thbndi commited on
Commit
671b124
·
1 Parent(s): 8ba1b8a

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +10 -10
Mimic4Dataset.py CHANGED
@@ -246,11 +246,17 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
246
  self.config_path = kwargs.pop("config_path",None)
247
  self.test_size = kwargs.pop("test_size",0.2)
248
  self.val_size = kwargs.pop("val_size",0.1)
249
-
250
-
251
  super().__init__(**kwargs)
252
- self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
253
 
 
 
 
 
 
 
 
 
 
254
 
255
  BUILDER_CONFIGS = [
256
  Mimic4DatasetConfig(
@@ -583,13 +589,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
583
  ###########################################################ENCODED##################################################################
584
 
585
  def _info_encoded(self):
586
- X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
587
- X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
588
- X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
589
- X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
590
- X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
591
- X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
592
-
593
  columns = {col: self.map_dtype(X_train_encoded[col].dtype) for col in X_train_encoded.columns}
594
  features = datasets.Features(columns)
595
  return datasets.DatasetInfo(
 
246
  self.config_path = kwargs.pop("config_path",None)
247
  self.test_size = kwargs.pop("test_size",0.2)
248
  self.val_size = kwargs.pop("val_size",0.1)
 
 
249
  super().__init__(**kwargs)
 
250
 
251
+ self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
252
+ if self.encoding:
253
+ X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
254
+ X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
255
+ X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
256
+
257
+ X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
258
+ X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
259
+ X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
260
 
261
  BUILDER_CONFIGS = [
262
  Mimic4DatasetConfig(
 
589
  ###########################################################ENCODED##################################################################
590
 
591
  def _info_encoded(self):
592
+ X_train_encoded = pd.read_csv(self.path+'/X_train_encoded.csv', header=0)
 
 
 
 
 
 
593
  columns = {col: self.map_dtype(X_train_encoded[col].dtype) for col in X_train_encoded.columns}
594
  features = datasets.Features(columns)
595
  return datasets.DatasetInfo(