Datasets:
Tasks:
Text Retrieval
Sub-tasks:
entity-linking-retrieval
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@inproceedings{yao2019DocRED, | |
title={{DocRED}: A Large-Scale Document-Level Relation Extraction Dataset}, | |
author={Yao, Yuan and Ye, Deming and Li, Peng and Han, Xu and Lin, Yankai and Liu, Zhenghao and Liu, \ | |
Zhiyuan and Huang, Lixin and Zhou, Jie and Sun, Maosong}, | |
booktitle={Proceedings of ACL 2019}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by \ | |
existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single \ | |
entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed \ | |
from Wikipedia and Wikidata with three features: | |
- DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text. | |
- DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document. | |
- Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. | |
""" | |
_URLS = { | |
"dev": "data/dev.json.gz", | |
"train_distant": "data/train_distant.json.gz", | |
"train_annotated": "data/train_annotated.json.gz", | |
"test": "data/test.json.gz", | |
"rel_info": "data/rel_info.json.gz", | |
} | |
class DocRed(datasets.GeneratorBasedBuilder): | |
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"title": datasets.Value("string"), | |
"sents": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), | |
"vertexSet": [ | |
[ | |
{ | |
"name": datasets.Value("string"), | |
"sent_id": datasets.Value("int32"), | |
"pos": datasets.features.Sequence(datasets.Value("int32")), | |
"type": datasets.Value("string"), | |
} | |
] | |
], | |
"labels": datasets.features.Sequence( | |
{ | |
"head": datasets.Value("int32"), | |
"tail": datasets.Value("int32"), | |
"relation_id": datasets.Value("string"), | |
"relation_text": datasets.Value("string"), | |
"evidence": datasets.features.Sequence(datasets.Value("int32")), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/thunlp/DocRED", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloads = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": downloads["dev"], "rel_info": downloads["rel_info"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"], "rel_info": downloads["rel_info"]} | |
), | |
datasets.SplitGenerator( | |
name="train_annotated", | |
gen_kwargs={"filepath": downloads["train_annotated"], "rel_info": downloads["rel_info"]}, | |
), | |
datasets.SplitGenerator( | |
name="train_distant", | |
gen_kwargs={"filepath": downloads["train_distant"], "rel_info": downloads["rel_info"]}, | |
), | |
] | |
def _generate_examples(self, filepath, rel_info): | |
"""Generate DocRED examples.""" | |
with open(rel_info, encoding="utf-8") as f: | |
relation_name_map = json.load(f) | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for idx, example in enumerate(data): | |
# Test set has no labels - Results need to be uploaded to Codalab | |
if "labels" not in example.keys(): | |
example["labels"] = [] | |
for label in example["labels"]: | |
# Rename and include full relation names | |
label["relation_text"] = relation_name_map[label["r"]] | |
label["relation_id"] = label["r"] | |
label["head"] = label["h"] | |
label["tail"] = label["t"] | |
del label["r"] | |
del label["h"] | |
del label["t"] | |
yield idx, example | |