Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +9 -9
Mimic4Dataset.py
CHANGED
@@ -356,7 +356,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
356 |
charts = charts.unsqueeze(0)
|
357 |
charts = torch.tensor(charts)
|
358 |
charts = charts.type(torch.LongTensor)
|
359 |
-
|
360 |
####################""
|
361 |
|
362 |
keys=dyn.columns.levels[0]
|
@@ -387,7 +387,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
387 |
proc=dyn_df[k].squeeze(0)
|
388 |
if keys[k]=='LAB':
|
389 |
lab=dyn_df[k].squeeze(0)
|
390 |
-
|
391 |
stat=cond_df
|
392 |
stat = stat.to_numpy()
|
393 |
stat = torch.tensor(stat)
|
@@ -598,7 +598,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
598 |
self.val_size = kwargs.pop("val_size",0.1)
|
599 |
self.generate_cohort = kwargs.pop("generate_cohort",True)
|
600 |
|
601 |
-
if self.encoding == '
|
602 |
self.concat = True
|
603 |
else:
|
604 |
self.concat = False
|
@@ -911,7 +911,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
911 |
features = datasets.Features(
|
912 |
{
|
913 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
914 |
-
"
|
915 |
}
|
916 |
)
|
917 |
return datasets.DatasetInfo(
|
@@ -962,7 +962,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
962 |
X=X.values.tolist()[0]
|
963 |
yield int(i), {
|
964 |
"label": label,
|
965 |
-
"
|
966 |
}
|
967 |
######################################################DEEP###############################################################
|
968 |
def _info_deep(self):
|
@@ -1011,13 +1011,13 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
1011 |
self.path = self.create_cohort()
|
1012 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,False)
|
1013 |
|
1014 |
-
if self.encoding == '
|
1015 |
return self._info_encoded()
|
1016 |
|
1017 |
elif self.encoding == 'aggreg' :
|
1018 |
return self._info_encoded()
|
1019 |
|
1020 |
-
elif self.encoding == '
|
1021 |
return self._info_deep()
|
1022 |
|
1023 |
else:
|
@@ -1035,13 +1035,13 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
1035 |
|
1036 |
def _generate_examples(self, filepath):
|
1037 |
|
1038 |
-
if self.encoding == '
|
1039 |
yield from self._generate_examples_encoded(filepath)
|
1040 |
|
1041 |
elif self.encoding == 'aggreg' :
|
1042 |
yield from self._generate_examples_encoded(filepath)
|
1043 |
|
1044 |
-
elif self.encoding == '
|
1045 |
yield from self._generate_examples_deep(filepath)
|
1046 |
else :
|
1047 |
yield from self._generate_examples_raw(filepath)
|
|
|
356 |
charts = charts.unsqueeze(0)
|
357 |
charts = torch.tensor(charts)
|
358 |
charts = charts.type(torch.LongTensor)
|
359 |
+
|
360 |
####################""
|
361 |
|
362 |
keys=dyn.columns.levels[0]
|
|
|
387 |
proc=dyn_df[k].squeeze(0)
|
388 |
if keys[k]=='LAB':
|
389 |
lab=dyn_df[k].squeeze(0)
|
390 |
+
chart=charts
|
391 |
stat=cond_df
|
392 |
stat = stat.to_numpy()
|
393 |
stat = torch.tensor(stat)
|
|
|
598 |
self.val_size = kwargs.pop("val_size",0.1)
|
599 |
self.generate_cohort = kwargs.pop("generate_cohort",True)
|
600 |
|
601 |
+
if self.encoding == 'concat':
|
602 |
self.concat = True
|
603 |
else:
|
604 |
self.concat = False
|
|
|
911 |
features = datasets.Features(
|
912 |
{
|
913 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
914 |
+
"features" : datasets.Sequence(datasets.Value("float32")),
|
915 |
}
|
916 |
)
|
917 |
return datasets.DatasetInfo(
|
|
|
962 |
X=X.values.tolist()[0]
|
963 |
yield int(i), {
|
964 |
"label": label,
|
965 |
+
"features": X,
|
966 |
}
|
967 |
######################################################DEEP###############################################################
|
968 |
def _info_deep(self):
|
|
|
1011 |
self.path = self.create_cohort()
|
1012 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,False)
|
1013 |
|
1014 |
+
if self.encoding == 'concat' :
|
1015 |
return self._info_encoded()
|
1016 |
|
1017 |
elif self.encoding == 'aggreg' :
|
1018 |
return self._info_encoded()
|
1019 |
|
1020 |
+
elif self.encoding == 'tensor' :
|
1021 |
return self._info_deep()
|
1022 |
|
1023 |
else:
|
|
|
1035 |
|
1036 |
def _generate_examples(self, filepath):
|
1037 |
|
1038 |
+
if self.encoding == 'concat' :
|
1039 |
yield from self._generate_examples_encoded(filepath)
|
1040 |
|
1041 |
elif self.encoding == 'aggreg' :
|
1042 |
yield from self._generate_examples_encoded(filepath)
|
1043 |
|
1044 |
+
elif self.encoding == 'tensor' :
|
1045 |
yield from self._generate_examples_deep(filepath)
|
1046 |
else :
|
1047 |
yield from self._generate_examples_raw(filepath)
|