Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +41 -89
Mimic4Dataset.py
CHANGED
@@ -110,7 +110,7 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
|
110 |
return ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
111 |
|
112 |
|
113 |
-
def concat_data(data,task,feat_cond
|
114 |
meds=data['Med']
|
115 |
proc = data['Proc']
|
116 |
out = data['Out']
|
@@ -244,86 +244,44 @@ def concat_data(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_ch
|
|
244 |
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
|
245 |
return dyn_df,cond_df,demo
|
246 |
|
247 |
-
def getXY_deep(
|
|
|
248 |
eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
249 |
-
dyn_df=
|
250 |
-
|
251 |
-
|
252 |
-
proc=torch.zeros(size=(0,0))
|
253 |
-
out=torch.zeros(size=(0,0))
|
254 |
-
lab=torch.zeros(size=(0,0))
|
255 |
-
stat_df=torch.zeros(size=(1,0))
|
256 |
-
demo_df=torch.zeros(size=(1,0))
|
257 |
-
y_df=[]
|
258 |
-
|
259 |
-
for index,sample in tqdm(X_df.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
260 |
-
dyn,stat,demo=concat_data(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
|
261 |
-
dyn_k=dyn.copy()
|
262 |
-
keys=dyn_k.columns.levels[0]
|
263 |
-
if index==0:
|
264 |
-
for i in range(len(keys)):
|
265 |
-
dyn_df.append(torch.zeros(size=(1,0)))
|
266 |
-
y=demo['label']
|
267 |
-
|
268 |
-
y_df.append(int(y))
|
269 |
-
|
270 |
-
for key in range(len(keys)):
|
271 |
-
dyn_temp=dyn[keys[key]]
|
272 |
-
dyn_temp=dyn_temp.to_numpy()
|
273 |
-
dyn_temp=torch.tensor(dyn_temp)
|
274 |
-
dyn_temp=dyn_temp.unsqueeze(0)
|
275 |
-
dyn_temp=torch.tensor(dyn_temp)
|
276 |
-
dyn_temp=dyn_temp.type(torch.LongTensor)
|
277 |
-
|
278 |
-
if key<len(dyn_df):
|
279 |
-
if dyn_df[key].nelement():
|
280 |
-
dyn_df[key]=torch.cat((dyn_df[key],dyn_temp),0)
|
281 |
-
else:
|
282 |
-
dyn_df[key]=dyn_temp
|
283 |
-
|
284 |
-
stat=stat.to_numpy()
|
285 |
-
stat=torch.tensor(stat)
|
286 |
-
if stat_df[0].nelement():
|
287 |
-
stat_df=torch.cat((stat_df,stat),0)
|
288 |
-
else:
|
289 |
-
stat_df=stat
|
290 |
-
demo=demo.drop(['label'],axis=1)
|
291 |
-
demo["gender"].replace(gender_vocab, inplace=True)
|
292 |
-
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
293 |
-
demo["insurance"].replace(ins_vocab, inplace=True)
|
294 |
-
demo["Age"].replace(age_vocab, inplace=True)
|
295 |
-
demo=demo[["gender","ethnicity","insurance","Age"]]
|
296 |
-
demo=demo.values
|
297 |
-
demo=torch.tensor(demo)
|
298 |
-
if demo_df[0].nelement():
|
299 |
-
demo_df=torch.cat((demo_df,demo),0)
|
300 |
-
else:
|
301 |
-
demo_df=demo
|
302 |
|
|
|
|
|
|
|
|
|
303 |
|
304 |
for k in range(len(keys)):
|
305 |
-
if
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
stat_df=stat_df.type(torch.LongTensor)
|
319 |
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
return (meds,chart,out,proc,lab ,stat_df, demo_df, y_df )
|
327 |
|
328 |
def getXY(dyn,stat,demo,concat_cols,concat):
|
329 |
X_df=pd.DataFrame()
|
@@ -398,21 +356,14 @@ def generate_split(path,task,concat,feat_cond,feat_chart,feat_proc, feat_meds, f
|
|
398 |
def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out):
|
399 |
with open(path, 'rb') as fp:
|
400 |
dico = pickle.load(fp)
|
401 |
-
|
402 |
-
|
403 |
taskf=task.replace(" ","_")
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
X_df=pd.concat([X_df,lab],axis=1)
|
410 |
-
X_df=pd.concat([X_df,stat_df],axis=1)
|
411 |
-
X_df=pd.concat([X_df,demo_df],axis=1)
|
412 |
-
X_df=pd.concat([X_df,y_df],axis=1)
|
413 |
-
X_df=X_df.fillna(0)
|
414 |
-
X_df = encoding(X_df)
|
415 |
-
return X_df
|
416 |
|
417 |
class Mimic4DatasetConfig(datasets.BuilderConfig):
|
418 |
"""BuilderConfig for Mimic4Dataset."""
|
@@ -860,6 +811,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
860 |
pickle.dump(X_val_deep, f)
|
861 |
|
862 |
return self._info_deep(X_train_deep)
|
|
|
863 |
else:
|
864 |
return self._info_raw()
|
865 |
|
|
|
110 |
return ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
111 |
|
112 |
|
113 |
+
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
114 |
meds=data['Med']
|
115 |
proc = data['Proc']
|
116 |
out = data['Out']
|
|
|
244 |
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
|
245 |
return dyn_df,cond_df,demo
|
246 |
|
247 |
+
def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
248 |
+
meds, chart, out, proc, lab =[],[],[],[],[]
|
249 |
eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
250 |
+
dyn_df,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
|
251 |
+
keys=dyn_df.columns.levels[0]
|
252 |
+
dyn = dict.fromkeys(keys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
for key in range(len(keys)):
|
255 |
+
dyn_temp=dyn_df[keys[key]]
|
256 |
+
dyn_temp=dyn_temp.to_numpy()
|
257 |
+
dyn[key]=dyn_temp
|
258 |
|
259 |
for k in range(len(keys)):
|
260 |
+
if keys[k]=='MEDS':
|
261 |
+
meds=dyn[k]
|
262 |
+
if keys[k]=='CHART':
|
263 |
+
chart=dyn[k]
|
264 |
+
if keys[k]=='OUT':
|
265 |
+
out=dyn[k]
|
266 |
+
if keys[k]=='PROC':
|
267 |
+
proc=dyn[k]
|
268 |
+
if keys[k]=='LAB':
|
269 |
+
lab=dyn[k]
|
270 |
+
|
271 |
+
stat=cond_df
|
272 |
+
stat=stat.to_numpy()
|
|
|
273 |
|
274 |
+
y = demo['label']
|
275 |
+
|
276 |
+
demo["gender"].replace(gender_vocab, inplace=True)
|
277 |
+
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
278 |
+
demo["insurance"].replace(ins_vocab, inplace=True)
|
279 |
+
demo["Age"].replace(age_vocab, inplace=True)
|
280 |
+
demo=demo[["gender","ethnicity","insurance","Age"]]
|
281 |
+
demo=demo.values
|
282 |
|
283 |
+
return stat, demo, meds, chart, out, proc, lab, y
|
284 |
+
|
|
|
|
|
285 |
|
286 |
def getXY(dyn,stat,demo,concat_cols,concat):
|
287 |
X_df=pd.DataFrame()
|
|
|
356 |
def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out):
|
357 |
with open(path, 'rb') as fp:
|
358 |
dico = pickle.load(fp)
|
359 |
+
X = pd.DataFrame.from_dict(dico, orient='index')
|
360 |
+
X_dict = {}
|
361 |
taskf=task.replace(" ","_")
|
362 |
+
for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
363 |
+
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
|
364 |
+
X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'y': y}
|
365 |
+
|
366 |
+
return X_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
class Mimic4DatasetConfig(datasets.BuilderConfig):
|
369 |
"""BuilderConfig for Mimic4Dataset."""
|
|
|
811 |
pickle.dump(X_val_deep, f)
|
812 |
|
813 |
return self._info_deep(X_train_deep)
|
814 |
+
|
815 |
else:
|
816 |
return self._info_raw()
|
817 |
|