thbndi commited on
Commit
b7b0f67
·
1 Parent(s): 845a91e

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +14 -4
Mimic4Dataset.py CHANGED
@@ -536,7 +536,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
536
  self.config_path = kwargs.pop("config_path",None)
537
  self.test_size = kwargs.pop("test_size",0.2)
538
  self.val_size = kwargs.pop("val_size",0.1)
539
-
 
 
 
 
540
  super().__init__(**kwargs)
541
 
542
 
@@ -656,8 +660,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
656
  config = self.config_path.split('/')[-1]
657
 
658
  #####################create task cohort
659
- #if not os.path.exists(data_dir):
660
- task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
661
 
662
  #####################Split data into train, test and val
663
  with open(data_dir, 'rb') as fp:
@@ -892,7 +896,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
892
  demo['insurance']=ins_encoder.transform(demo['insurance'])
893
  label = data['label']
894
  demo=demo.drop(['label'],axis=1)
895
- X= getXY(dyn_df,cond_df,demo,concat_cols,True)
896
  X=X.values.tolist()[0]
897
  yield int(i), {
898
  "label": label,
@@ -946,6 +950,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
946
 
947
  if self.encoding == 'onehot' :
948
  return self._info_encoded()
 
 
 
949
 
950
  elif self.encoding == 'deep' :
951
  return self._info_deep()
@@ -968,6 +975,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
968
  if self.encoding == 'onehot' :
969
  yield from self._generate_examples_encoded(filepath)
970
 
 
 
 
971
  elif self.encoding == 'deep' :
972
  yield from self._generate_examples_deep(filepath)
973
  else :
 
536
  self.config_path = kwargs.pop("config_path",None)
537
  self.test_size = kwargs.pop("test_size",0.2)
538
  self.val_size = kwargs.pop("val_size",0.1)
539
+ self.generate_cohort = kwargs.pop("generate_cohort",True)
540
+ if self.encoding == 'onehot':
541
+ self.concat = True
542
+ else:
543
+ self.concat = False
544
  super().__init__(**kwargs)
545
 
546
 
 
660
  config = self.config_path.split('/')[-1]
661
 
662
  #####################create task cohort
663
+ if self.generate_cohort:
664
+ task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
665
 
666
  #####################Split data into train, test and val
667
  with open(data_dir, 'rb') as fp:
 
896
  demo['insurance']=ins_encoder.transform(demo['insurance'])
897
  label = data['label']
898
  demo=demo.drop(['label'],axis=1)
899
+ X= getXY(dyn_df,cond_df,demo,concat_cols,self.concat)
900
  X=X.values.tolist()[0]
901
  yield int(i), {
902
  "label": label,
 
950
 
951
  if self.encoding == 'onehot' :
952
  return self._info_encoded()
953
+
954
+ elif self.encoding == 'aggreg' :
955
+ return self._info_encoded()
956
 
957
  elif self.encoding == 'deep' :
958
  return self._info_deep()
 
975
  if self.encoding == 'onehot' :
976
  yield from self._generate_examples_encoded(filepath)
977
 
978
+ elif self.encoding == 'aggreg' :
979
+ yield from self._generate_examples_encoded(filepath)
980
+
981
  elif self.encoding == 'deep' :
982
  yield from self._generate_examples_deep(filepath)
983
  else :