thbndi commited on
Commit
6e967dd
·
1 Parent(s): 9967bc6

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +47 -34
Mimic4Dataset.py CHANGED
@@ -337,45 +337,58 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
337
  def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
338
  stat_df = torch.zeros(size=(1,0))
339
  demo_df = torch.zeros(size=(1,0))
 
 
 
 
 
 
 
 
340
 
341
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
342
  dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
343
- print(dyn.columns)
344
  ###########""
345
- charts = dyn['CHART']
346
- charts=charts.to_numpy()
347
- charts = torch.tensor(charts)
348
- charts = charts.unsqueeze(0)
349
- charts = torch.tensor(charts)
350
- charts = charts.type(torch.LongTensor)
 
351
 
352
- meds = dyn['MEDS']
353
- meds=meds.to_numpy()
354
- meds = torch.tensor(meds)
355
- meds = meds.unsqueeze(0)
356
- meds = torch.tensor(meds)
357
- meds = meds.type(torch.LongTensor)
358
-
359
- proc = dyn['PROC']
360
- proc=proc.to_numpy()
361
- proc = torch.tensor(proc)
362
- proc = proc.unsqueeze(0)
363
- proc = torch.tensor(proc)
364
- proc = proc.type(torch.LongTensor)
365
-
366
- out = dyn['OUT']
367
- out=out.to_numpy()
368
- out = torch.tensor(out)
369
- out = out.unsqueeze(0)
370
- out = torch.tensor(out)
371
- out = out.type(torch.LongTensor)
372
-
373
- lab = dyn['LAB']
374
- lab=lab.to_numpy()
375
- lab = torch.tensor(lab)
376
- lab = lab.unsqueeze(0)
377
- lab = torch.tensor(lab)
378
- lab = lab.type(torch.LongTensor)
 
 
 
 
379
 
380
  ####################""
381
 
 
337
  def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
338
  stat_df = torch.zeros(size=(1,0))
339
  demo_df = torch.zeros(size=(1,0))
340
+ meds = torch.zeros(size=(0,0))
341
+ charts = torch.zeros(size=(0,0))
342
+ proc = torch.zeros(size=(0,0))
343
+ out = torch.zeros(size=(0,0))
344
+ lab = torch.zeros(size=(0,0))
345
+ stat_df = torch.zeros(size=(1,0))
346
+ demo_df = torch.zeros(size=(1,0))
347
+ feat_lab = False
348
 
349
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
350
  dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
351
+
352
  ###########""
353
+ if feat_chart:
354
+ charts = dyn['CHART']
355
+ charts=charts.to_numpy()
356
+ charts = torch.tensor(charts)
357
+ charts = charts.unsqueeze(0)
358
+ charts = torch.tensor(charts)
359
+ charts = charts.type(torch.LongTensor)
360
 
361
+ if feat_meds:
362
+ meds = dyn['MEDS']
363
+ meds=meds.to_numpy()
364
+ meds = torch.tensor(meds)
365
+ meds = meds.unsqueeze(0)
366
+ meds = torch.tensor(meds)
367
+ meds = meds.type(torch.LongTensor)
368
+
369
+ if feat_proc:
370
+ proc = dyn['PROC']
371
+ proc=proc.to_numpy()
372
+ proc = torch.tensor(proc)
373
+ proc = proc.unsqueeze(0)
374
+ proc = torch.tensor(proc)
375
+ proc = proc.type(torch.LongTensor)
376
+
377
+ if feat_out:
378
+ out = dyn['OUT']
379
+ out=out.to_numpy()
380
+ out = torch.tensor(out)
381
+ out = out.unsqueeze(0)
382
+ out = torch.tensor(out)
383
+ out = out.type(torch.LongTensor)
384
+
385
+ if feat_lab:
386
+ lab = dyn['LAB']
387
+ lab=lab.to_numpy()
388
+ lab = torch.tensor(lab)
389
+ lab = lab.unsqueeze(0)
390
+ lab = torch.tensor(lab)
391
+ lab = lab.type(torch.LongTensor)
392
 
393
  ####################""
394