for key in feat]
|
176 |
-
charts=pd.DataFrame(
|
177 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
178 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
179 |
|
@@ -183,21 +175,19 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
183 |
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
|
184 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
185 |
else:
|
186 |
-
charts=pd.DataFrame(
|
187 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
188 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
189 |
chart_df=features.fillna(0)
|
190 |
|
191 |
##########LAB#########
|
192 |
if (feat_lab):
|
193 |
-
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
194 |
-
chartDic = pickle.load(fp)
|
195 |
|
196 |
if chart:
|
197 |
charts=chart['val']
|
198 |
feat=charts.keys()
|
199 |
chart_val=[charts[key] for key in feat]
|
200 |
-
charts=pd.DataFrame(
|
201 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
202 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
203 |
|
@@ -207,20 +197,17 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
207 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
208 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
209 |
else:
|
210 |
-
charts=pd.DataFrame(
|
211 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
212 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
213 |
chart_df=features.fillna(0)
|
214 |
|
215 |
###MEDS
|
216 |
if (feat_meds):
|
217 |
-
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
218 |
-
medDic = pickle.load(fp)
|
219 |
-
|
220 |
if meds:
|
221 |
feat=meds['signal'].keys()
|
222 |
med_val=[meds['amount'][key] for key in feat]
|
223 |
-
meds=pd.DataFrame(
|
224 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
225 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
226 |
|
@@ -230,7 +217,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
230 |
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
|
231 |
meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
|
232 |
else:
|
233 |
-
meds=pd.DataFrame(
|
234 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
235 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
236 |
meds_df=features.fillna(0)
|
|
|
77 |
|
78 |
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
79 |
|
80 |
+
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,outDict,chartDict,condDict,procDict,medDict):
|
81 |
meds=data['Med']
|
82 |
proc = data['Proc']
|
83 |
out = data['Out']
|
|
|
98 |
##########COND#########
|
99 |
if (feat_cond):
|
100 |
#get all conds
|
101 |
+
conds=pd.DataFrame(condDict,columns=['COND'])
|
|
|
|
|
102 |
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
|
103 |
|
104 |
#onehot encode
|
|
|
120 |
|
121 |
##########PROC#########
|
122 |
if (feat_proc):
|
|
|
|
|
123 |
|
124 |
if proc :
|
125 |
feat=proc.keys()
|
126 |
proc_val=[proc[key] for key in feat]
|
127 |
+
procedures=pd.DataFrame(procDict,columns=['PROC'])
|
128 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
129 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
130 |
procs=pd.DataFrame(columns=feat)
|
|
|
140 |
|
141 |
##########OUT#########
|
142 |
if (feat_out):
|
|
|
|
|
143 |
|
144 |
if out :
|
145 |
feat=out.keys()
|
146 |
out_val=[out[key] for key in feat]
|
147 |
+
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
148 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
149 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
150 |
outs=pd.DataFrame(columns=feat)
|
|
|
153 |
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
|
154 |
out_df = pd.concat([features,outs],ignore_index=True).fillna(0)
|
155 |
else:
|
156 |
+
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
157 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
158 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
159 |
out_df=features.fillna(0)
|
160 |
|
161 |
##########CHART#########
|
162 |
if (feat_chart):
|
|
|
|
|
163 |
|
164 |
if chart:
|
165 |
charts=chart['val']
|
166 |
feat=charts.keys()
|
167 |
chart_val=[charts[key] for key in feat]
|
168 |
+
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
169 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
170 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
171 |
|
|
|
175 |
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
|
176 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
177 |
else:
|
178 |
+
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
179 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
180 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
181 |
chart_df=features.fillna(0)
|
182 |
|
183 |
##########LAB#########
|
184 |
if (feat_lab):
|
|
|
|
|
185 |
|
186 |
if chart:
|
187 |
charts=chart['val']
|
188 |
feat=charts.keys()
|
189 |
chart_val=[charts[key] for key in feat]
|
190 |
+
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
191 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
192 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
193 |
|
|
|
197 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
198 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
199 |
else:
|
200 |
+
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
201 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
202 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
203 |
chart_df=features.fillna(0)
|
204 |
|
205 |
###MEDS
|
206 |
if (feat_meds):
|
|
|
|
|
|
|
207 |
if meds:
|
208 |
feat=meds['signal'].keys()
|
209 |
med_val=[meds['amount'][key] for key in feat]
|
210 |
+
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
211 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
212 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
213 |
|
|
|
217 |
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
|
218 |
meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
|
219 |
else:
|
220 |
+
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
221 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
222 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
223 |
meds_df=features.fillna(0)
|