Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +8 -8
Mimic4Dataset.py
CHANGED
@@ -358,6 +358,8 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
358 |
charts = charts.unsqueeze(0)
|
359 |
charts = torch.tensor(charts)
|
360 |
charts = charts.type(torch.LongTensor)
|
|
|
|
|
361 |
if feat_meds:
|
362 |
meds = dyn['MEDS']
|
363 |
meds=meds.to_numpy()
|
@@ -365,6 +367,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
365 |
meds = meds.unsqueeze(0)
|
366 |
meds = torch.tensor(meds)
|
367 |
meds = meds.type(torch.LongTensor)
|
|
|
368 |
|
369 |
if feat_proc:
|
370 |
proc = dyn['PROC']
|
@@ -373,6 +376,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
373 |
proc = proc.unsqueeze(0)
|
374 |
proc = torch.tensor(proc)
|
375 |
proc = proc.type(torch.LongTensor)
|
|
|
376 |
|
377 |
if feat_out:
|
378 |
out = dyn['OUT']
|
@@ -381,6 +385,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
381 |
out = out.unsqueeze(0)
|
382 |
out = torch.tensor(out)
|
383 |
out = out.type(torch.LongTensor)
|
|
|
384 |
|
385 |
if feat_lab:
|
386 |
lab = dyn['LAB']
|
@@ -389,6 +394,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
389 |
lab = lab.unsqueeze(0)
|
390 |
lab = torch.tensor(lab)
|
391 |
lab = lab.type(torch.LongTensor)
|
|
|
392 |
|
393 |
####################""
|
394 |
|
@@ -954,15 +960,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
954 |
with open(filepath, 'rb') as fp:
|
955 |
dico = pickle.load(fp)
|
956 |
task=self.config.name.replace(" ","_")
|
957 |
-
|
958 |
-
for key, data in dico.items():
|
959 |
-
|
960 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds)
|
961 |
-
|
962 |
-
print('998 : \n', stat.shape, demo.shape, meds.shape, chart.shape, out.shape, proc.shape, lab.shape, y.shape)
|
963 |
-
if i==999:
|
964 |
-
print('\n 999 : \n', stat.shape, demo.shape, meds.shape, chart.shape, out.shape, proc.shape, lab.shape, y.shape)
|
965 |
-
i+=1
|
966 |
yield int(key), {
|
967 |
'label': y,
|
968 |
'DEMO': demo,
|
|
|
358 |
charts = charts.unsqueeze(0)
|
359 |
charts = torch.tensor(charts)
|
360 |
charts = charts.type(torch.LongTensor)
|
361 |
+
chart=chart.view(chart.shape[1],chart.shape[2])
|
362 |
+
|
363 |
if feat_meds:
|
364 |
meds = dyn['MEDS']
|
365 |
meds=meds.to_numpy()
|
|
|
367 |
meds = meds.unsqueeze(0)
|
368 |
meds = torch.tensor(meds)
|
369 |
meds = meds.type(torch.LongTensor)
|
370 |
+
meds=meds.view(meds.shape[1],meds.shape[2])
|
371 |
|
372 |
if feat_proc:
|
373 |
proc = dyn['PROC']
|
|
|
376 |
proc = proc.unsqueeze(0)
|
377 |
proc = torch.tensor(proc)
|
378 |
proc = proc.type(torch.LongTensor)
|
379 |
+
proc=proc.view(proc.shape[1],proc.shape[2])
|
380 |
|
381 |
if feat_out:
|
382 |
out = dyn['OUT']
|
|
|
385 |
out = out.unsqueeze(0)
|
386 |
out = torch.tensor(out)
|
387 |
out = out.type(torch.LongTensor)
|
388 |
+
out=out.view(out.shape[1],out.shape[2])
|
389 |
|
390 |
if feat_lab:
|
391 |
lab = dyn['LAB']
|
|
|
394 |
lab = lab.unsqueeze(0)
|
395 |
lab = torch.tensor(lab)
|
396 |
lab = lab.type(torch.LongTensor)
|
397 |
+
lab=lab.view(lab.shape[1],lab.shape[2])
|
398 |
|
399 |
####################""
|
400 |
|
|
|
960 |
with open(filepath, 'rb') as fp:
|
961 |
dico = pickle.load(fp)
|
962 |
task=self.config.name.replace(" ","_")
|
963 |
+
for key, data in dico.items():
|
|
|
|
|
964 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds)
|
965 |
+
|
|
|
|
|
|
|
|
|
966 |
yield int(key), {
|
967 |
'label': y,
|
968 |
'DEMO': demo,
|