Update dataset_utils.py
Browse files- dataset_utils.py +10 -12
dataset_utils.py
CHANGED
@@ -130,12 +130,12 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
130 |
proc_val=[proc[key] for key in feat]
|
131 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
132 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
133 |
-
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
134 |
procs=pd.DataFrame(columns=feat)
|
135 |
for p,v in zip(feat,proc_val):
|
136 |
procs[p]=v
|
137 |
-
|
138 |
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
|
|
139 |
else:
|
140 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
141 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
@@ -152,12 +152,12 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
152 |
out_val=[out[key] for key in feat]
|
153 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
154 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
155 |
-
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
156 |
outs=pd.DataFrame(columns=feat)
|
157 |
for o,v in zip(feat,out_val):
|
158 |
outs[o]=v
|
159 |
-
|
160 |
out_df = pd.concat([features,outs],axis=1).fillna(0)
|
|
|
161 |
else:
|
162 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
@@ -175,13 +175,12 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
175 |
chart_val=[charts[key] for key in feat]
|
176 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
177 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
178 |
-
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
179 |
-
|
180 |
chart=pd.DataFrame(columns=feat)
|
181 |
for c,v in zip(feat,chart_val):
|
182 |
chart[c]=v
|
183 |
-
|
184 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
|
|
185 |
else:
|
186 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
187 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
@@ -198,13 +197,13 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
198 |
chart_val=[charts[key] for key in feat]
|
199 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
200 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
201 |
-
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
202 |
-
|
203 |
chart=pd.DataFrame(columns=feat)
|
204 |
for c,v in zip(feat,chart_val):
|
205 |
chart[c]=v
|
|
|
206 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
207 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
|
|
208 |
else:
|
209 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
210 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
@@ -221,13 +220,12 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
221 |
med_val=[meds['amount'][key] for key in feat]
|
222 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
223 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
224 |
-
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
225 |
-
|
226 |
med=pd.DataFrame(columns=feat)
|
227 |
for m,v in zip(feat,med_val):
|
228 |
med[m]=v
|
229 |
-
|
230 |
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
|
|
231 |
else:
|
232 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
233 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
|
|
130 |
proc_val=[proc[key] for key in feat]
|
131 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
132 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
|
|
133 |
procs=pd.DataFrame(columns=feat)
|
134 |
for p,v in zip(feat,proc_val):
|
135 |
procs[p]=v
|
136 |
+
features=features.drop(columns=procs.columns.to_list())
|
137 |
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
138 |
+
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
|
139 |
else:
|
140 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
141 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
|
|
152 |
out_val=[out[key] for key in feat]
|
153 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
154 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
|
|
155 |
outs=pd.DataFrame(columns=feat)
|
156 |
for o,v in zip(feat,out_val):
|
157 |
outs[o]=v
|
158 |
+
features=features.drop(columns=outs.columns.to_list())
|
159 |
out_df = pd.concat([features,outs],axis=1).fillna(0)
|
160 |
+
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
|
161 |
else:
|
162 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
|
|
175 |
chart_val=[charts[key] for key in feat]
|
176 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
177 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
|
|
|
|
178 |
chart=pd.DataFrame(columns=feat)
|
179 |
for c,v in zip(feat,chart_val):
|
180 |
chart[c]=v
|
181 |
+
features=features.drop(columns=chart.columns.to_list())
|
182 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
183 |
+
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
|
184 |
else:
|
185 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
186 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
|
|
197 |
chart_val=[charts[key] for key in feat]
|
198 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
199 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
|
|
|
|
200 |
chart=pd.DataFrame(columns=feat)
|
201 |
for c,v in zip(feat,chart_val):
|
202 |
chart[c]=v
|
203 |
+
features=features.drop(columns=chart.columns.to_list())
|
204 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
205 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
206 |
+
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
|
207 |
else:
|
208 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
209 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
|
|
220 |
med_val=[meds['amount'][key] for key in feat]
|
221 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
222 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
|
|
|
|
223 |
med=pd.DataFrame(columns=feat)
|
224 |
for m,v in zip(feat,med_val):
|
225 |
med[m]=v
|
226 |
+
features=features.drop(columns=med.columns.to_list())
|
227 |
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
228 |
+
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
|
229 |
else:
|
230 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
231 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|