Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +29 -21
Mimic4Dataset.py
CHANGED
@@ -200,11 +200,11 @@ def encoding(X_data):
|
|
200 |
X_data['insurance']=ins_encoder.transform(X_data['insurance'])
|
201 |
return X_data
|
202 |
|
203 |
-
def generate_split(
|
|
|
204 |
task=task.replace(" ","_")
|
205 |
X_df=pd.DataFrame()
|
206 |
#y_df=pd.DataFrame(df['label'],columns=['label'])
|
207 |
-
|
208 |
for hid, data in tqdm(df.iterrows()):
|
209 |
concat_cols=[]
|
210 |
sample=data
|
@@ -222,7 +222,6 @@ def generate_split(df,task,concat,feat_cond=True,feat_chart=True,feat_proc=True,
|
|
222 |
X_df=pd.concat([X_df,X],axis=1)
|
223 |
else:
|
224 |
X_df = pd.concat([X_df, X], axis=0)
|
225 |
-
|
226 |
X_df=X_df.fillna(0)
|
227 |
X_df = encoding(X_df)
|
228 |
#X_df=X_df.drop(['label'], axis=1)
|
@@ -250,8 +249,15 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
250 |
|
251 |
|
252 |
super().__init__(**kwargs)
|
253 |
-
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out = self.create_cohort()
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
BUILDER_CONFIGS = [
|
257 |
Mimic4DatasetConfig(
|
@@ -399,25 +405,24 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
399 |
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
|
400 |
train_data, val_data = train_test_split(test_data, test_size=self.val_size, random_state=42)
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
train_data.to_csv(csv_dir+'/train_data.csv',index=False)
|
405 |
-
val_data.to_csv(csv_dir+'/val_data.csv',index=False)
|
406 |
-
test_data.to_csv(csv_dir+'/test_data.csv',index=False)
|
407 |
-
|
408 |
train_dic = train_data.to_dict('index')
|
409 |
test_dic = test_data.to_dict('index')
|
410 |
val_dic = val_data.to_dict('index')
|
411 |
|
412 |
-
|
|
|
|
|
|
|
|
|
413 |
pickle.dump(train_dic, f)
|
414 |
-
with open(
|
415 |
pickle.dump(val_dic, f)
|
416 |
-
with open(
|
417 |
pickle.dump(test_dic, f)
|
418 |
|
419 |
|
420 |
-
return feat_cond, feat_chart, feat_proc, feat_meds, feat_out
|
421 |
|
422 |
###########################################################RAW##################################################################
|
423 |
|
@@ -585,7 +590,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
585 |
###########################################################ENCODED##################################################################
|
586 |
|
587 |
def _info_encoded(self):
|
588 |
-
X_df = pd.read_csv("./data/dict/"+self.config.name.replace(" ","_")+'/train_data_encoded.csv', header=0)
|
|
|
589 |
columns = {col: self.map_dtype(X_df[col].dtype) for col in X_df.columns}
|
590 |
features = datasets.Features(columns)
|
591 |
return datasets.DatasetInfo(
|
@@ -596,17 +602,19 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
596 |
)
|
597 |
|
598 |
def __split_generators_encoded(self):
|
599 |
-
|
600 |
|
601 |
return [
|
602 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath":
|
603 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath":
|
604 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath":
|
605 |
]
|
606 |
|
607 |
def _generate_examples_encoded(self, filepath):
|
608 |
df = pd.read_csv(filepath, header=0)
|
609 |
-
|
|
|
|
|
610 |
|
611 |
#############################################################################################################################
|
612 |
def _info(self):
|
|
|
200 |
X_data['insurance']=ins_encoder.transform(X_data['insurance'])
|
201 |
return X_data
|
202 |
|
203 |
+
def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=True, feat_meds=True, feat_out=False):
|
204 |
+
df = pd.DataFrame.from_dict(path)
|
205 |
task=task.replace(" ","_")
|
206 |
X_df=pd.DataFrame()
|
207 |
#y_df=pd.DataFrame(df['label'],columns=['label'])
|
|
|
208 |
for hid, data in tqdm(df.iterrows()):
|
209 |
concat_cols=[]
|
210 |
sample=data
|
|
|
222 |
X_df=pd.concat([X_df,X],axis=1)
|
223 |
else:
|
224 |
X_df = pd.concat([X_df, X], axis=0)
|
|
|
225 |
X_df=X_df.fillna(0)
|
226 |
X_df = encoding(X_df)
|
227 |
#X_df=X_df.drop(['label'], axis=1)
|
|
|
249 |
|
250 |
|
251 |
super().__init__(**kwargs)
|
252 |
+
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,path = self.create_cohort()
|
253 |
+
|
254 |
+
if self.encoding:
|
255 |
+
X_train_encoded=generate_split(path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
256 |
+
X_test_encoded=generate_split(path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
257 |
+
X_val_encoded=generate_split(path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
|
258 |
+
X_train_encoded.to_csv(path+"/X_train_encoded.csv", index=False)
|
259 |
+
X_test_encoded.to_csv(path+"/X_test_encoded.csv", index=False)
|
260 |
+
X_val_encoded.to_csv(path+"/X_val_encoded.csv", index=False)
|
261 |
|
262 |
BUILDER_CONFIGS = [
|
263 |
Mimic4DatasetConfig(
|
|
|
405 |
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
|
406 |
train_data, val_data = train_test_split(test_data, test_size=self.val_size, random_state=42)
|
407 |
|
408 |
+
dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
|
|
|
|
|
|
|
|
|
|
|
409 |
train_dic = train_data.to_dict('index')
|
410 |
test_dic = test_data.to_dict('index')
|
411 |
val_dic = val_data.to_dict('index')
|
412 |
|
413 |
+
train_path = dict_dir+'/train_data.pkl'
|
414 |
+
test_path = dict_dir+'/test_data.pkl'
|
415 |
+
val_path = dict_dir+'/val_data.pkl'
|
416 |
+
|
417 |
+
with open(train_path, 'wb') as f:
|
418 |
pickle.dump(train_dic, f)
|
419 |
+
with open(val_path, 'wb') as f:
|
420 |
pickle.dump(val_dic, f)
|
421 |
+
with open(test_path, 'wb') as f:
|
422 |
pickle.dump(test_dic, f)
|
423 |
|
424 |
|
425 |
+
return feat_cond, feat_chart, feat_proc, feat_meds, feat_out, dict_dir
|
426 |
|
427 |
###########################################################RAW##################################################################
|
428 |
|
|
|
590 |
###########################################################ENCODED##################################################################
|
591 |
|
592 |
def _info_encoded(self):
|
593 |
+
#X_df = pd.read_csv("./data/dict/"+self.config.name.replace(" ","_")+'/train_data_encoded.csv', header=0)
|
594 |
+
X_df = pd.read_csv("./data/dict/"+self.config.name.replace(" ","_")+'/X_train_encoded.csv', header=0)
|
595 |
columns = {col: self.map_dtype(X_df[col].dtype) for col in X_df.columns}
|
596 |
features = datasets.Features(columns)
|
597 |
return datasets.DatasetInfo(
|
|
|
602 |
)
|
603 |
|
604 |
def __split_generators_encoded(self):
|
605 |
+
data_dir = "./data/dict/"+self.config.name.replace(" ","_")
|
606 |
|
607 |
return [
|
608 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/X_train_encoded.csv'}),
|
609 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/X_val_encoded.csv'}),
|
610 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/X_test_encoded.csv'}),
|
611 |
]
|
612 |
|
613 |
def _generate_examples_encoded(self, filepath):
|
614 |
df = pd.read_csv(filepath, header=0)
|
615 |
+
for i, row in df.iterrows():
|
616 |
+
yield i, row.to_dict('index')
|
617 |
+
|
618 |
|
619 |
#############################################################################################################################
|
620 |
def _info(self):
|