Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +25 -22
Mimic4Dataset.py
CHANGED
@@ -560,6 +560,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
560 |
###########################################################RAW##################################################################
|
561 |
|
562 |
def _info_raw(self):
|
|
|
|
|
563 |
features = datasets.Features(
|
564 |
{
|
565 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
@@ -722,8 +724,16 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
722 |
|
723 |
###########################################################ENCODED##################################################################
|
724 |
|
725 |
-
def _info_encoded(self
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
features = datasets.Features(columns)
|
728 |
return datasets.DatasetInfo(
|
729 |
description=_DESCRIPTION,
|
@@ -747,6 +757,17 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
747 |
yield i, row.to_dict()
|
748 |
######################################################DEEP###############################################################
|
749 |
def _info_deep(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
features = datasets.Features(
|
751 |
{
|
752 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
@@ -802,29 +823,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
802 |
|
803 |
#############################################################################################################################
|
804 |
def _info(self):
|
805 |
-
|
806 |
if self.encoding == 'onehot' :
|
807 |
-
|
808 |
-
X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
809 |
-
X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
810 |
-
|
811 |
-
X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
|
812 |
-
X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
|
813 |
-
X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
|
814 |
-
return self._info_encoded(X_train_encoded)
|
815 |
|
816 |
elif self.encoding == 'deep' :
|
817 |
-
X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
818 |
-
X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
819 |
-
X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
820 |
-
|
821 |
-
with open(self.path+"/X_train_deep.pkl", 'wb') as f:
|
822 |
-
pickle.dump(X_train_deep, f)
|
823 |
-
with open(self.path+"/X_test_deep.pkl", 'wb') as f:
|
824 |
-
pickle.dump(X_test_deep, f)
|
825 |
-
with open(self.path+"/X_val_deep.pkl", 'wb') as f:
|
826 |
-
pickle.dump(X_val_deep, f)
|
827 |
-
|
828 |
return self._info_deep()
|
829 |
|
830 |
else:
|
|
|
560 |
###########################################################RAW##################################################################
|
561 |
|
562 |
def _info_raw(self):
|
563 |
+
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
|
564 |
+
|
565 |
features = datasets.Features(
|
566 |
{
|
567 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
|
|
724 |
|
725 |
###########################################################ENCODED##################################################################
|
726 |
|
727 |
+
def _info_encoded(self):
|
728 |
+
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
|
729 |
+
X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
730 |
+
X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
731 |
+
X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
732 |
+
|
733 |
+
X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
|
734 |
+
X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
|
735 |
+
X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
|
736 |
+
columns = {col: self.map_dtype(X_train_encoded[col].dtype) for col in X_train_encoded.columns}
|
737 |
features = datasets.Features(columns)
|
738 |
return datasets.DatasetInfo(
|
739 |
description=_DESCRIPTION,
|
|
|
757 |
yield i, row.to_dict()
|
758 |
######################################################DEEP###############################################################
|
759 |
def _info_deep(self):
|
760 |
+
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()
|
761 |
+
X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
762 |
+
X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
763 |
+
X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
764 |
+
|
765 |
+
with open(self.path+"/X_train_deep.pkl", 'wb') as f:
|
766 |
+
pickle.dump(X_train_deep, f)
|
767 |
+
with open(self.path+"/X_test_deep.pkl", 'wb') as f:
|
768 |
+
pickle.dump(X_test_deep, f)
|
769 |
+
with open(self.path+"/X_val_deep.pkl", 'wb') as f:
|
770 |
+
pickle.dump(X_val_deep, f)
|
771 |
features = datasets.Features(
|
772 |
{
|
773 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
|
|
823 |
|
824 |
#############################################################################################################################
|
825 |
def _info(self):
|
826 |
+
|
827 |
if self.encoding == 'onehot' :
|
828 |
+
return self._info_encoded()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
829 |
|
830 |
elif self.encoding == 'deep' :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
831 |
return self._info_deep()
|
832 |
|
833 |
else:
|