Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +47 -34
Mimic4Dataset.py
CHANGED
@@ -337,45 +337,58 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
337 |
def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
338 |
stat_df = torch.zeros(size=(1,0))
|
339 |
demo_df = torch.zeros(size=(1,0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
342 |
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
|
343 |
-
|
344 |
###########""
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
|
|
|
|
|
|
|
|
379 |
|
380 |
####################""
|
381 |
|
|
|
337 |
def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
338 |
stat_df = torch.zeros(size=(1,0))
|
339 |
demo_df = torch.zeros(size=(1,0))
|
340 |
+
meds = torch.zeros(size=(0,0))
|
341 |
+
charts = torch.zeros(size=(0,0))
|
342 |
+
proc = torch.zeros(size=(0,0))
|
343 |
+
out = torch.zeros(size=(0,0))
|
344 |
+
lab = torch.zeros(size=(0,0))
|
345 |
+
stat_df = torch.zeros(size=(1,0))
|
346 |
+
demo_df = torch.zeros(size=(1,0))
|
347 |
+
feat_lab = False
|
348 |
|
349 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
350 |
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
|
351 |
+
|
352 |
###########""
|
353 |
+
if feat_chart:
|
354 |
+
charts = dyn['CHART']
|
355 |
+
charts=charts.to_numpy()
|
356 |
+
charts = torch.tensor(charts)
|
357 |
+
charts = charts.unsqueeze(0)
|
358 |
+
charts = torch.tensor(charts)
|
359 |
+
charts = charts.type(torch.LongTensor)
|
360 |
|
361 |
+
if feat_meds:
|
362 |
+
meds = dyn['MEDS']
|
363 |
+
meds=meds.to_numpy()
|
364 |
+
meds = torch.tensor(meds)
|
365 |
+
meds = meds.unsqueeze(0)
|
366 |
+
meds = torch.tensor(meds)
|
367 |
+
meds = meds.type(torch.LongTensor)
|
368 |
+
|
369 |
+
if feat_proc:
|
370 |
+
proc = dyn['PROC']
|
371 |
+
proc=proc.to_numpy()
|
372 |
+
proc = torch.tensor(proc)
|
373 |
+
proc = proc.unsqueeze(0)
|
374 |
+
proc = torch.tensor(proc)
|
375 |
+
proc = proc.type(torch.LongTensor)
|
376 |
+
|
377 |
+
if feat_out:
|
378 |
+
out = dyn['OUT']
|
379 |
+
out=out.to_numpy()
|
380 |
+
out = torch.tensor(out)
|
381 |
+
out = out.unsqueeze(0)
|
382 |
+
out = torch.tensor(out)
|
383 |
+
out = out.type(torch.LongTensor)
|
384 |
+
|
385 |
+
if feat_lab:
|
386 |
+
lab = dyn['LAB']
|
387 |
+
lab=lab.to_numpy()
|
388 |
+
lab = torch.tensor(lab)
|
389 |
+
lab = lab.unsqueeze(0)
|
390 |
+
lab = torch.tensor(lab)
|
391 |
+
lab = lab.type(torch.LongTensor)
|
392 |
|
393 |
####################""
|
394 |
|