Update dataset_utils.py
Browse files- dataset_utils.py +5 -3
dataset_utils.py
CHANGED
@@ -168,12 +168,14 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
168 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
169 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
170 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
171 |
-
|
172 |
chart=pd.DataFrame(columns=feat)
|
173 |
for c,v in zip(feat,chart_val):
|
174 |
chart[c]=v
|
175 |
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
|
176 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
|
|
|
|
177 |
else:
|
178 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
179 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
@@ -189,7 +191,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
189 |
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
190 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
191 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
192 |
-
|
193 |
|
194 |
chart=pd.DataFrame(columns=feat)
|
195 |
for c,v in zip(feat,chart_val):
|
@@ -201,7 +203,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
201 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
202 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
203 |
chart_df=features.fillna(0)
|
204 |
-
|
205 |
###MEDS
|
206 |
if (feat_meds):
|
207 |
if meds:
|
|
|
168 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
169 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
170 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
171 |
+
print('TETE: ',charts)
|
172 |
chart=pd.DataFrame(columns=feat)
|
173 |
for c,v in zip(feat,chart_val):
|
174 |
chart[c]=v
|
175 |
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
|
176 |
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
177 |
+
print('dyn :', chart_df)
|
178 |
+
|
179 |
else:
|
180 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
181 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
|
|
191 |
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
192 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
193 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
194 |
+
|
195 |
|
196 |
chart=pd.DataFrame(columns=feat)
|
197 |
for c,v in zip(feat,chart_val):
|
|
|
203 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
204 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
205 |
chart_df=features.fillna(0)
|
206 |
+
|
207 |
###MEDS
|
208 |
if (feat_meds):
|
209 |
if meds:
|