thbndi commited on
Commit
945f855
·
1 Parent(s): 0690031

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +147 -34
Mimic4Dataset.py CHANGED
@@ -27,6 +27,7 @@ _HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
27
  _CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
28
  _URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
29
  _DATA_GEN = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/data_generation_icu_modify.py'
 
30
  _DAY_INT= 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/day_intervals_cohort_v22.py'
31
  _CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/los.config',
32
  'mortality' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/mortality.config',
@@ -53,26 +54,42 @@ def check_config(task,config_file):
53
  predW = config['predW']
54
  disease_filter = config['disease_filter']
55
  icu_no_icu = config['icu_no_icu']
56
- groupingICD = config['groupingICD']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- chart_flag = config['chart']
59
- output_flag = config['output']
60
  diag_flag= config['diagnosis']
61
  proc_flag = config['proc']
62
  meds_flag = config['meds']
63
-
64
  select_diag= config['select_diag']
65
  select_med= config['select_med']
66
  select_proc= config['select_proc']
67
  select_out = config['select_out']
68
- select_chart = config['select_chart']
69
 
70
  outlier_removal=config['outlier_removal']
71
  thresh=config['outlier']
72
  left_thresh=config['left_outlier']
73
 
74
- assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_chart,bool), " select_diag, select_chart, select_med, select_proc, select_out should be boolean")
75
- assert (isinstance(chart_flag,bool) and isinstance(output_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "chart_flag, output_flag, diag_flag, proc_flag, meds_flag should be boolean")
 
 
 
 
 
 
76
  if task=='Phenotype':
77
  if disease_label=='Heart Failure':
78
  label='Readmission'
@@ -117,14 +134,19 @@ def check_config(task,config_file):
117
  raise ValueError('Task not correct')
118
 
119
  assert( disease_filter in ['Heart Failure','COPD','CKD','CAD',""], "Disease filter should be one of the following: Heart Failure, COPD, CKD, CAD or empty")
120
- assert( icu_no_icu in ['ICU'], "Dataset currently only supports ICU data")
121
- assert( groupingICD in ['Convert ICD-9 to ICD-10 and group ICD-10 codes','Keep both ICD-9 and ICD-10 codes','Convert ICD-9 to ICD-10 codes'], "Grouping ICD should be one of the following: Convert ICD-9 to ICD-10 and group ICD-10 codes, Keep both ICD-9 and ICD-10 codes, Convert ICD-9 to ICD-10 codes")
122
  assert (bucket<=6 and bucket>=1 and isinstance(bucket, int), "Time bucket should be between 1 and 6 and an integer")
123
  assert (radimp in ['No Imputation', 'forward fill and mean','forward fill and median'], "imputation should be one of the following: No Imputation, forward fill and mean, forward fill and median")
124
  if chart_flag:
125
  assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
126
  assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
127
  assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
 
 
 
 
 
 
128
 
129
  return label, time, disease_label, predW
130
 
@@ -201,7 +223,7 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
201
 
202
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
203
 
204
- def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
205
  meds=data['Med']
206
  proc = data['Proc']
207
  out = data['Out']
@@ -308,6 +330,30 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
308
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
309
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
310
  chart_df=features.fillna(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
 
312
  ###MEDS
313
  if (feat_meds):
@@ -334,7 +380,9 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
334
 
335
  dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
336
  return dyn_df,cond_df,demo
337
- def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
 
 
338
  stat_df = torch.zeros(size=(1,0))
339
  demo_df = torch.zeros(size=(1,0))
340
  meds = torch.zeros(size=(0,0))
@@ -344,10 +392,9 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
344
  lab = torch.zeros(size=(0,0))
345
  stat_df = torch.zeros(size=(1,0))
346
  demo_df = torch.zeros(size=(1,0))
347
- feat_lab = False
348
 
349
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
350
- dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
351
 
352
  ###########""
353
  if feat_chart:
@@ -462,6 +509,9 @@ def getXY(dyn,stat,demo,concat_cols,concat):
462
 
463
 
464
 
 
 
 
465
  def task_cohort(task, mimic_path, config_path):
466
  sys.path.append('./preprocessing/day_intervals_preproc')
467
  sys.path.append('./utils')
@@ -471,6 +521,9 @@ def task_cohort(task, mimic_path, config_path):
471
  import day_intervals_cohort
472
  import feature_selection_icu
473
  import data_generation_icu_modify
 
 
 
474
 
475
  root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
476
  config_path='./config/'+config_path
@@ -492,15 +545,18 @@ def task_cohort(task, mimic_path, config_path):
492
  chart_flag = config['chart']
493
  proc_flag= config['proc']
494
  med_flag = config['meds']
 
495
 
496
  disease_filter = config['disease_filter']
497
  icu_no_icu = config['icu_no_icu']
498
- groupingICD = config['groupingICD']
 
 
499
 
500
  select_diag= config['select_diag']
501
  select_med= config['select_med']
502
  select_proc= config['select_proc']
503
- #select_lab= config['select_lab']
504
  select_out= config['select_out']
505
  select_chart= config['select_chart']
506
 
@@ -532,17 +588,34 @@ def task_cohort(task, mimic_path, config_path):
532
  print(data_icu)
533
  if data_icu :
534
  feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
 
 
535
  #----------------------------------------------GROUPING-------------------------------------------------------
536
  if data_icu:
537
  if diag_flag:
538
- group_diag=groupingICD
539
  feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
 
 
 
 
 
 
 
 
 
540
  #----------------------------------------------SUMMARY-------------------------------------------------------
541
  if data_icu:
542
  feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
 
 
543
  #----------------------------------------------FEATURE SELECTION---------------------------------------------
544
 
545
- feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
 
 
 
 
546
  #---------------------------------------CLEANING OF FEATURES-----------------------------------------------
547
  thresh=0
548
  if data_icu:
@@ -553,6 +626,14 @@ def task_cohort(task, mimic_path, config_path):
553
  thresh=config['outlier']
554
  left_thresh=config['left_outlier']
555
  feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
 
 
 
 
 
 
 
 
556
  # ---------------------------------------tim-Series Representation--------------------------------------------
557
  if radimp == 'forward fill and mean' :
558
  impute='Mean'
@@ -563,11 +644,16 @@ def task_cohort(task, mimic_path, config_path):
563
 
564
  if data_icu:
565
  gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
 
 
 
566
  end = time.time()
567
  print("Time elapsed : ", round((end - start)/60,2),"mins")
568
  print("[============TASK COHORT SUCCESSFULLY CREATED============]")
569
 
570
 
 
 
571
  #############################################DATASET####################################################################
572
  class Mimic4DatasetConfig(datasets.BuilderConfig):
573
  """BuilderConfig for Mimic4Dataset."""
@@ -676,13 +762,22 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
676
  shutil.move(file_path,'./config')
677
  with open(self.conf) as f:
678
  config = yaml.safe_load(f)
679
- self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output']
 
 
 
 
 
680
 
681
  #####################downloads modules from hub
682
  if not os.path.exists('./model/data_generation_icu_modify.py'):
683
  file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
684
  shutil.move(file_path, './model')
685
 
 
 
 
 
686
  if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
687
  file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
688
  shutil.move(file_path, './preprocessing/day_intervals_preproc')
@@ -757,7 +852,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
757
  "id": datasets.Sequence(datasets.Value("int32")),
758
  "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
759
  },
760
- "CHART":
761
  {
762
  "signal" : {
763
  "id": datasets.Sequence(datasets.Value("int32")),
@@ -787,7 +882,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
787
  dataDic = pickle.load(fp)
788
  for hid, data in dataDic.items():
789
  proc_features = data['Proc']
790
- chart_features = data['Chart']
791
  meds_features = data['Med']
792
  out_features = data['Out']
793
  cond_features = data['Cond']['fids']
@@ -807,6 +901,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
807
  outs = {"id" : items_outs,
808
  "value": values_outs}
809
 
 
 
 
 
 
810
  #chart signal
811
  if ('signal' in chart_features):
812
  items_chart_sig = list(chart_features['signal'].keys())
@@ -861,6 +960,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
861
  "rate" : meds_rate,
862
  "amount" : meds_amount}
863
 
 
864
  yield int(hid), {
865
  "label" : label,
866
  "gender" : gender,
@@ -869,12 +969,13 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
869
  "age" : age,
870
  "COND" : cond_features,
871
  "PROC" : procs,
872
- "CHART" : charts,
873
  "OUT" : outs,
874
  "MEDS" : meds
875
  }
876
 
877
 
 
878
  ###########################################################ENCODED##################################################################
879
 
880
  def _info_encoded(self):
@@ -915,7 +1016,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
915
 
916
  for i, data in df.iterrows():
917
  concat_cols=[]
918
- dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds)
919
  dyn=dyn_df.copy()
920
  dyn.columns=dyn.columns.droplevel(0)
921
  cols=dyn.columns
@@ -943,7 +1044,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
943
  "COND" : datasets.Array2D(shape=(None, 1025), dtype='int64') ,
944
  "MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
945
  "PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
946
- "CHART" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
947
  "OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
948
 
949
  }
@@ -961,17 +1062,29 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
961
  dico = pickle.load(fp)
962
  task=self.config.name.replace(" ","_")
963
  for key, data in dico.items():
964
- stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds)
965
-
966
- yield int(key), {
967
- 'label': y,
968
- 'DEMO': demo,
969
- 'COND': stat,
970
- 'MEDS': meds,
971
- 'PROC': proc,
972
- 'CHART': chart,
973
- 'OUT': out,
974
- }
 
 
 
 
 
 
 
 
 
 
 
 
975
 
976
  #############################################################################################################################
977
  def _info(self):
 
27
  _CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
28
  _URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
29
  _DATA_GEN = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/data_generation_icu_modify.py'
30
+ _DATA_GEN_HOSP= 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/data_generation_modify.py'
31
  _DAY_INT= 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/day_intervals_cohort_v22.py'
32
  _CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/los.config',
33
  'mortality' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/mortality.config',
 
54
  predW = config['predW']
55
  disease_filter = config['disease_filter']
56
  icu_no_icu = config['icu_no_icu']
57
+ groupingDiag = config['groupingDiag']
58
+
59
+ assert( icu_no_icu in ['ICU','Non-ICU' ], "Chossen data should be one of the following: ICU, Non-ICU")
60
+ data_icu = icu_no_icu=='ICU'
61
+
62
+ if data_icu:
63
+ chart_flag = config['chart']
64
+ output_flag = config['output']
65
+ select_chart = config['select_chart']
66
+ else:
67
+ lab_flag =config['lab']
68
+ select_lab = config['select_lab']
69
+ groupingMed = config['groupingMed']
70
+ groupingProc = config['groupingProc']
71
+
72
 
 
 
73
  diag_flag= config['diagnosis']
74
  proc_flag = config['proc']
75
  meds_flag = config['meds']
 
76
  select_diag= config['select_diag']
77
  select_med= config['select_med']
78
  select_proc= config['select_proc']
79
  select_out = config['select_out']
 
80
 
81
  outlier_removal=config['outlier_removal']
82
  thresh=config['outlier']
83
  left_thresh=config['left_outlier']
84
 
85
+ if data_icu:
86
+ assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_chart,bool), " select_diag, select_chart, select_med, select_proc, select_out should be boolean")
87
+ assert (isinstance(chart_flag,bool) and isinstance(output_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "chart_flag, output_flag, diag_flag, proc_flag, meds_flag should be boolean")
88
+
89
+ else:
90
+ assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_lab,bool), " select_diag, select_lab, select_med, select_proc, select_out should be boolean")
91
+ assert (isinstance(lab_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "lab_flag, diag_flag, proc_flag, meds_flag should be boolean")
92
+
93
  if task=='Phenotype':
94
  if disease_label=='Heart Failure':
95
  label='Readmission'
 
134
  raise ValueError('Task not correct')
135
 
136
  assert( disease_filter in ['Heart Failure','COPD','CKD','CAD',""], "Disease filter should be one of the following: Heart Failure, COPD, CKD, CAD or empty")
137
+ assert( groupingDiag in ['Convert ICD-9 to ICD-10 and group ICD-10 codes','Keep both ICD-9 and ICD-10 codes','Convert ICD-9 to ICD-10 codes'], "Grouping ICD should be one of the following: Convert ICD-9 to ICD-10 and group ICD-10 codes, Keep both ICD-9 and ICD-10 codes, Convert ICD-9 to ICD-10 codes")
 
138
  assert (bucket<=6 and bucket>=1 and isinstance(bucket, int), "Time bucket should be between 1 and 6 and an integer")
139
  assert (radimp in ['No Imputation', 'forward fill and mean','forward fill and median'], "imputation should be one of the following: No Imputation, forward fill and mean, forward fill and median")
140
  if chart_flag:
141
  assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
142
  assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
143
  assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
144
+ if lab_flag:
145
+ assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
146
+ assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
147
+ assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
148
+ assert (groupingProc in ['ICD-9 and ICD-10','ICD-10'], "Grouping procedure should be one of the following: ICD-9 and ICD-10, ICD-10")
149
+ assert (groupingMed in ['Yes','No'], "Do you want to group Medication codes to use Non propietary names? : Grouping medication should be one of the following: Yes, No")
150
 
151
  return label, time, disease_label, predW
152
 
 
223
 
224
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
225
 
226
+ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
227
  meds=data['Med']
228
  proc = data['Proc']
229
  out = data['Out']
 
330
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
331
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
332
  chart_df=features.fillna(0)
333
+
334
+ ##########LAB#########
335
+ if (feat_lab):
336
+ with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
337
+ chartDic = pickle.load(fp)
338
+
339
+ if chart:
340
+ charts=chart['val']
341
+ feat=charts.keys()
342
+ chart_val=[charts[key] for key in feat]
343
+ charts=pd.DataFrame(chartDic,columns=['LAB'])
344
+ features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
345
+ features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
346
+
347
+ chart=pd.DataFrame(columns=feat)
348
+ for c,v in zip(feat,chart_val):
349
+ chart[c]=v
350
+ chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
351
+ chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
352
+ else:
353
+ charts=pd.DataFrame(chartDic,columns=['LAB'])
354
+ features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
355
+ features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
356
+ chart_df=features.fillna(0)
357
 
358
  ###MEDS
359
  if (feat_meds):
 
380
 
381
  dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
382
  return dyn_df,cond_df,demo
383
+
384
+
385
+ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
386
  stat_df = torch.zeros(size=(1,0))
387
  demo_df = torch.zeros(size=(1,0))
388
  meds = torch.zeros(size=(0,0))
 
392
  lab = torch.zeros(size=(0,0))
393
  stat_df = torch.zeros(size=(1,0))
394
  demo_df = torch.zeros(size=(1,0))
 
395
 
396
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
397
+ dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab)
398
 
399
  ###########""
400
  if feat_chart:
 
509
 
510
 
511
 
512
+
513
+
514
+
515
  def task_cohort(task, mimic_path, config_path):
516
  sys.path.append('./preprocessing/day_intervals_preproc')
517
  sys.path.append('./utils')
 
521
  import day_intervals_cohort
522
  import feature_selection_icu
523
  import data_generation_icu_modify
524
+ import data_generation_modify
525
+ import feature_selection_hosp
526
+
527
 
528
  root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
529
  config_path='./config/'+config_path
 
545
  chart_flag = config['chart']
546
  proc_flag= config['proc']
547
  med_flag = config['meds']
548
+ lab_flag = config['lab']
549
 
550
  disease_filter = config['disease_filter']
551
  icu_no_icu = config['icu_no_icu']
552
+ groupingDiag = config['groupingDiag']
553
+ groupingMed = config['groupingMed']
554
+ groupingProc = config['groupingProc']
555
 
556
  select_diag= config['select_diag']
557
  select_med= config['select_med']
558
  select_proc= config['select_proc']
559
+ select_lab= config['select_lab']
560
  select_out= config['select_out']
561
  select_chart= config['select_chart']
562
 
 
588
  print(data_icu)
589
  if data_icu :
590
  feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
591
+ else:
592
+ feature_selection_hosp.feature_nonicu(cohort_output, version_path,diag_flag,lab_flag,proc_flag,med_flag)
593
  #----------------------------------------------GROUPING-------------------------------------------------------
594
  if data_icu:
595
  if diag_flag:
596
+ group_diag=groupingDiag
597
  feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
598
+
599
+ else:
600
+ if diag_flag:
601
+ group_diag=groupingDiag
602
+ if med_flag:
603
+ group_med=groupingMed
604
+ if proc_flag:
605
+ group_proc=groupingProc
606
+ feature_selection_hosp.preprocess_features_hosp(cohort_output, diag_flag,proc_flag,med_flag,False,group_diag,group_med,group_proc,False,False,0,0)
607
  #----------------------------------------------SUMMARY-------------------------------------------------------
608
  if data_icu:
609
  feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
610
+ else:
611
+ feature_selection_hosp.generate_summary_hosp(diag_flag,proc_flag,med_flag,lab_flag)
612
  #----------------------------------------------FEATURE SELECTION---------------------------------------------
613
 
614
+ if data_icu:
615
+ feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
616
+ else:
617
+ feature_selection_hosp.features_selection_hosp(cohort_output, diag_flag,proc_flag,med_flag,lab_flag,select_diag,select_med,select_proc,select_lab)
618
+
619
  #---------------------------------------CLEANING OF FEATURES-----------------------------------------------
620
  thresh=0
621
  if data_icu:
 
626
  thresh=config['outlier']
627
  left_thresh=config['left_outlier']
628
  feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
629
+ else:
630
+ if lab_flag:
631
+ outlier_removal=config['outlier_removal']
632
+ clean_chart=outlier_removal!='No outlier detection'
633
+ impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
634
+ thresh=config['outlier']
635
+ left_thresh=config['left_outlier']
636
+ feature_selection_hosp.preprocess_features_hosp(cohort_output, False,False, False,lab_flag,False,False,False,clean_chart,impute_outlier_chart,thresh,left_thresh)
637
  # ---------------------------------------tim-Series Representation--------------------------------------------
638
  if radimp == 'forward fill and mean' :
639
  impute='Mean'
 
644
 
645
  if data_icu:
646
  gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
647
+ else:
648
+ gen=data_generation_modify.Generator(cohort_output,data_mort,data_admn,data_los,diag_flag,lab_flag,proc_flag,med_flag,impute,include,bucket,predW)
649
+
650
  end = time.time()
651
  print("Time elapsed : ", round((end - start)/60,2),"mins")
652
  print("[============TASK COHORT SUCCESSFULLY CREATED============]")
653
 
654
 
655
+
656
+
657
  #############################################DATASET####################################################################
658
  class Mimic4DatasetConfig(datasets.BuilderConfig):
659
  """BuilderConfig for Mimic4Dataset."""
 
762
  shutil.move(file_path,'./config')
763
  with open(self.conf) as f:
764
  config = yaml.safe_load(f)
765
+
766
+ self.data_icu = config['icu_no_icu']=='ICU'
767
+ if self.data_icu:
768
+ self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out, self.lab = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output'], False
769
+ else:
770
+ self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
771
 
772
  #####################downloads modules from hub
773
  if not os.path.exists('./model/data_generation_icu_modify.py'):
774
  file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
775
  shutil.move(file_path, './model')
776
 
777
+ if not os.path.exists('./model/data_generation_modify.py'):
778
+ file_path, head = urlretrieve(_DATA_GEN_HOSP, "data_generation_modify.py")
779
+ shutil.move(file_path, './model')
780
+
781
  if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
782
  file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
783
  shutil.move(file_path, './preprocessing/day_intervals_preproc')
 
852
  "id": datasets.Sequence(datasets.Value("int32")),
853
  "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
854
  },
855
+ "CHART/LAB":
856
  {
857
  "signal" : {
858
  "id": datasets.Sequence(datasets.Value("int32")),
 
882
  dataDic = pickle.load(fp)
883
  for hid, data in dataDic.items():
884
  proc_features = data['Proc']
 
885
  meds_features = data['Med']
886
  out_features = data['Out']
887
  cond_features = data['Cond']['fids']
 
901
  outs = {"id" : items_outs,
902
  "value": values_outs}
903
 
904
+ if self.data_icu:
905
+ chart_features = data['Chart']
906
+ else:
907
+ chart_features = data['Lab']
908
+
909
  #chart signal
910
  if ('signal' in chart_features):
911
  items_chart_sig = list(chart_features['signal'].keys())
 
960
  "rate" : meds_rate,
961
  "amount" : meds_amount}
962
 
963
+
964
  yield int(hid), {
965
  "label" : label,
966
  "gender" : gender,
 
969
  "age" : age,
970
  "COND" : cond_features,
971
  "PROC" : procs,
972
+ "CHART/LAB" : charts,
973
  "OUT" : outs,
974
  "MEDS" : meds
975
  }
976
 
977
 
978
+
979
  ###########################################################ENCODED##################################################################
980
 
981
  def _info_encoded(self):
 
1016
 
1017
  for i, data in df.iterrows():
1018
  concat_cols=[]
1019
+ dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
1020
  dyn=dyn_df.copy()
1021
  dyn.columns=dyn.columns.droplevel(0)
1022
  cols=dyn.columns
 
1044
  "COND" : datasets.Array2D(shape=(None, 1025), dtype='int64') ,
1045
  "MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
1046
  "PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
1047
+ "CHART/LAB" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
1048
  "OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
1049
 
1050
  }
 
1062
  dico = pickle.load(fp)
1063
  task=self.config.name.replace(" ","_")
1064
  for key, data in dico.items():
1065
+ stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
1066
+
1067
+ if self.data_icu:
1068
+ yield int(key), {
1069
+ 'label': y,
1070
+ 'DEMO': demo,
1071
+ 'COND': stat,
1072
+ 'MEDS': meds,
1073
+ 'PROC': proc,
1074
+ 'CHART/LAB': chart,
1075
+ 'OUT': out,
1076
+ }
1077
+ else:
1078
+ yield int(key), {
1079
+ 'label': y,
1080
+ 'DEMO': demo,
1081
+ 'COND': stat,
1082
+ 'MEDS': meds,
1083
+ 'PROC': proc,
1084
+ 'CHART/LAB': lab,
1085
+ 'OUT': out,
1086
+ }
1087
+
1088
 
1089
  #############################################################################################################################
1090
  def _info(self):