thbndi commited on
Commit
dc5062c
·
1 Parent(s): aa5d700

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +51 -23
Mimic4Dataset.py CHANGED
@@ -887,37 +887,65 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
887
 
888
 
889
  ###########################################################ENCODED##################################################################
890
-
891
- def _info_encoded(self):
892
- X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
893
- X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
894
- X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
895
 
896
- X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
897
- X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
898
- X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
899
- columns = {col: self.map_dtype(X_train_encoded[col].dtype) for col in X_train_encoded.columns}
900
- features = datasets.Features(columns)
 
 
901
  return datasets.DatasetInfo(
902
  description=_DESCRIPTION,
903
  features=features,
904
  homepage=_HOMEPAGE,
905
  citation=_CITATION,
906
  )
907
-
908
- def __split_generators_encoded(self):
909
- data_dir = "./data/dict/"+self.config.name.replace(" ","_")
910
-
911
- return [
912
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/X_train_encoded.csv'}),
913
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/X_val_encoded.csv'}),
914
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/X_test_encoded.csv'}),
915
- ]
916
 
917
  def _generate_examples_encoded(self, filepath):
918
- df = pd.read_csv(filepath, header=0)
919
- for i, row in df.iterrows():
920
- yield i, row.to_dict()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921
  ######################################################DEEP###############################################################
922
  def _info_deep(self):
923
  features = datasets.Features(
@@ -974,7 +1002,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
974
  return self._info_raw()
975
 
976
 
977
- def _split_generators(self):
978
  csv_dir = "./data/dict/"+self.config.name.replace(" ","_")
979
 
980
  return [
 
887
 
888
 
889
  ###########################################################ENCODED##################################################################
 
 
 
 
 
890
 
891
+ def _info_encoded(self):
892
+ features = datasets.Features(
893
+ {
894
+ "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
895
+ "onehot" : datasets.Array2D(shape=(None,None), dtype="float32"),
896
+ }
897
+ )
898
  return datasets.DatasetInfo(
899
  description=_DESCRIPTION,
900
  features=features,
901
  homepage=_HOMEPAGE,
902
  citation=_CITATION,
903
  )
 
 
 
 
 
 
 
 
 
904
 
905
  def _generate_examples_encoded(self, filepath):
906
+ path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
907
+ with open(path, 'rb') as fp:
908
+ ethVocab = pickle.load(fp)
909
+
910
+ path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
911
+ with open(path, 'rb') as fp:
912
+ insVocab = pickle.load(fp)
913
+
914
+ genVocab = ['<PAD>', 'M', 'F']
915
+ gen_encoder = LabelEncoder()
916
+ eth_encoder = LabelEncoder()
917
+ ins_encoder = LabelEncoder()
918
+ gen_encoder.fit(genVocab)
919
+ eth_encoder.fit(ethVocab)
920
+ ins_encoder.fit(insVocab)
921
+ with open(filepath, 'rb') as fp:
922
+ dico = pickle.load(fp)
923
+
924
+ df = pd.DataFrame.from_dict(dico, orient='index')
925
+ task=self.config.name.replace(" ","_")
926
+ if 'Custom' in task:
927
+ task = task.rsplit('_', 1)[0]
928
+
929
+ for i, data in df.iterrows():
930
+ concat_cols=[]
931
+ dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_chart,self.feat_proc, self.feat_meds, self.feat_out)
932
+ dyn=dyn_df.copy()
933
+ dyn.columns=dyn.columns.droplevel(0)
934
+ cols=dyn.columns
935
+ time=dyn.shape[0]
936
+ for t in range(time):
937
+ cols_t = [str(x) + "_"+str(t) for x in cols]
938
+ concat_cols.extend(cols_t)
939
+ demo['gender']=gen_encoder.transform(demo['gender'])
940
+ demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
941
+ demo['insurance']=ins_encoder.transform(demo['insurance'])
942
+ label = data['label']
943
+ demo=demo.drop(['label'],axis=1)
944
+ X= getXY(dyn_df,cond_df,demo,concat_cols,True)
945
+ yield int(i), {
946
+ "label": label,
947
+ "onehot": X,
948
+ }
949
  ######################################################DEEP###############################################################
950
  def _info_deep(self):
951
  features = datasets.Features(
 
1002
  return self._info_raw()
1003
 
1004
 
1005
+ def _split_generators(self, dl_manager):
1006
  csv_dir = "./data/dict/"+self.config.name.replace(" ","_")
1007
 
1008
  return [