thbndi commited on
Commit
99440dc
·
1 Parent(s): e1c7e5a

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +118 -7
Mimic4Dataset.py CHANGED
@@ -14,6 +14,9 @@ import numpy as np
14
  from tqdm import tqdm
15
  import yaml
16
  import torch
 
 
 
17
 
18
 
19
  _DESCRIPTION = """\
@@ -370,6 +373,116 @@ def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, fea
370
 
371
  return X_dict
372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
  class Mimic4DatasetConfig(datasets.BuilderConfig):
374
  """BuilderConfig for Mimic4Dataset."""
375
 
@@ -519,12 +632,14 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
519
  sys.path.append(path_bench)
520
  config = self.config_path.split('/')[-1]
521
 
522
- script = 'python cohort.py '+ self.config.name.replace(" ","_") +" "+ self.mimic_path+ " "+path_bench+ " "+config
523
 
524
  #####################################CHANGE##########
525
  #if not os.path.exists(data_dir) :
526
- os.system(script)
 
527
  #####################################CHANGE##########
 
528
  config_path='./config/'+config
529
  with open(config_path) as f:
530
  config = yaml.safe_load(f)
@@ -560,8 +675,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
560
  ###########################################################RAW##################################################################
561
 
562
  def _info_raw(self):
563
- self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
564
-
565
  features = datasets.Features(
566
  {
567
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
@@ -725,7 +838,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
725
  ###########################################################ENCODED##################################################################
726
 
727
  def _info_encoded(self):
728
- self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
729
  X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
730
  X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
731
  X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
@@ -757,7 +869,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
757
  yield i, row.to_dict()
758
  ######################################################DEEP###############################################################
759
  def _info_deep(self):
760
- self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
761
  X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
762
  X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
763
  X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
@@ -823,7 +934,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
823
 
824
  #############################################################################################################################
825
  def _info(self):
826
-
827
  if self.encoding == 'onehot' :
828
  return self._info_encoded()
829
 
 
14
  from tqdm import tqdm
15
  import yaml
16
  import torch
17
+ import time
18
+ from pathlib import Path
19
+ import importlib
20
 
21
 
22
  _DESCRIPTION = """\
 
373
 
374
  return X_dict
375
 
376
+
377
+ def task_cohort(task, mimic_path, config_path):
378
+ sys.path.append('./preprocessing/day_intervals_preproc')
379
+ sys.path.append('./utils')
380
+ sys.path.append('./preprocessing/hosp_module_preproc')
381
+ sys.path.append('./model')
382
+ import day_intervals_cohort_v22
383
+ import day_intervals_cohort
384
+ import feature_selection_icu
385
+ import data_generation_icu_modify
386
+
387
+ root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
388
+ config_path='./config/'+config_path
389
+ with open(config_path) as f:
390
+ config = yaml.safe_load(f)
391
+ version_path = mimic_path+'/'
392
+ version = mimic_path.split('/')[-1][0]
393
+ start = time.time()
394
+ #----------------------------------------------config----------------------------------------------------
395
+ disease_label = config['disease_label']
396
+ tim = config['time']
397
+ label = config['label']
398
+ timeW = config['timeW']
399
+ include=int(timeW.split()[1])
400
+ bucket = config['bucket']
401
+ radimp = config['radimp']
402
+ predW = config['predW']
403
+ diag_flag = config['diagnosis']
404
+ out_flag = config['output']
405
+ chart_flag = config['chart']
406
+ proc_flag= config['proc']
407
+ med_flag = config['meds']
408
+ disease_filter = config['disease_filter']
409
+ icu_no_icu = config['icu_no_icu']
410
+ groupingICD = config['groupingICD']
411
+ # -------------------------------------------------------------------------------------------------------------
412
+
413
+ data_icu=icu_no_icu=="ICU"
414
+ data_mort=label=="Mortality"
415
+ data_admn=label=='Readmission'
416
+ data_los=label=='Length of Stay'
417
+
418
+ if (disease_filter=="Heart Failure"):
419
+ icd_code='I50'
420
+ elif (disease_filter=="CKD"):
421
+ icd_code='N18'
422
+ elif (disease_filter=="COPD"):
423
+ icd_code='J44'
424
+ elif (disease_filter=="CAD"):
425
+ icd_code='I25'
426
+ else:
427
+ icd_code='No Disease Filter'
428
+
429
+ #-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
430
+ if version == '2':
431
+ cohort_output = day_intervals_cohort_v22.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
432
+
433
+ elif version == '1':
434
+ cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
435
+ #----------------------------------------------FEATURES-------------------------------------------------------
436
+ print(data_icu)
437
+ if data_icu :
438
+ feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
439
+ #----------------------------------------------GROUPING-------------------------------------------------------
440
+ group_diag=False
441
+ group_med=False
442
+ group_proc=False
443
+ if data_icu:
444
+ if diag_flag:
445
+ group_diag=groupingICD
446
+ feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
447
+ #----------------------------------------------SUMMARY-------------------------------------------------------
448
+ if data_icu:
449
+ feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
450
+ #----------------------------------------------FEATURE SELECTION---------------------------------------------
451
+
452
+ select_diag= config['select_diag']
453
+ select_med= config['select_med']
454
+ select_proc= config['select_proc']
455
+ #select_lab= config['select_lab']
456
+ select_out= config['select_out']
457
+ select_chart= config['select_chart']
458
+
459
+ feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
460
+ #---------------------------------------CLEANING OF FEATURES-----------------------------------------------
461
+ thresh=0
462
+ if data_icu:
463
+ if chart_flag:
464
+ outlier_removal=config['outlier_removal']
465
+ clean_chart=outlier_removal!='No outlier detection'
466
+ impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
467
+ thresh=config['outlier']
468
+ left_thresh=config['left_outlier']
469
+ feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
470
+ # ---------------------------------------tim-Series Representation--------------------------------------------
471
+ if radimp == 'forward fill and mean' :
472
+ impute='Mean'
473
+ elif radimp =='forward fill and median':
474
+ impute = 'Median'
475
+ else :
476
+ impute = False
477
+
478
+ if data_icu:
479
+ gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
480
+ end = time.time()
481
+ print("Time elapsed : ", round((end - start)/60,2),"mins")
482
+ print("[============TASK COHORT SUCCESSFULLY CREATED============]")
483
+
484
+
485
+ #############################################DATASET####################################################################
486
  class Mimic4DatasetConfig(datasets.BuilderConfig):
487
  """BuilderConfig for Mimic4Dataset."""
488
 
 
632
  sys.path.append(path_bench)
633
  config = self.config_path.split('/')[-1]
634
 
635
+ script = 'python cohort.py '+ self.config.name.replace(" ","_") +" "+ self.mimic_path+ " "+ " "+config
636
 
637
  #####################################CHANGE##########
638
  #if not os.path.exists(data_dir) :
639
+ #os.system(script)
640
+ task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
641
  #####################################CHANGE##########
642
+
643
  config_path='./config/'+config
644
  with open(config_path) as f:
645
  config = yaml.safe_load(f)
 
675
  ###########################################################RAW##################################################################
676
 
677
  def _info_raw(self):
 
 
678
  features = datasets.Features(
679
  {
680
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
 
838
  ###########################################################ENCODED##################################################################
839
 
840
  def _info_encoded(self):
 
841
  X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
842
  X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
843
  X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
 
869
  yield i, row.to_dict()
870
  ######################################################DEEP###############################################################
871
  def _info_deep(self):
 
872
  X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
873
  X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
874
  X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
 
934
 
935
  #############################################################################################################################
936
  def _info(self):
937
+ self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
938
  if self.encoding == 'onehot' :
939
  return self._info_encoded()
940