repo_id
stringlengths
15
132
file_path
stringlengths
34
176
content
stringlengths
2
3.52M
__index_level_0__
int64
0
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_csharp_executor_proxy.py
import json import multiprocessing import threading from pathlib import Path from tempfile import mkdtemp from typing import Optional, Tuple, Union import pytest from promptflow._constants import FlowLanguage from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._batch_engine import BatchEngine from promptflow.batch._csharp_executor_proxy import CSharpExecutorProxy from promptflow.batch._result import BatchResult from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ..mock_execution_server import run_executor_server from ..utils import MemoryRunStorage, get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.unittest class TestCSharpExecutorProxy: def setup_method(self): BatchEngine.register_executor(FlowLanguage.CSharp, MockCSharpExecutorProxy) def test_batch(self): # submit a batch run _, batch_result = self._submit_batch_run() assert batch_result.status == Status.Completed assert batch_result.completed_lines == batch_result.total_lines assert batch_result.system_metrics.duration > 0 assert batch_result.completed_lines > 0 def test_batch_execution_error(self): # submit a batch run _, batch_result = self._submit_batch_run(has_error=True) assert batch_result.status == Status.Completed assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.system_metrics.duration > 0 def test_batch_validation_error(self): # prepare the init error file to mock the validation error error_message = "'test_connection' not found." test_exception = ConnectionNotFound(message=error_message) error_dict = ExceptionPresenter.create(test_exception).to_dict() init_error_file = Path(mkdtemp()) / "init_error.json" with open(init_error_file, "w") as file: json.dump(error_dict, file) # submit a batch run with pytest.raises(ValidationException) as e: self._submit_batch_run(init_error_file=init_error_file) assert error_message in e.value.message assert e.value.error_codes == ["UserError", "ValidationError"] assert e.value.target == ErrorTarget.BATCH def test_batch_cancel(self): # use a thread to submit a batch run batch_engine, batch_run_thread = self._submit_batch_run(run_in_thread=True) assert batch_engine._is_canceled is False batch_run_thread.start() # cancel the batch run batch_engine.cancel() batch_run_thread.join() assert batch_engine._is_canceled is True assert batch_result_global.status == Status.Canceled assert batch_result_global.system_metrics.duration > 0 def _submit_batch_run( self, run_in_thread=False, has_error=False, init_error_file=None ) -> Union[Tuple[BatchEngine, threading.Thread], Tuple[BatchEngine, BatchResult]]: flow_folder = "csharp_flow" mem_run_storage = MemoryRunStorage() # init the batch engine batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), storage=mem_run_storage, has_error=has_error, init_error_file=init_error_file, ) # prepare the inputs input_dirs = {"data": get_flow_inputs_file(flow_folder)} inputs_mapping = {"question": "${data.question}"} output_dir = Path(mkdtemp()) if run_in_thread: return batch_engine, threading.Thread( target=self._batch_run_in_thread, args=(batch_engine, input_dirs, inputs_mapping, output_dir) ) else: return batch_engine, batch_engine.run(input_dirs, inputs_mapping, output_dir) def _batch_run_in_thread(self, batch_engine: BatchEngine, input_dirs, inputs_mapping, output_dir): global batch_result_global batch_result_global = batch_engine.run(input_dirs, inputs_mapping, output_dir) class MockCSharpExecutorProxy(CSharpExecutorProxy): def __init__(self, process: multiprocessing.Process, port: str): self._process = process self._port = port @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockCSharpExecutorProxy": """Create a new executor""" has_error = kwargs.get("has_error", False) init_error_file = kwargs.get("init_error_file", None) port = cls.find_available_port() process = multiprocessing.Process( target=run_executor_server, args=( int(port), has_error, init_error_file, ), ) process.start() executor_proxy = cls(process, port) await executor_proxy.ensure_executor_startup(init_error_file) return executor_proxy async def destroy(self): """Destroy the executor""" if self._process and self._process.is_alive(): self._process.terminate() try: self._process.join(timeout=5) except TimeoutError: self._process.kill() def _is_executor_active(self): return self._process and self._process.is_alive()
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_traces.py
from types import GeneratorType import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from ..utils import get_yaml_file @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorTraces: def validate_openai_apicall(self, apicall: dict): """Validates an apicall dict. Ensure that the trace output of openai api is a list of dicts. Args: apicall (dict): A dictionary representing apicall. Raises: AssertionError: If the API call is invalid. """ get_trace = False if apicall.get("name", "") in ( "openai.api_resources.chat_completion.ChatCompletion.create", "openai.api_resources.completion.Completion.create", "openai.api_resources.embedding.Embedding.create", "openai.resources.completions.Completions.create", # openai>=1.0.0 "openai.resources.chat.completions.Completions.create", # openai>=1.0.0 ): get_trace = True output = apicall.get("output") assert not isinstance(output, str) assert isinstance(output, (list, dict)) if isinstance(output, list): assert all(isinstance(item, dict) for item in output) children = apicall.get("children", []) if children is not None: for child in children: get_trace = get_trace or self.validate_openai_apicall(child) return get_trace def get_chat_input(stream): return { "question": "What is the capital of the United States of America?", "chat_history": [], "stream": stream, } def get_comletion_input(stream): return {"prompt": "What is the capital of the United States of America?", "stream": stream} @pytest.mark.parametrize( "flow_folder, inputs", [ ("openai_chat_api_flow", get_chat_input(False)), ("openai_chat_api_flow", get_chat_input(True)), ("openai_completion_api_flow", get_comletion_input(False)), ("openai_completion_api_flow", get_comletion_input(True)), ("llm_tool", {"topic": "Hello", "stream": False}), ("llm_tool", {"topic": "Hello", "stream": True}), ], ) def test_executor_openai_api_flow(self, flow_folder, inputs, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None assert "total_tokens" in flow_result.run_info.system_metrics assert flow_result.run_info.system_metrics["total_tokens"] > 0 get_traced = False for api_call in flow_result.run_info.api_calls: get_traced = get_traced or self.validate_openai_apicall(serialize(api_call)) assert get_traced is True def test_executor_generator_tools(self, dev_connections): executor = FlowExecutor.create(get_yaml_file("generator_tools"), dev_connections) inputs = {"text": "This is a test"} flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_trace = tool_trace.get("children")[0] assert generator_trace is not None output = generator_trace.get("output") assert isinstance(output, list) @pytest.mark.parametrize("allow_generator_output", [False, True]) def test_trace_behavior_with_generator_node(self, dev_connections, allow_generator_output): """Test to verify the trace output list behavior for a flow with a generator node. This test checks the trace output list in two scenarios based on the 'allow_generator_output' flag: - When 'allow_generator_output' is True, the output list should initially be empty until the generator is consumed. - When 'allow_generator_output' is False, the output list should contain items produced by the generator node. The test ensures that the trace accurately reflects the generator's consumption status and helps in monitoring and debugging flow execution. """ # Set up executor with a flow that contains a generator node executor = FlowExecutor.create(get_yaml_file("generator_nodes"), dev_connections) inputs = {"text": "This is a test"} # Execute the flow with the given inputs and 'allow_generator_output' setting flow_result = executor.exec_line(inputs, allow_generator_output=allow_generator_output) # Verify that the flow execution result is a dictionary and the flow has completed successfully assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Extract the trace for the generator node tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_output_trace = tool_trace.get("output") # Verify that the trace output is a list assert isinstance(generator_output_trace, list) if allow_generator_output: # If generator output is allowed, the trace list should be empty before consumption assert not generator_output_trace # Obtain the generator from the flow result answer_gen = flow_result.output.get("answer") assert isinstance(answer_gen, GeneratorType) # Consume the generator and check that it yields text try: generated_text = next(answer_gen) assert isinstance(generated_text, str) # Verify the trace list contains the most recently generated item assert generator_output_trace[-1] == generated_text except StopIteration: assert False, "Generator did not generate any text" else: # If generator output is not allowed, the trace list should contain generated items assert generator_output_trace assert all(isinstance(item, str) for item in generator_output_trace) @pytest.mark.parametrize("flow_file", ["flow_with_trace", "flow_with_trace_async"]) def test_flow_with_trace(self, flow_file, dev_connections): """Tests to verify the flows that contains @trace marks. They should generate traces with "Function" type and nested in the "Tool" traces. This test case is to verify a flow like following structure, both sync and async mode: .. code-block:: flow (Flow, 1.5s) greetings (Tool, 1.5s) get_user_name (Function, 1.0s) is_valid_name (Function, 0.5s) format_greeting (Function, 0.5s) """ executor = FlowExecutor.create(get_yaml_file(flow_file), dev_connections) inputs = {"user_id": 1} flow_result = executor.exec_line(inputs) # Assert the run status is completed assert flow_result.output == {"output": "Hello, User 1!"} assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Verify the traces are as expected api_calls = flow_result.run_info.api_calls assert len(api_calls) == 1 # Assert the "flow" root level trace flow_trace = api_calls[0] assert flow_trace["name"] == "flow" assert flow_trace["type"] == "Flow" assert flow_trace["end_time"] - flow_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(flow_trace["children"]) == 1 assert flow_trace["system_metrics"]["duration"] == pytest.approx(1.5, abs=0.3) assert flow_trace["system_metrics"]["prompt_tokens"] == 0 assert flow_trace["system_metrics"]["completion_tokens"] == 0 assert flow_trace["system_metrics"]["total_tokens"] == 0 # TODO: These assertions should be fixed after added these fields to the top level trace assert "inputs" not in flow_trace assert "output" not in flow_trace assert "error" not in flow_trace # Assert the "greetings" tool greetings_trace = flow_trace["children"][0] assert greetings_trace["name"] == "greetings" assert greetings_trace["type"] == "Tool" assert greetings_trace["inputs"] == inputs assert greetings_trace["output"] == {"greeting": "Hello, User 1!"} assert greetings_trace["error"] is None assert greetings_trace["children"] is not None assert greetings_trace["end_time"] - greetings_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(greetings_trace["children"]) == 2 # TODO: to verfiy the system metrics. This might need to be fixed. assert greetings_trace["system_metrics"] == {} # Assert the "get_user_name" function get_user_name_trace = greetings_trace["children"][0] assert get_user_name_trace["name"] == "get_user_name" assert get_user_name_trace["type"] == "Function" assert get_user_name_trace["inputs"] == {"user_id": 1} assert get_user_name_trace["output"] == "User 1" assert get_user_name_trace["error"] is None assert get_user_name_trace["end_time"] - get_user_name_trace["start_time"] == pytest.approx(1.0, abs=0.2) assert len(get_user_name_trace["children"]) == 1 # TODO: to verfiy the system metrics. This might need to be fixed. assert get_user_name_trace["system_metrics"] == {} # Assert the "get_user_name/is_valid_name" function is_valid_name_trace = get_user_name_trace["children"][0] assert is_valid_name_trace["name"] == "is_valid_name" assert is_valid_name_trace["type"] == "Function" assert is_valid_name_trace["inputs"] == {"name": "User 1"} assert is_valid_name_trace["output"] is True assert is_valid_name_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert is_valid_name_trace["end_time"] - is_valid_name_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert is_valid_name_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert is_valid_name_trace["system_metrics"] == {} # Assert the "format_greeting" function format_greeting_trace = greetings_trace["children"][1] assert format_greeting_trace["name"] == "format_greeting" assert format_greeting_trace["type"] == "Function" assert format_greeting_trace["inputs"] == {"user_name": "User 1"} assert format_greeting_trace["output"] == "Hello, User 1!" assert format_greeting_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert format_greeting_trace["end_time"] - format_greeting_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert format_greeting_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert format_greeting_trace["system_metrics"] == {}
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_executor_happypath.py
import logging import multiprocessing import os import re import shutil import sys from pathlib import Path from types import GeneratorType import pytest from promptflow.contracts.run_info import Status from promptflow.exceptions import UserErrorException from promptflow.executor import FlowExecutor from promptflow.executor._errors import ConnectionNotFound, InputTypeError, ResolveToolError from promptflow.executor.flow_executor import execute_flow from promptflow.storage._run_storage import DefaultRunStorage from ..utils import FLOW_ROOT, get_flow_folder, get_flow_sample_inputs, get_yaml_file, is_image_file SAMPLE_FLOW = "web_classification_no_variants" @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestExecutor: def get_line_inputs(self, flow_folder=""): if flow_folder: inputs = self.get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(self, nlinee=4, flow_folder="", sample_inputs_file="", return_dict=False): if flow_folder: if not sample_inputs_file: sample_inputs_file = "samples.json" inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): if return_dict: return inputs return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [self.get_line_inputs() for _ in range(nlinee)] def skip_serp(self, flow_folder, dev_connections): serp_required_flows = ["package_tools"] # Real key is usually more than 32 chars serp_key = dev_connections.get("serp_connection", {"value": {"api_key": ""}})["value"]["api_key"] if flow_folder in serp_required_flows and len(serp_key) < 32: pytest.skip("serp_connection is not prepared") @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, "prompt_tools", "script_with___file__", "script_with_import", "package_tools", "connection_as_input", "async_tools", "async_tools_with_sync_tools", "tool_with_assistant_definition", ], ) def test_executor_exec_line(self, flow_folder, dev_connections): self.skip_serp(flow_folder, dev_connections) os.chdir(get_flow_folder(flow_folder)) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(self.get_line_inputs()) assert not executor._run_tracker._flow_runs, "Flow runs in run tracker should be empty." assert not executor._run_tracker._node_runs, "Node runs in run tracker should be empty." assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed node_count = len(executor._flow.nodes) assert isinstance(flow_result.run_info.api_calls, list) and len(flow_result.run_info.api_calls) == 1 assert ( isinstance(flow_result.run_info.api_calls[0]["children"], list) and len(flow_result.run_info.api_calls[0]["children"]) == node_count ) assert len(flow_result.node_run_infos) == node_count for node, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert node_run_info.node == node assert isinstance(node_run_info.api_calls, list) # api calls is set def test_long_running_log(self, dev_connections, capsys): # TODO: investigate why flow_logger does not output to stdout in test case from promptflow._utils.logger_utils import flow_logger flow_logger.addHandler(logging.StreamHandler(sys.stdout)) os.environ["PF_TASK_PEEKING_INTERVAL"] = "1" executor = FlowExecutor.create(get_yaml_file("async_tools"), dev_connections) executor.exec_line(self.get_line_inputs()) captured = capsys.readouterr() expected_long_running_str_1 = r".*.*Task async_passthrough has been running for 1 seconds, stacktrace:\n.*async_passthrough\.py.*in passthrough_str_and_wait\n.*await asyncio.sleep\(1\).*tasks\.py.*" # noqa E501 assert re.match( expected_long_running_str_1, captured.out, re.DOTALL ), "flow_logger should contain long running async tool log" expected_long_running_str_2 = r".*.*Task async_passthrough has been running for 2 seconds, stacktrace:\n.*async_passthrough\.py.*in passthrough_str_and_wait\n.*await asyncio.sleep\(1\).*tasks\.py.*" # noqa E501 assert re.match( expected_long_running_str_2, captured.out, re.DOTALL ), "flow_logger should contain long running async tool log" flow_logger.handlers.pop() os.environ.pop("PF_TASK_PEEKING_INTERVAL") @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", [ ("web_classification_no_variants", "summarize_text_content", {}, {"fetch_text_content_from_url": "Hello"}), ("prompt_tools", "summarize_text_content_prompt", {"text": "text"}, {}), ("script_with___file__", "node1", {"text": "text"}, None), ("script_with___file__", "node2", None, {"node1": "text"}), ("script_with___file__", "node3", None, None), ("package_tools", "search_by_text", {"text": "elon mask"}, None), # Skip since no api key in CI ("connection_as_input", "conn_node", None, None), ("simple_aggregation", "accuracy", {"text": "A"}, {"passthrough": "B"}), ("script_with_import", "node1", {"text": "text"}, None), ], ) def test_executor_exec_node(self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections): self.skip_serp(flow_folder, dev_connections) yaml_file = get_yaml_file(flow_folder) run_info = FlowExecutor.load_and_exec_node( yaml_file, node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, raise_ex=True, ) assert run_info.output is not None assert run_info.status == Status.Completed assert isinstance(run_info.api_calls, list) assert run_info.node == node_name assert run_info.system_metrics["duration"] >= 0 def test_executor_exec_node_with_llm_node(self, dev_connections): # Run the test in a new process to ensure the openai api is injected correctly for the single node run context = multiprocessing.get_context("spawn") queue = context.Queue() process = context.Process( target=exec_node_within_process, args=(queue, "llm_tool", "joke", {"topic": "fruit"}, {}, dev_connections, True), ) process.start() process.join() if not queue.empty(): raise queue.get() def test_executor_node_overrides(self, dev_connections): inputs = self.get_line_inputs() executor = FlowExecutor.create( get_yaml_file(SAMPLE_FLOW), dev_connections, node_override={"classify_with_llm.deployment_name": "dummy_deployment"}, raise_ex=True, ) with pytest.raises(UserErrorException) as e: executor.exec_line(inputs) assert type(e.value).__name__ == "WrappedOpenAIError" assert "The API deployment for this resource does not exist." in str(e.value) with pytest.raises(ResolveToolError) as e: executor = FlowExecutor.create( get_yaml_file(SAMPLE_FLOW), dev_connections, node_override={"classify_with_llm.connection": "dummy_connection"}, raise_ex=True, ) assert isinstance(e.value.inner_exception, ConnectionNotFound) assert "Connection 'dummy_connection' not found" in str(e.value) @pytest.mark.parametrize( "flow_folder", [ "no_inputs_outputs", ], ) def test_flow_with_no_inputs_and_output(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) flow_result = executor.exec_line({}) assert flow_result.output == {} assert flow_result.run_info.status == Status.Completed node_count = len(executor._flow.nodes) assert isinstance(flow_result.run_info.api_calls, list) and len(flow_result.run_info.api_calls) == node_count assert len(flow_result.node_run_infos) == node_count for node, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert node_run_info.node == node assert isinstance(node_run_info.api_calls, list) # api calls is set @pytest.mark.parametrize( "flow_folder", [ "simple_flow_with_python_tool", ], ) def test_convert_flow_input_types(self, flow_folder, dev_connections) -> None: executor = FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) ret = executor.convert_flow_input_types(inputs={"num": "11"}) assert ret == {"num": 11} ret = executor.convert_flow_input_types(inputs={"text": "12", "num": "11"}) assert ret == {"text": "12", "num": 11} with pytest.raises(InputTypeError): ret = executor.convert_flow_input_types(inputs={"num": "hello"}) executor.convert_flow_input_types(inputs={"num": "hello"}) def test_chat_flow_stream_mode(self, dev_connections) -> None: executor = FlowExecutor.create(get_yaml_file("python_stream_tools", FLOW_ROOT), dev_connections) # To run a flow with stream output, we need to set this flag to run tracker. # TODO: refine the interface inputs = {"text": "hello", "chat_history": []} line_result = executor.exec_line(inputs, allow_generator_output=True) # Assert there's only one output assert len(line_result.output) == 1 assert set(line_result.output.keys()) == {"output_echo"} # Assert the only output is a generator output_echo = line_result.output["output_echo"] assert isinstance(output_echo, GeneratorType) assert list(output_echo) == ["Echo: ", "hello "] # Assert the flow is completed and no errors are raised flow_run_info = line_result.run_info assert flow_run_info.status == Status.Completed assert flow_run_info.error is None @pytest.mark.parametrize( "flow_folder", [ "web_classification", ], ) def test_executor_creation_with_default_variants(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(self.get_line_inputs()) assert flow_result.run_info.status == Status.Completed def test_executor_creation_with_default_input(self): # Assert for single node run. default_input_value = "input value from default" yaml_file = get_yaml_file("default_input") executor = FlowExecutor.create(yaml_file, {}) node_result = executor.load_and_exec_node(yaml_file, "test_print_input") assert node_result.status == Status.Completed assert node_result.output == default_input_value # Assert for flow run. flow_result = executor.exec_line({}) assert flow_result.run_info.status == Status.Completed assert flow_result.output["output"] == default_input_value aggr_results = executor.exec_aggregation({}, aggregation_inputs={}) flow_aggregate_node = aggr_results.node_run_infos["aggregate_node"] assert flow_aggregate_node.status == Status.Completed assert flow_aggregate_node.output == [default_input_value] # Assert for exec exec_result = executor.exec({}) assert exec_result["output"] == default_input_value def test_executor_for_script_tool_with_init(self, dev_connections): executor = FlowExecutor.create(get_yaml_file("script_tool_with_init"), dev_connections) flow_result = executor.exec_line({"input": "World"}) assert flow_result.run_info.status == Status.Completed assert flow_result.output["output"] == "Hello World" @pytest.mark.parametrize( "output_dir_name, intermediate_dir_name, run_aggregation, expected_node_counts", [ ("output", "intermediate", True, 2), ("output_1", "intermediate_1", False, 1), ], ) def test_execute_flow( self, output_dir_name: str, intermediate_dir_name: str, run_aggregation: bool, expected_node_counts: int ): flow_folder = get_flow_folder("eval_flow_with_simple_image") # prepare output folder output_dir = flow_folder / output_dir_name intermediate_dir = flow_folder / intermediate_dir_name output_dir.mkdir(exist_ok=True) intermediate_dir.mkdir(exist_ok=True) storage = DefaultRunStorage(base_dir=flow_folder, sub_dir=Path(intermediate_dir_name)) line_result = execute_flow( flow_file=get_yaml_file(flow_folder), working_dir=flow_folder, output_dir=Path(output_dir_name), inputs={}, connections={}, run_aggregation=run_aggregation, storage=storage, ) assert line_result.run_info.status == Status.Completed assert len(line_result.node_run_infos) == expected_node_counts assert all(is_image_file(output_file) for output_file in output_dir.iterdir()) assert all(is_image_file(output_file) for output_file in intermediate_dir.iterdir()) # clean up output folder shutil.rmtree(output_dir) shutil.rmtree(intermediate_dir) def exec_node_within_process(queue, flow_file, node_name, flow_inputs, dependency_nodes_outputs, connections, raise_ex): try: result = FlowExecutor.load_and_exec_node( flow_file=get_yaml_file(flow_file), node_name=node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=connections, raise_ex=raise_ex, ) # Assert llm single node run contains openai traces # And the traces contains system metrics OPENAI_AGGREGATE_METRICS = ["prompt_tokens", "completion_tokens", "total_tokens"] assert len(result.api_calls) == 1 assert len(result.api_calls[0]["children"]) == 1 assert isinstance(result.api_calls[0]["children"][0]["system_metrics"], dict) for key in OPENAI_AGGREGATE_METRICS: assert key in result.api_calls[0]["children"][0]["system_metrics"] for key in OPENAI_AGGREGATE_METRICS: assert ( result.api_calls[0]["system_metrics"][key] == result.api_calls[0]["children"][0]["system_metrics"][key] ) except Exception as ex: queue.put(ex)
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_concurent_execution.py
import re from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.exception_utils import ErrorResponse from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.executor._flow_nodes_scheduler import RUN_FLOW_NODES_LINEARLY from promptflow.executor._result import LineResult from promptflow.executor.flow_executor import FlowExecutor from ..utils import get_flow_inputs, get_yaml_file, load_content TEST_ROOT = Path(__file__).parent.parent.parent FLOWS_ROOT = TEST_ROOT / "test_configs/flows" FLOW_FOLDER = "concurrent_execution_flow" @pytest.mark.e2etest class TestConcurrentExecution: def test_concurrent_run(self): logs_directory = Path(mkdtemp()) executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) flow_run_log_path = str(logs_directory / "test_flow_run.log") # flow run: test exec_line with LogContext(flow_run_log_path, run_mode=RunMode.Test): results = executor.exec_line(get_flow_inputs(FLOW_FOLDER)) log_content = load_content(flow_run_log_path) pattern = r"\[wait_(\d+) in line None.*Thread (\d+)" matches = re.findall(pattern, log_content) wait_thread_mapping = {} for wait, thread in matches: if wait in wait_thread_mapping: if wait_thread_mapping[wait] != thread: raise Exception(f"wait_{wait} corresponds to more than one thread number") else: wait_thread_mapping[wait] = thread self.assert_run_result(results) assert ( results.run_info.system_metrics["duration"] < 10 ), "run nodes concurrently should decrease the total run time." def test_concurrent_run_with_exception(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}, raise_ex=False) flow_result = executor.exec_line({"input1": "True", "input2": "False", "input3": "False", "input4": "False"}) assert 2 < flow_result.run_info.system_metrics["duration"] < 4, "Should at least finish the running job." error_response = ErrorResponse.from_error_dict(flow_result.run_info.error) assert error_response.error_code_hierarchy == "UserError/ToolExecutionError" def test_linear_run(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) # flow run: test exec_line run linearly results = executor.exec_line(get_flow_inputs(FLOW_FOLDER), node_concurrency=RUN_FLOW_NODES_LINEARLY) self.assert_run_result(results) assert 15 > results.run_info.system_metrics["duration"] > 10, "run nodes linearly will consume more time." def assert_run_result(self, result: LineResult): # Validate the flow status assert result.run_info.status == Status.Completed # Validate the flow output assert isinstance(result.output, dict) # Validate the flow node run infos assert len(result.node_run_infos) == 5
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_logs.py
from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.logger_utils import LogContext from promptflow.batch import BatchEngine from promptflow.batch._result import BatchResult from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.executor import FlowExecutor from ..utils import ( get_flow_folder, get_flow_inputs_file, get_flow_sample_inputs, get_yaml_file, load_content, load_jsonl, ) TEST_LOGS_FLOW = ["print_input_flow"] SAMPLE_FLOW_WITH_TEN_INPUTS = "simple_flow_with_ten_inputs" OUTPUT_FILE_NAME = "output.jsonl" def submit_batch_run( flow_folder, inputs_mapping, *, input_dirs={}, input_file_name="samples.json", run_id=None, connections={}, storage=None, return_output_dir=False, ): batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=connections, storage=storage ) if not input_dirs and inputs_mapping: input_dirs = {"data": get_flow_inputs_file(flow_folder, file_name=input_file_name)} output_dir = Path(mkdtemp()) if return_output_dir: return batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id), output_dir return batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id) def get_batch_inputs_line(flow_folder, sample_inputs_file="samples.json"): inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) return len(inputs) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorLogs: def assert_node_run_info(self, node_run_info, content): assert node_run_info.status == Status.Completed assert content in node_run_info.logs["stdout"] assert "STDOUT:" in node_run_info.logs["stdout"] assert content in node_run_info.logs["stderr"] assert "STDERR:" in node_run_info.logs["stderr"] def assert_flow_result(self, flow_result, content): assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed for node_run_info in flow_result.node_run_infos.values(): self.assert_node_run_info(node_run_info, content) def submit_bulk_run(self, folder_name): batch_engine = BatchEngine(get_yaml_file(folder_name), get_flow_folder(folder_name), connections={}) input_dirs = {"data": get_flow_inputs_file(folder_name)} inputs_mapping = {"text": "${data.text}"} output_dir = Path(mkdtemp()) return batch_engine.run(input_dirs, inputs_mapping, output_dir) @pytest.mark.parametrize( "folder_name", TEST_LOGS_FLOW, ) def test_node_logs(self, folder_name): # Test node logs in flow run executor = FlowExecutor.create(get_yaml_file(folder_name), {}) content = "line_text" flow_result = executor.exec_line({"text": content}) node_run_ids = [node_run_info.run_id for node_run_info in flow_result.node_run_infos.values()] for node_run_id in node_run_ids: logs = executor._run_tracker.node_log_manager.get_logs(node_run_id) assert logs["stderr"] is None and logs["stdout"] is None, f"Logs for node {node_run_id} is cleared." self.assert_flow_result(flow_result, content) # Test node logs in single node run content = "single_node_text" node_run_info = FlowExecutor.load_and_exec_node( get_yaml_file(folder_name), "print_input", flow_inputs={"text": content}, ) self.assert_node_run_info(node_run_info, content) @pytest.mark.parametrize( "folder_name", TEST_LOGS_FLOW, ) def test_executor_logs(self, folder_name): logs_directory = Path(mkdtemp()) flow_run_log_path = str(logs_directory / "test_flow_run.log") bulk_run_log_path = str(logs_directory / "test_bulk_run.log") # flow run: test exec_line with LogContext(flow_run_log_path): executor = FlowExecutor.create(get_yaml_file(folder_name), {}) executor.exec_line({"text": "line_text"}) log_content = load_content(flow_run_log_path) loggers_name_list = ["execution", "execution.flow"] assert all(logger in log_content for logger in loggers_name_list) # bulk run: test batch_engine.run # setting run_mode to BulkTest is a requirement to use bulk_logger with LogContext(bulk_run_log_path, run_mode=RunMode.Batch): self.submit_bulk_run(folder_name) log_content = load_content(bulk_run_log_path) loggers_name_list = ["execution", "execution.bulk"] # bulk logger will print the average execution time and estimated time bulk_logs_keywords = ["Average execution time for completed lines", "Estimated time for incomplete lines"] assert all(logger in log_content for logger in loggers_name_list) assert all(keyword in log_content for keyword in bulk_logs_keywords) @pytest.mark.parametrize( "folder_name", TEST_LOGS_FLOW, ) def test_node_logs_in_executor_logs(self, folder_name): logs_directory = Path(mkdtemp()) flow_run_log_path = str(logs_directory / "test_flow_run.log") bulk_run_log_path = str(logs_directory / "test_bulk_run.log") # flow run: test exec_line with LogContext(flow_run_log_path, run_mode=RunMode.Test): executor = FlowExecutor.create(get_yaml_file(folder_name), {}) executor.exec_line({"text": "line_text"}) log_content = load_content(flow_run_log_path) node_logs_list = ["print_input in line", "stdout> STDOUT:", "stderr> STDERR:"] assert all(node_log in log_content for node_log in node_logs_list) # bulk run: test batch_engine.run # setting run_mode to BulkTest is a requirement to use bulk_logger with LogContext(bulk_run_log_path, run_mode=RunMode.Batch): self.submit_bulk_run(folder_name) log_content = load_content(bulk_run_log_path) node_logs_list = ["print_input in line", "stderr> STDERR:"] assert all(node_log in log_content for node_log in node_logs_list) def test_long_run_log(self): executor = FlowExecutor.create(get_yaml_file("long_run"), {}) file_path = Path(mkdtemp()) / "flow.log" with LogContext(file_path): flow_result = executor.exec_line({}, index=0) node_run = flow_result.node_run_infos["long_run_node"] assert node_run.status == Status.Completed with open(file_path) as fin: lines = fin.readlines() lines = [line for line in lines if line.strip()] target_texts = [ "INFO Start executing nodes in thread pool mode.", "INFO Start to run 1 nodes with concurrency level 16.", "INFO Executing node long_run_node.", "WARNING long_run_node in line 0 has been running for 60 seconds, stacktrace of thread", ", line 16, in long_run_func", "return f2()", ", line 11, in f2", "return f1()", ", line 6, in f1", "time.sleep(61)", "INFO Node long_run_node completes.", ] msg = f"Got {len(lines)} lines in {file_path}, expected {len(target_texts)}." assert len(lines) == len(target_texts), msg for actual, expected in zip(lines, target_texts): assert expected in actual, f"Expected {expected} in {actual}" @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ( SAMPLE_FLOW_WITH_TEN_INPUTS, {"input": "${data.input}", "index": "${data.index}"}, ) ], ) def test_log_progress(self, flow_folder, inputs_mapping, dev_connections): logs_directory = Path(mkdtemp()) bulk_run_log_path = str(logs_directory / "test_bulk_run.log") with LogContext(bulk_run_log_path, run_mode=RunMode.Batch): batch_result, output_dir = submit_batch_run( flow_folder, inputs_mapping, connections=dev_connections, return_output_dir=True ) nlines = get_batch_inputs_line(flow_folder) log_content = load_content(bulk_run_log_path) for i in range(1, nlines + 1): assert f"Finished {i} / {nlines} lines." in log_content assert isinstance(batch_result, BatchResult) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0 outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" def test_activate_config_log(self): logs_directory = Path(mkdtemp()) log_path = str(logs_directory / "flow.log") # flow run: test exec_line with LogContext(log_path, run_mode=RunMode.Test): executor = FlowExecutor.create(get_yaml_file("activate_flow"), {}) # use default inputs executor.exec_line({}) log_content = load_content(log_path) logs_list = [ "execution.flow", "The node 'nodeA' will be bypassed because the activate condition is not met, " "i.e. '${flow.text}' is not equal to 'hello'.", "The node 'nodeB' will be bypassed because it depends on the node 'nodeA' " "which has already been bypassed in the activate config.", "The node 'nodeC' will be bypassed because all nodes ['nodeB'] it depends on are bypassed.", "The node 'nodeD' will be executed because the activate condition is met, " "i.e. '${flow.text}' is equal to 'world'.", ] assert all(log in log_content for log in logs_list)
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_eager_flow.py
import os from dataclasses import is_dataclass from pathlib import Path from tempfile import mkdtemp import pytest from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._result import BatchResult, LineResult from promptflow.contracts.run_info import Status from promptflow.executor._script_executor import ScriptExecutor from promptflow.executor.flow_executor import FlowExecutor from ..utils import ( EAGER_FLOW_ROOT, get_bulk_inputs_from_jsonl, get_entry_file, get_flow_folder, get_flow_inputs_file, get_yaml_file, load_jsonl, ) SAMPLE_FLOW = "web_classification_no_variants" SAMPLE_EVAL_FLOW = "classification_accuracy_evaluation" SAMPLE_FLOW_WITH_PARTIAL_FAILURE = "python_tool_partial_failure" def validate_batch_result(batch_result: BatchResult, flow_folder, output_dir, ensure_output): assert isinstance(batch_result, BatchResult) nlines = len(get_bulk_inputs_from_jsonl(flow_folder, root=EAGER_FLOW_ROOT)) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0 outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" assert ensure_output(output) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestEagerFlow: @pytest.mark.parametrize( "flow_folder, entry, inputs, ensure_output", [ ( "dummy_flow_with_trace", "my_flow", {"text": "text", "models": ["model"]}, lambda x: x == "dummy_output" ), ( "flow_with_dataclass_output", "my_flow", {"text": "text", "models": ["model"]}, lambda x: is_dataclass(x) and x.text == "text" and x.models == ["model"] ), ] ) def test_flow_run(self, flow_folder, entry, inputs, ensure_output): # Test submitting eager flow to script executor flow_file = get_entry_file(flow_folder, root=EAGER_FLOW_ROOT) executor = ScriptExecutor(flow_file=flow_file, entry=entry) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) # Test submitting eager flow to flow executor working_dir = get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT) os.chdir(working_dir) flow_file = get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT) executor = FlowExecutor.create(flow_file=flow_file, connections={}) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) @pytest.mark.parametrize( "flow_folder, inputs, ensure_output", [ ( "dummy_flow_with_trace", {"text": "text", "models": ["model"]}, lambda x: x == "dummy_output" ), ( "flow_with_dataclass_output", {"text": "text", "models": ["model"]}, lambda x: is_dataclass(x) and x.text == "text" and x.models == ["model"] ), ] ) def test_flow_run_with_flow_yaml(self, flow_folder, inputs, ensure_output): working_dir = get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT) os.chdir(working_dir) flow_file = get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT) executor = FlowExecutor.create(flow_file=flow_file, connections={}) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) def test_exec_line_with_invalid_case(self): flow_file = get_entry_file("dummy_flow_with_exception", root=EAGER_FLOW_ROOT) executor = ScriptExecutor(flow_file=flow_file, entry="my_flow") line_result = executor.exec_line(inputs={"text": "text"}, index=0) assert isinstance(line_result, LineResult) assert line_result.output is None assert line_result.run_info.status == Status.Failed assert "dummy exception" in line_result.run_info.error["message"] @pytest.mark.parametrize( "flow_folder, inputs_mapping, entry, ensure_output", [ ( "dummy_flow_with_trace", {"text": "${data.text}", "models": "${data.models}"}, "my_flow", lambda x: "output" in x and x["output"] == "dummy_output", ), ( "flow_with_dataclass_output", {"text": "${data.text}", "models": "${data.models}"}, "my_flow", lambda x: x["text"] == "text" and isinstance(x["models"], list), ), ( "flow_with_dataclass_output", {}, # if inputs_mapping is empty, then the inputs will be the default value "my_flow", lambda x: x["text"] == "default_text" and x["models"] == ["default_model"], ) ] ) def test_batch_run(self, flow_folder, entry, inputs_mapping, ensure_output): batch_engine = BatchEngine( get_entry_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), entry=entry, ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, inputs_mapping, output_dir) validate_batch_result(batch_result, flow_folder, output_dir, ensure_output) @pytest.mark.parametrize( "flow_folder, inputs_mapping, ensure_output", [ ( "dummy_flow_with_trace", {"text": "${data.text}", "models": "${data.models}"}, lambda x: "output" in x and x["output"] == "dummy_output", ), ( "flow_with_dataclass_output", {"text": "${data.text}", "models": "${data.models}"}, lambda x: x["text"] == "text" and isinstance(x["models"], list), ), ] ) def test_batch_run_with_flow_yaml(self, flow_folder, inputs_mapping, ensure_output): batch_engine = BatchEngine( get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, inputs_mapping, output_dir) validate_batch_result(batch_result, flow_folder, output_dir, ensure_output) def test_batch_run_with_invalid_case(self): flow_folder = "dummy_flow_with_exception" batch_engine = BatchEngine( get_entry_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), entry="my_flow", ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, {"text": "${data.text}"}, output_dir) assert isinstance(batch_result, BatchResult) nlines = len(get_bulk_inputs_from_jsonl(flow_folder, root=EAGER_FLOW_ROOT)) assert batch_result.total_lines == nlines assert batch_result.failed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_package_tool.py
import sys from pathlib import Path from unittest.mock import patch import pytest from promptflow._core._errors import PackageToolNotFoundError, ToolLoadError from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from promptflow.executor._errors import NodeInputValidationError, ResolveToolError from promptflow.executor._result import LineResult from ..utils import WRONG_FLOW_ROOT, get_flow_package_tool_definition, get_flow_sample_inputs, get_yaml_file PACKAGE_TOOL_BASE = Path(__file__).parent.parent / "package_tools" PACKAGE_TOOL_ENTRY = "promptflow._core.tools_manager.collect_package_tools" sys.path.insert(0, str(PACKAGE_TOOL_BASE.resolve())) @pytest.mark.e2etest class TestPackageTool: def get_line_inputs(self, flow_folder=""): if flow_folder: inputs = self.get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(self, nlinee=4, flow_folder=""): if flow_folder: inputs = get_flow_sample_inputs(flow_folder) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [self.get_line_inputs() for _ in range(nlinee)] def test_executor_package_tool_with_conn(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "tool_with_connection" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch( "promptflow.tools.list.list_package_tools", return_value=package_tool_definition, ) name, secret = "dummy_name", "dummy_secret" connections = { "test_conn": { "type": "TestConnection", "value": {"name": name, "secret": secret}, } } executor = FlowExecutor.create(get_yaml_file(flow_folder), connections, raise_ex=True) flow_result = executor.exec_line({}) assert flow_result.run_info.status == Status.Completed assert len(flow_result.node_run_infos) == 1 for _, v in flow_result.node_run_infos.items(): assert v.status == Status.Completed assert v.output == name + secret @pytest.mark.skipif(sys.platform == "darwin", reason="Skip on Mac") def test_executor_package_with_prompt_tool(self, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, raise_ex=True) bulk_inputs = self.get_bulk_inputs(flow_folder=flow_folder) for i in bulk_inputs: line_result = executor.exec_line(i) assert isinstance(line_result, LineResult) msg = f"Got {line_result.run_info.status} for input {i}" assert line_result.run_info.status == Status.Completed, msg def test_custom_llm_tool_with_duplicated_inputs(self, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool_with_duplicated_inputs" package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): msg = ( "Invalid inputs {'api'} in prompt template of node custom_llm_tool_with_duplicated_inputs. " "These inputs are duplicated with the inputs of custom llm tool." ) with pytest.raises(ResolveToolError, match=msg) as e: FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) assert isinstance(e.value.inner_exception, NodeInputValidationError) @pytest.mark.parametrize( "flow_folder, error_class, inner_class, error_message", [ ( "wrong_tool_in_package_tools", ResolveToolError, PackageToolNotFoundError, "Tool load failed in 'search_by_text': (PackageToolNotFoundError) " "Package tool 'promptflow.tools.serpapi.SerpAPI.search_11' is not found in the current environment. " "All available package tools are: " "['promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text', " "'promptflow.tools.azure_detect.AzureDetect.get_language'].", ), ( "wrong_package_in_package_tools", ResolveToolError, PackageToolNotFoundError, "Tool load failed in 'search_by_text': (PackageToolNotFoundError) " "Package tool 'promptflow.tools.serpapi11.SerpAPI.search' is not found in the current environment. " "All available package tools are: " "['promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text', " "'promptflow.tools.azure_detect.AzureDetect.get_language'].", ), ], ) def test_package_tool_execution(self, flow_folder, error_class, inner_class, error_message, dev_connections): def mock_collect_package_tools(keys=None): return { "promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text": None, "promptflow.tools.azure_detect.AzureDetect.get_language": None, } with patch(PACKAGE_TOOL_ENTRY, side_effect=mock_collect_package_tools): with pytest.raises(error_class) as exce_info: FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT), dev_connections) if isinstance(exce_info.value, ResolveToolError): assert isinstance(exce_info.value.inner_exception, inner_class) assert error_message == exce_info.value.message @pytest.mark.parametrize( "flow_folder, error_message", [ ( "tool_with_init_error", "Tool load failed in 'tool_with_init_error': " "(ToolLoadError) Failed to load package tool 'Tool with init error': (Exception) Tool load error.", ) ], ) def test_package_tool_load_error(self, flow_folder, error_message, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / flow_folder package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): with pytest.raises(ResolveToolError) as exce_info: FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) assert isinstance(exce_info.value.inner_exception, ToolLoadError) assert exce_info.value.message == error_message
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_executor_validation.py
import json from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._core._errors import FlowOutputUnserializable, InvalidSource from promptflow._core.tools_manager import APINotFound from promptflow._sdk._constants import DAG_FILE_NAME from promptflow._utils.utils import dump_list_to_jsonl from promptflow.batch import BatchEngine from promptflow.contracts._errors import FailedToImportModule from promptflow.executor import FlowExecutor from promptflow.executor._errors import ( ConnectionNotFound, DuplicateNodeName, EmptyOutputReference, InputNotFound, InputReferenceNotFound, InputTypeError, InvalidConnectionType, NodeCircularDependency, NodeInputValidationError, NodeReferenceNotFound, OutputReferenceNotFound, ResolveToolError, SingleNodeValidationError, ) from ..utils import FLOW_ROOT, WRONG_FLOW_ROOT, get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestValidation: @pytest.mark.parametrize( "flow_folder, yml_file, error_class, inner_class, error_msg", [ ( "flow_llm_with_wrong_conn", "flow.dag.yaml", ResolveToolError, InvalidConnectionType, ( "Tool load failed in 'wrong_llm': " "(InvalidConnectionType) Connection type CustomConnection is not supported for LLM." ), ), ( "nodes_names_duplicated", "flow.dag.yaml", DuplicateNodeName, None, ( "Invalid node definitions found in the flow graph. Node with name 'stringify_num' appears more " "than once in the node definitions in your flow, which is not allowed. To " "address this issue, please review your flow and either rename or remove " "nodes with identical names." ), ), ( "source_file_missing", "flow.dag.jinja.yaml", ResolveToolError, InvalidSource, ( "Tool load failed in 'summarize_text_content': (InvalidSource) " "Node source path 'summarize_text_content__variant_1.jinja2' is invalid on node " "'summarize_text_content'." ), ), ( "node_reference_not_found", "flow.dag.yaml", NodeReferenceNotFound, None, ( "Invalid node definitions found in the flow graph. Node 'divide_num_2' references a non-existent " "node 'divide_num_3' in your flow. Please review your flow to ensure that the " "node name is accurately specified." ), ), ( "node_circular_dependency", "flow.dag.yaml", NodeCircularDependency, None, ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships for " "the nodes ['divide_num', 'divide_num_1', 'divide_num_2'] and resolve the " "circular reference issue in the flow." ), ), ( "flow_input_reference_invalid", "flow.dag.yaml", InputReferenceNotFound, None, ( "Invalid node definitions found in the flow graph. Node 'divide_num' references flow input 'num_1' " "which is not defined in your flow. To resolve this issue, please review your " "flow, ensuring that you either add the missing flow inputs or adjust node " "reference to the correct flow input." ), ), ( "flow_output_reference_invalid", "flow.dag.yaml", EmptyOutputReference, None, ( "The output 'content' for flow is incorrect. The reference is not specified for the output " "'content' in the flow. To rectify this, ensure that you accurately specify " "the reference in the flow." ), ), ( "outputs_reference_not_valid", "flow.dag.yaml", OutputReferenceNotFound, None, ( "The output 'content' for flow is incorrect. The output 'content' references non-existent " "node 'another_stringify_num' in your flow. To resolve this issue, please " "carefully review your flow and correct the reference definition for the " "output in question." ), ), ( "outputs_with_invalid_flow_inputs_ref", "flow.dag.yaml", OutputReferenceNotFound, None, ( "The output 'num' for flow is incorrect. The output 'num' references non-existent flow " "input 'num11' in your flow. Please carefully review your flow and correct " "the reference definition for the output in question." ), ), ], ) def test_executor_create_failure_type_and_message( self, flow_folder, yml_file, error_class, inner_class, error_msg, dev_connections ): with pytest.raises(error_class) as exc_info: FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT, yml_file), dev_connections) if isinstance(exc_info.value, ResolveToolError): assert isinstance(exc_info.value.inner_exception, inner_class) assert error_msg == exc_info.value.message @pytest.mark.parametrize( "flow_folder, yml_file, error_class, inner_class", [ ("source_file_missing", "flow.dag.python.yaml", ResolveToolError, InvalidSource), ], ) def test_executor_create_failure_type(self, flow_folder, yml_file, error_class, inner_class, dev_connections): with pytest.raises(error_class) as e: FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT, yml_file), dev_connections) if isinstance(e.value, ResolveToolError): assert isinstance(e.value.inner_exception, inner_class) @pytest.mark.parametrize( "ordered_flow_folder, unordered_flow_folder", [ ("web_classification_no_variants", "web_classification_no_variants_unordered"), ], ) def test_node_topology_in_order(self, ordered_flow_folder, unordered_flow_folder, dev_connections): ordered_executor = FlowExecutor.create(get_yaml_file(ordered_flow_folder), dev_connections) unordered_executor = FlowExecutor.create(get_yaml_file(unordered_flow_folder), dev_connections) for node1, node2 in zip(ordered_executor._flow.nodes, unordered_executor._flow.nodes): assert node1.name == node2.name @pytest.mark.parametrize( "flow_folder, error_class, inner_class", [ ("invalid_connection", ResolveToolError, ConnectionNotFound), ("tool_type_missing", ResolveToolError, NotImplementedError), ("wrong_module", FailedToImportModule, None), ("wrong_api", ResolveToolError, APINotFound), ("wrong_provider", ResolveToolError, APINotFound), ], ) def test_invalid_flow_dag(self, flow_folder, error_class, inner_class, dev_connections): with pytest.raises(error_class) as e: FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT), dev_connections) if isinstance(e.value, ResolveToolError): assert isinstance(e.value.inner_exception, inner_class) @pytest.mark.parametrize( "flow_folder, line_input, error_class", [ ("simple_flow_with_python_tool", {"num11": "22"}, InputNotFound), ("simple_flow_with_python_tool", {"num": "hello"}, InputTypeError), ("python_tool_with_simple_image_without_default", {}, InputNotFound), ], ) def test_flow_run_input_type_invalid(self, flow_folder, line_input, error_class, dev_connections): # Flow run - the input is from get_partial_line_inputs() executor = FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) with pytest.raises(error_class): executor.exec_line(line_input) @pytest.mark.parametrize( "flow_folder, line_input, error_class, error_msg", [ ( "flow_output_unserializable", {"num": "22"}, FlowOutputUnserializable, ( "The output 'content' for flow is incorrect. The output value is not JSON serializable. " "JSON dump failed: (TypeError) Object of type UnserializableClass is not JSON serializable. " "Please verify your flow output and make sure the value serializable." ), ), ], ) def test_flow_run_execution_errors(self, flow_folder, line_input, error_class, error_msg, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT), dev_connections) # For now, there exception is designed to be swallowed in executor. But Run Info would have the error details res = executor.exec_line(line_input) assert error_msg == res.run_info.error["message"] @pytest.mark.parametrize( "flow_folder, inputs_mapping, error_message, error_class", [ ( "simple_flow_with_python_tool", {"num": "${data.num}"}, ( "The input for flow is incorrect. The value for flow input 'num' in line 0 of input data does not " "match the expected type 'int'. Please change flow input type or adjust the input value in " "your input data." ), "InputTypeError", ), ], ) def test_batch_run_input_type_invalid( self, flow_folder, inputs_mapping, error_message, error_class, dev_connections ): # Bulk run - the input is from sample.json batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) input_dirs = {"data": get_flow_inputs_file(flow_folder)} output_dir = Path(mkdtemp()) batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert error_message in str( batch_results.error_summary.error_list[0].error ), f"Expected message {error_message} but got {str(batch_results.error_summary.error_list[0].error)}" assert error_class in str( batch_results.error_summary.error_list[0].error ), f"Expected message {error_class} but got {str(batch_results.error_summary.error_list[0].error)}" @pytest.mark.parametrize( "path_root, flow_folder, node_name, line_input, error_class, error_msg", [ ( FLOW_ROOT, "simple_flow_with_python_tool", "divide_num", {"num11": "22"}, InputNotFound, ( "The input for node is incorrect. Node input 'num' is not found in input data " "for node 'divide_num'. Please verify the inputs data for the node." ), ), ( FLOW_ROOT, "simple_flow_with_python_tool", "divide_num", {"num": "hello"}, InputTypeError, ( "The input for node is incorrect. Value for input 'num' of node 'divide_num' " "is not type 'int'. Please review and rectify the input data." ), ), ( WRONG_FLOW_ROOT, "flow_input_reference_invalid", "divide_num", {"num": "22"}, InputNotFound, ( "The input for node is incorrect. Node input 'num_1' is not found from flow " "inputs of node 'divide_num'. Please review the node definition in your flow." ), ), ( FLOW_ROOT, "simple_flow_with_python_tool", "bad_node_name", {"num": "22"}, SingleNodeValidationError, ( "Validation failed when attempting to execute the node. Node 'bad_node_name' is not found in flow " "'flow.dag.yaml'. Please change node name or correct the flow file." ), ), ( WRONG_FLOW_ROOT, "node_missing_type_or_source", "divide_num", {"num": "22"}, SingleNodeValidationError, ( "Validation failed when attempting to execute the node. Properties 'source' or 'type' are not " "specified for Node 'divide_num' in flow 'flow.dag.yaml'. Please make sure " "these properties are in place and try again." ), ), ], ) def test_single_node_input_type_invalid( self, path_root: str, flow_folder, node_name, line_input, error_class, error_msg, dev_connections ): # Single Node run - the inputs are from flow_inputs + dependency_nodes_outputs with pytest.raises(error_class) as exe_info: FlowExecutor.load_and_exec_node( flow_file=DAG_FILE_NAME, node_name=node_name, flow_inputs=line_input, dependency_nodes_outputs={}, connections=dev_connections, working_dir=Path(path_root) / flow_folder, raise_ex=True, ) assert error_msg == exe_info.value.message @pytest.mark.parametrize( "flow_folder, msg", [ ( "prompt_tool_with_duplicated_inputs", "Invalid inputs {'template'} in prompt template of node prompt_tool_with_duplicated_inputs. " "These inputs are duplicated with the reserved parameters of prompt tool.", ), ( "llm_tool_with_duplicated_inputs", "Invalid inputs {'prompt'} in prompt template of node llm_tool_with_duplicated_inputs. " "These inputs are duplicated with the parameters of AzureOpenAI.completion.", ), ], ) def test_flow_run_with_duplicated_inputs(self, flow_folder, msg, dev_connections): with pytest.raises(ResolveToolError, match=msg) as e: FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) assert isinstance(e.value.inner_exception, NodeInputValidationError) @pytest.mark.parametrize( "flow_folder, batch_input, raise_on_line_failure, error_class", [ ("simple_flow_with_python_tool", [{"num": "hello"}], True, Exception), ("simple_flow_with_python_tool", [{"num": "hello"}], False, InputTypeError), ("simple_flow_with_python_tool", [{"num": "22"}], True, None), ("simple_flow_with_python_tool", [{"num": "22"}], False, None), ], ) def test_batch_run_raise_on_line_failure( self, flow_folder, batch_input, raise_on_line_failure, error_class, dev_connections ): # Bulk run - the input is from sample.json batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) # prepare input file and output dir input_file = Path(mkdtemp()) / "inputs.jsonl" dump_list_to_jsonl(input_file, batch_input) input_dirs = {"data": input_file} output_dir = Path(mkdtemp()) inputs_mapping = {"num": "${data.num}"} if error_class is None: batch_result = batch_engine.run( input_dirs, inputs_mapping, output_dir, raise_on_line_failure=raise_on_line_failure ) assert batch_result.total_lines == 1 assert batch_result.completed_lines == 1 assert batch_result.error_summary.error_list == [] else: if raise_on_line_failure: with pytest.raises(error_class): batch_engine.run( input_dirs, inputs_mapping, output_dir, raise_on_line_failure=raise_on_line_failure ) else: batch_result = batch_engine.run( input_dirs, inputs_mapping, output_dir, raise_on_line_failure=raise_on_line_failure ) assert batch_result.total_lines == 1 assert batch_result.failed_lines == 1 assert error_class.__name__ in json.dumps(batch_result.error_summary.error_list[0].error)
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_async.py
import os import pytest from promptflow.executor import FlowExecutor from ..utils import get_flow_folder, get_yaml_file @pytest.mark.e2etest class TestAsync: @pytest.mark.parametrize( "folder_name, concurrency_levels, expected_concurrency", [ ("async_tools", [1, 2, 3], [1, 2, 2]), ("async_tools_with_sync_tools", [1, 2, 3], [1, 2, 2]), ], ) def test_executor_node_concurrency(self, folder_name, concurrency_levels, expected_concurrency): os.chdir(get_flow_folder(folder_name)) executor = FlowExecutor.create(get_yaml_file(folder_name), {}) def calculate_max_concurrency(flow_result): timeline = [] api_calls = flow_result.run_info.api_calls[0]["children"] for api_call in api_calls: timeline.append(("start", api_call["start_time"])) timeline.append(("end", api_call["end_time"])) timeline.sort(key=lambda x: x[1]) current_concurrency = 0 max_concurrency = 0 for event, _ in timeline: if event == "start": current_concurrency += 1 max_concurrency = max(max_concurrency, current_concurrency) elif event == "end": current_concurrency -= 1 return max_concurrency for i in range(len(concurrency_levels)): concurrency = concurrency_levels[i] flow_result = executor.exec_line({"input_str": "Hello"}, node_concurrency=concurrency) max_concurrency = calculate_max_concurrency(flow_result) assert max_concurrency == expected_concurrency[i] assert max_concurrency <= concurrency
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_langchain.py
from pathlib import Path from tempfile import mkdtemp import pytest from promptflow.batch import BatchEngine from promptflow.batch._result import BatchResult from ..utils import get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestLangchain: @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ("flow_with_langchain_traces", {"question": "${data.question}"}), ("openai_chat_api_flow", {"question": "${data.question}", "chat_history": "${data.chat_history}"}), ("openai_completion_api_flow", {"prompt": "${data.prompt}"}), ], ) def test_batch_with_langchain(self, flow_folder, inputs_mapping, dev_connections): batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) input_dirs = {"data": get_flow_inputs_file(flow_folder)} output_dir = Path(mkdtemp()) batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert isinstance(batch_results, BatchResult) assert batch_results.total_lines == batch_results.completed_lines assert batch_results.system_metrics.total_tokens > 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_executor_execution_failures.py
import pytest from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from ..utils import ( get_yaml_file, ) SAMPLE_FLOW = "web_classification_no_variants" SAMPLE_EVAL_FLOW = "classification_accuracy_evaluation" SAMPLE_FLOW_WITH_PARTIAL_FAILURE = "python_tool_partial_failure" SAMPLE_FLOW_WITH_LANGCHAIN_TRACES = "flow_with_langchain_traces" expected_stack_traces = { "sync_tools_failures": """Traceback (most recent call last): sync_fail.py", line 11, in raise_an_exception raise_exception(s) sync_fail.py", line 5, in raise_exception raise Exception(msg) Exception: In raise_exception: dummy_input The above exception was the direct cause of the following exception: Traceback (most recent call last): sync_fail.py", line 13, in raise_an_exception raise Exception(f"In tool raise_an_exception: {s}") from e Exception: In tool raise_an_exception: dummy_input """.split("\n"), "async_tools_failures": """Traceback (most recent call last): async_fail.py", line 11, in raise_an_exception_async await raise_exception_async(s) async_fail.py", line 5, in raise_exception_async raise Exception(msg) Exception: In raise_exception_async: dummy_input The above exception was the direct cause of the following exception: Traceback (most recent call last): in raise_an_exception_async raise Exception(f"In tool raise_an_exception_async: {s}") from e Exception: In tool raise_an_exception_async: dummy_input """.split("\n"), } @pytest.mark.e2etest class TestExecutorFailures: @pytest.mark.parametrize( "flow_folder, node_name, message", [ ("sync_tools_failures", "sync_fail", "In tool raise_an_exception: dummy_input"), ("async_tools_failures", "async_fail", "In tool raise_an_exception_async: dummy_input"), ], ) def test_executor_exec_node_fail(self, flow_folder, node_name, message): yaml_file = get_yaml_file(flow_folder) run_info = FlowExecutor.load_and_exec_node(yaml_file, node_name) assert run_info.output is None assert run_info.status == Status.Failed assert isinstance(run_info.api_calls, list) assert len(run_info.api_calls) == 1 assert run_info.node == node_name assert run_info.system_metrics["duration"] >= 0 assert run_info.error is not None assert f"Execution failure in '{node_name}'" in run_info.error["message"] assert len(run_info.error["additionalInfo"]) == 1 user_error_info_dict = run_info.error["additionalInfo"][0] assert "ToolExecutionErrorDetails" == user_error_info_dict["type"] user_error_info = user_error_info_dict["info"] assert message == user_error_info["message"] # Make sure the stack trace is as expected stacktrace = user_error_info["traceback"].split("\n") expected_stack_trace = expected_stack_traces[flow_folder] assert len(stacktrace) == len(expected_stack_trace) for expected_item, actual_item in zip(expected_stack_trace, stacktrace): assert expected_item in actual_item @pytest.mark.parametrize( "flow_folder, failed_node_name, message", [ ("sync_tools_failures", "sync_fail", "In tool raise_an_exception: dummy_input"), ("async_tools_failures", "async_fail", "In tool raise_an_exception_async: dummy_input"), ], ) def test_executor_exec_line_fail(self, flow_folder, failed_node_name, message): yaml_file = get_yaml_file(flow_folder) executor = FlowExecutor.create(yaml_file, {}, raise_ex=False) line_result = executor.exec_line({}) run_info = line_result.run_info assert run_info.output is None assert run_info.status == Status.Failed assert isinstance(run_info.api_calls, list) assert len(run_info.api_calls) == 1 assert run_info.system_metrics["duration"] >= 0 assert run_info.error is not None assert f"Execution failure in '{failed_node_name}'" in run_info.error["message"] assert len(run_info.error["additionalInfo"]) == 1 user_error_info_dict = run_info.error["additionalInfo"][0] assert "ToolExecutionErrorDetails" == user_error_info_dict["type"] user_error_info = user_error_info_dict["info"] assert message == user_error_info["message"] # Make sure the stack trace is as expected stacktrace = user_error_info["traceback"].split("\n") expected_stack_trace = expected_stack_traces[flow_folder] assert len(stacktrace) == len(expected_stack_trace) for expected_item, actual_item in zip(expected_stack_trace, stacktrace): assert expected_item in actual_item
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_image.py
import os from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.multimedia_utils import MIME_PATTERN, _create_image_from_file, _is_url, is_multimedia_dict from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._result import BatchResult from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.executor import FlowExecutor from promptflow.storage._run_storage import DefaultRunStorage from ..utils import get_flow_folder, get_yaml_file, is_image_file, is_jsonl_file, load_jsonl SIMPLE_IMAGE_FLOW = "python_tool_with_simple_image" SAMPLE_IMAGE_FLOW_WITH_DEFAULT = "python_tool_with_simple_image_with_default" SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW = "python_tool_with_invalid_default_value" COMPOSITE_IMAGE_FLOW = "python_tool_with_composite_image" CHAT_FLOW_WITH_IMAGE = "chat_flow_with_image" EVAL_FLOW_WITH_SIMPLE_IMAGE = "eval_flow_with_simple_image" EVAL_FLOW_WITH_COMPOSITE_IMAGE = "eval_flow_with_composite_image" NESTED_API_CALLS_FLOW = "python_tool_with_image_nested_api_calls" IMAGE_URL = ( "https://raw.githubusercontent.com/microsoft/promptflow/main/src/promptflow/tests/test_configs/datas/logo.jpg" ) def get_test_cases_for_simple_input(flow_folder): working_dir = get_flow_folder(flow_folder) image = _create_image_from_file(working_dir / "logo.jpg") inputs = [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/jpg;base64": image.to_base64()}, {"data:image/jpg;url": IMAGE_URL}, str(working_dir / "logo.jpg"), image.to_base64(), IMAGE_URL, ] return [(flow_folder, {"image": input}) for input in inputs] def get_test_cases_for_composite_input(flow_folder): working_dir = get_flow_folder(flow_folder) image_1 = _create_image_from_file(working_dir / "logo.jpg") image_2 = _create_image_from_file(working_dir / "logo_2.png") inputs = [ [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/png;path": str(working_dir / "logo_2.png")}, ], [{"data:image/jpg;base64": image_1.to_base64()}, {"data:image/png;base64": image_2.to_base64()}], [{"data:image/jpg;url": IMAGE_URL}, {"data:image/png;url": IMAGE_URL}], ] return [ (flow_folder, {"image_list": input, "image_dict": {"image_1": input[0], "image_2": input[1]}}) for input in inputs ] def get_test_cases_for_node_run(): image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} simple_image_input = {"image": image} image_list = [{"data:image/jpg;path": "logo.jpg"}, {"data:image/png;path": "logo_2.png"}] image_dict = { "image_dict": { "image_1": {"data:image/jpg;path": "logo.jpg"}, "image_2": {"data:image/png;path": "logo_2.png"}, } } composite_image_input = {"image_list": image_list, "image_dcit": image_dict} return [ (SIMPLE_IMAGE_FLOW, "python_node", simple_image_input, None), (SIMPLE_IMAGE_FLOW, "python_node_2", simple_image_input, {"python_node": image}), (COMPOSITE_IMAGE_FLOW, "python_node", composite_image_input, None), (COMPOSITE_IMAGE_FLOW, "python_node_2", composite_image_input, None), ( COMPOSITE_IMAGE_FLOW, "python_node_3", composite_image_input, {"python_node": image_list, "python_node_2": image_dict}, ), ] def contain_image_reference(value, parent_path="temp"): if isinstance(value, (FlowRunInfo, RunInfo)): assert contain_image_reference(value.api_calls, parent_path) assert contain_image_reference(value.inputs, parent_path) assert contain_image_reference(value.output, parent_path) return True assert not isinstance(value, Image) if isinstance(value, list): return any(contain_image_reference(item, parent_path) for item in value) if isinstance(value, dict): if is_multimedia_dict(value): v = list(value.values())[0] assert isinstance(v, str) assert _is_url(v) or str(Path(v).parent) == parent_path return True return any(contain_image_reference(v, parent_path) for v in value.values()) return False def contain_image_object(value): if isinstance(value, list): return any(contain_image_object(item) for item in value) elif isinstance(value, dict): assert not is_multimedia_dict(value) return any(contain_image_object(v) for v in value.values()) else: return isinstance(value, Image) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorWithImage: @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(SIMPLE_IMAGE_FLOW) + get_test_cases_for_composite_input(COMPOSITE_IMAGE_FLOW) + [(CHAT_FLOW_WITH_IMAGE, {}), (NESTED_API_CALLS_FLOW, {})], ) def test_executor_exec_line_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert contain_image_object(flow_result.output) # Assert output also contains plain text. assert any(isinstance(v, str) for v in flow_result.output) assert flow_result.run_info.status == Status.Completed assert contain_image_reference(flow_result.run_info) for _, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", get_test_cases_for_node_run() ) def test_executor_exec_node_with_image( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) # Assert image could be persisted to the specified path. @pytest.mark.parametrize( "output_sub_dir, assign_storage, expected_path", [ ("test_path", True, "test_storage"), ("test_path", False, "test_path"), (None, True, "test_storage"), (None, False, "."), ], ) def test_executor_exec_node_with_image_storage_and_path(self, output_sub_dir, assign_storage, expected_path): flow_folder = SIMPLE_IMAGE_FLOW node_name = "python_node" image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} flow_inputs = {"image": image} working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./test_storage")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=None, connections=None, storage=storage if assign_storage else None, output_sub_dir=output_sub_dir, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info, parent_path=expected_path) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", [ ( SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW, "python_node_2", {}, { "python_node": { "data:image/jpg;path": str( get_flow_folder(SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW) / "logo.jpg" ) } }, ) ], ) def test_executor_exec_node_with_invalid_default_value( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) @pytest.mark.parametrize( "flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node", [ ( SIMPLE_IMAGE_FLOW, {"data": "."}, {"image": "${data.image}"}, "output", 4, False, ), ( SAMPLE_IMAGE_FLOW_WITH_DEFAULT, {"data": "."}, {"image_2": "${data.image_2}"}, "output", 4, False, ), ( COMPOSITE_IMAGE_FLOW, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, False, ), ( CHAT_FLOW_WITH_IMAGE, {"data": "inputs.jsonl"}, {"question": "${data.question}", "chat_history": "${data.chat_history}"}, "answer", 2, False, ), ( EVAL_FLOW_WITH_SIMPLE_IMAGE, {"data": "inputs.jsonl"}, {"image": "${data.image}"}, "output", 2, True, ), ( EVAL_FLOW_WITH_COMPOSITE_IMAGE, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, True, ), ], ) def test_batch_engine_with_image( self, flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node ): flow_file = get_yaml_file(flow_folder) working_dir = get_flow_folder(flow_folder) output_dir = Path(mkdtemp()) batch_result = BatchEngine(flow_file, working_dir).run( input_dirs, inputs_mapping, output_dir, max_lines_count=4 ) assert isinstance(batch_result, BatchResult) assert batch_result.completed_lines == expected_outputs_number assert all(is_jsonl_file(output_file) or is_image_file(output_file) for output_file in output_dir.iterdir()) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == expected_outputs_number for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" result = output[output_key][0] if isinstance(output[output_key], list) else output[output_key] assert all(MIME_PATTERN.search(key) for key in result), f"image is not in {i}th output {output}" @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(EVAL_FLOW_WITH_SIMPLE_IMAGE) + get_test_cases_for_composite_input(EVAL_FLOW_WITH_COMPOSITE_IMAGE), ) def test_executor_exec_aggregation_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs, index=0) flow_inputs = {k: [v] for k, v in inputs.items()} aggregation_inputs = {k: [v] for k, v in flow_result.aggregation_inputs.items()} aggregation_results = executor.exec_aggregation(flow_inputs, aggregation_inputs=aggregation_inputs) for _, node_run_info in aggregation_results.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) def test_batch_run_then_eval_with_image(self): # submit a flow in batch mode fisrt batch_flow_folder = get_flow_folder(COMPOSITE_IMAGE_FLOW) batch_flow_file = get_yaml_file(batch_flow_folder) batch_working_dir = get_flow_folder(batch_flow_folder) batch_output_dir = Path(mkdtemp()) batch_input_dirs = {"data": "inputs.jsonl"} batch_inputs_mapping = {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"} batch_result = BatchEngine(batch_flow_file, batch_working_dir).run( batch_input_dirs, batch_inputs_mapping, batch_output_dir ) assert batch_result.completed_lines == batch_result.total_lines # use the output of batch run as input of eval flow eval_flow_folder = get_flow_folder(EVAL_FLOW_WITH_COMPOSITE_IMAGE) eval_flow_file = get_yaml_file(eval_flow_folder) eval_working_dir = get_flow_folder(eval_flow_folder) eval_output_dir = Path(mkdtemp()) eval_input_dirs = { "data": batch_flow_folder / "inputs.jsonl", "run.outputs": batch_output_dir / OUTPUT_FILE_NAME, } eval_inputs_mapping = {"image_list": "${run.outputs.output}", "image_dict": "${data.image_dict}"} eval_result = BatchEngine(eval_flow_file, eval_working_dir).run( eval_input_dirs, eval_inputs_mapping, eval_output_dir ) assert eval_result.completed_lines == eval_result.total_lines
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_telemetry.py
import json import uuid from collections import namedtuple from importlib.metadata import version from pathlib import Path from tempfile import mkdtemp from unittest.mock import patch import pytest from promptflow._core.operation_context import OperationContext from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.contracts.run_mode import RunMode from promptflow.executor import FlowExecutor from ..utils import get_flow_folder, get_flow_inputs_file, get_yaml_file, load_jsonl IS_LEGACY_OPENAI = version("openai").startswith("0.") Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["delta"]) Delta = namedtuple("Delta", ["content"]) def stream_response(kwargs): if IS_LEGACY_OPENAI: delta = Delta(content=json.dumps(kwargs.get("headers", {}))) yield Completion(choices=[{"delta": delta}]) else: delta = Delta(content=json.dumps(kwargs.get("extra_headers", {}))) yield Completion(choices=[Choice(delta=delta)]) def mock_stream_chat(*args, **kwargs): return stream_response(kwargs) @pytest.mark.skip(reason="Skip on Mac and Windows and Linux, patch does not work in the spawn process") @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorTelemetry: def test_executor_openai_telemetry(self, dev_connections): """This test validates telemetry info header is correctly injected to OpenAI API by mocking chat api method. The mock method will return a generator that yields a namedtuple with a json string of the headers passed to the method. """ if IS_LEGACY_OPENAI: api = "openai.ChatCompletion.create" else: api = "openai.resources.chat.Completions.create" with patch(api, new=mock_stream_chat): operation_context = OperationContext.get_instance() operation_context.clear() flow_folder = "openai_chat_api_flow" # Set user-defined properties `scenario` in context operation_context.scenario = "test" executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) # flow run case inputs = {"question": "What's your name?", "chat_history": [], "stream": True} flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) headers = json.loads(flow_result.output.get("answer", "")) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.Test.name # batch run case run_id = str(uuid.uuid4()) batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) input_dirs = {"data": get_flow_inputs_file(flow_folder)} inputs_mapping = {"question": "${data.question}", "chat_history": "${data.chat_history}"} output_dir = Path(mkdtemp()) batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) for line in outputs: headers = json.loads(line.get("answer", "")) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.Batch.name # single_node case run_info = FlowExecutor.load_and_exec_node( get_yaml_file("openai_chat_api_flow"), "chat", flow_inputs=inputs, connections=dev_connections, raise_ex=True, ) assert run_info.output is not None headers = json.loads(run_info.output) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.SingleNode.name
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/integrations/test_langchain.py
import pytest from langchain.schema import AgentAction, AgentFinish from promptflow.integrations.langchain import LangChainEventType, PromptFlowCallbackHandler @pytest.mark.unittest class TestLangchain: def get_handler(self): class MockTracer(): def __init__(self): self._trace_stack = [] def _push(self, trace): self._trace_stack.append(trace) def _pop(self, output=None, error=None): self._trace_stack.pop() handler = PromptFlowCallbackHandler() handler._tracer = MockTracer() return handler def test_langchain_traces(self): handler = self.get_handler() handler.on_agent_action(action=AgentAction("test_agent_name", "test", "test")) handler.on_tool_start(serialized={"name": "test_tool_name"}, input_str="test") handler.on_chain_start(serialized={"id": ["test_chain_name"]}, inputs={"test": "test"}) handler.on_llm_start(serialized={"test": "test"}, prompts=["test"]) assert handler._events_stack == [ LangChainEventType.AGENT, LangChainEventType.TOOL, LangChainEventType.CHAIN, LangChainEventType.LLM ] assert len(handler._tracer._trace_stack) == 4 assert handler._tracer._trace_stack[0].name == "test_agent_name" assert handler._tracer._trace_stack[1].name == "test_tool_name" assert handler._tracer._trace_stack[2].name == "test_chain_name" assert handler._tracer._trace_stack[3].name == "LLM" # The default name handler.on_llm_error(error=None) handler.on_chain_error(error=None) handler.on_tool_error(error=None) handler.on_agent_finish(finish=AgentFinish({"test": "test"}, "test")) assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0 def test_langchain_traces_with_unpaired_events(self): handler = self.get_handler() handler.on_tool_start(serialized={"test": "test"}, input_str="test") # Missing on_chain_start # Missing on_llm_start assert len(handler._tracer._trace_stack) == 1 handler.on_llm_end(response=None) handler.on_chain_end(outputs={"test": "test"}) assert len(handler._tracer._trace_stack) == 1 handler.on_tool_end(output="test") assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0 handler = self.get_handler() handler.on_tool_start(serialized={"test": "test"}, input_str="test") handler.on_chain_start(serialized={"test": "test"}, inputs={"test": "test"}) handler.on_llm_start(serialized={"test": "test"}, prompts=["test"]) assert len(handler._tracer._trace_stack) == 3 # Missing on_chain_end # Missing on_llm_end handler.on_tool_end(output="test") assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/storage/test_queue_run_storage.py
import pytest from multiprocessing import Queue from promptflow.executor._line_execution_process_pool import QueueRunStorage from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo @pytest.mark.unittest class TestLineExecutionProcessPool: def test_persist_node_run(self): queue = Queue() run_storage = QueueRunStorage(queue) node_run_info = NodeRunInfo( node="node1", flow_run_id="flow_run_id", run_id="run_id", status="status", inputs="inputs", output="output", metrics="metrics", error="error", parent_run_id="parent_run_id", start_time="start_time", end_time="end_time", index="index", api_calls="api_calls", variant_id="variant_id", cached_run_id="cached_run_id", cached_flow_run_id="cached_flow_run_id", logs="logs", system_metrics="system_metrics", result="result", ) run_storage.persist_node_run(node_run_info) assert queue.get() == node_run_info def test_persist_flow_run(self): queue = Queue() run_storage = QueueRunStorage(queue) flow_run_info = FlowRunInfo( run_id="run_id", status="status", inputs="inputs", output="output", metrics="metrics", request="request", root_run_id="root_run_id", source_run_id="source_run_id", flow_id="flow_id", error="error", parent_run_id="parent_run_id", start_time="start_time", end_time="end_time", index="index", api_calls="api_calls", variant_id="variant_id", system_metrics="system_metrics", result="result", ) run_storage.persist_flow_run(flow_run_info) assert queue.get() == flow_run_info
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/storage/test_run_records.py
import json from datetime import datetime import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.storage.run_records import LineRunRecord, NodeRunRecord @pytest.mark.unittest def test_line_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) assert line_record.line_number == 0 assert line_record.start_time == start_time.isoformat() assert line_record.end_time == end_time.isoformat() assert line_record.status == Status.Completed.value assert line_record.run_info == serialize(flow_run_info) @pytest.mark.unittest def test_line_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) result = line_record.serialize() expected_result = json.dumps(line_record.__dict__) assert result == expected_result @pytest.mark.unittest def test_node_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) assert node_record.line_number == 0 assert node_record.start_time == start_time.isoformat() assert node_record.end_time == end_time.isoformat() assert node_record.status == Status.Completed.value assert node_record.run_info == serialize(node_run_info) @pytest.mark.unittest def test_node_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) result = node_record.serialize() expected_result = json.dumps(node_record.__dict__) assert result == expected_result
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/processpool/test_line_execution_process_pool.py
import multiprocessing import os import sys import uuid from multiprocessing import Queue from pathlib import Path from tempfile import mkdtemp from unittest.mock import patch import pytest from pytest_mock import MockFixture from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, UserErrorException from promptflow.executor import FlowExecutor from promptflow.executor._errors import SpawnedForkProcessManagerStartFailure from promptflow.executor._line_execution_process_pool import ( LineExecutionProcessPool, _exec_line, format_current_process_info, get_available_max_worker_count, log_process_status, ) from promptflow.executor._process_manager import create_spawned_fork_process_manager from promptflow.executor._result import LineResult from ...utils import get_flow_sample_inputs, get_yaml_file SAMPLE_FLOW = "web_classification_no_variants" def get_line_inputs(flow_folder=""): if flow_folder: inputs = get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(nlinee=4, flow_folder="", sample_inputs_file="", return_dict=False): if flow_folder: if not sample_inputs_file: sample_inputs_file = "samples.json" inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): if return_dict: return inputs return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [get_line_inputs() for _ in range(nlinee)] def execute_in_fork_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): os.environ["PF_BATCH_METHOD"] = "fork" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) else: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the " f"factors of {factors}." ) def execute_in_spawn_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): os.environ["PF_BATCH_METHOD"] = "spawn" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create( get_yaml_file(flow_folder), dev_connections, ) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = 128.0 * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = 64 * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count and is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) mock_logger.warning.assert_any_call( f"The current process count ({pf_worker_count}) is larger than recommended process count " f"({estimated_available_worker_count}) that estimated by system available memory. This may " f"cause memory exhaustion" ) elif is_set_environ_pf_worker_count and not is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) elif not is_set_environ_pf_worker_count: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, "estimated_worker_count_based_on_memory_usage": estimated_available_worker_count, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the factors " f"of {factors}." ) def create_line_execution_process_pool(dev_connections): executor = FlowExecutor.create(get_yaml_file(SAMPLE_FLOW), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) line_execution_process_pool = LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) return line_execution_process_pool def set_environment_successed_in_subprocess(dev_connections, pf_batch_method): os.environ["PF_BATCH_METHOD"] = pf_batch_method line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork is False def set_environment_failed_in_subprocess(dev_connections): with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None os.environ["PF_BATCH_METHOD"] = "test" line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") sys_start_methods = multiprocessing.get_all_start_methods() exexpected_log_message = ( "Failed to set start method to 'test', start method test" f" is not in: {sys_start_methods}." ) mock_logger.warning.assert_called_once_with(exexpected_log_message) def not_set_environment_in_subprocess(dev_connections): line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") def custom_create_spawned_fork_process_manager(*args, **kwargs): create_spawned_fork_process_manager("test", *args, **kwargs) @pytest.mark.unittest class TestLineExecutionProcessPool: @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_process_pool(self, flow_folder, dev_connections): log_path = str(Path(mkdtemp()) / "test.log") log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() with log_context: executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) executor._log_interval = 1 run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.status == Status.Completed, f"{i}th line got {line_result.run_info.status}" @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_not_completed(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) result_list = sorted(result_list, key=lambda r: r.run_info.index) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == f"Line {i} execution timeout for exceeding 1 seconds" assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line_failed_when_line_execution_not_start(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) test_error_msg = "Test user error" with patch("promptflow.executor.flow_executor.FlowExecutor.exec_line", autouse=True) as mock_exec_line: mock_exec_line.side_effect = UserErrorException( message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE ) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == test_error_msg assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_process_pool_run_with_exception(self, flow_folder, dev_connections, mocker: MockFixture): # mock process pool run execution raise error test_error_msg = "Test user error" mocker.patch( "promptflow.executor._line_execution_process_pool.LineExecutionProcessPool." "_monitor_workers_and_process_tasks_in_thread", side_effect=UserErrorException(message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE), ) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: with pytest.raises(UserErrorException) as e: pool.run(zip(range(nlines), bulk_inputs)) assert e.value.message == test_error_msg assert e.value.target == ErrorTarget.AZURE_RUN_STORAGE assert e.value.error_codes[0] == "UserError" @pytest.mark.parametrize( ("flow_folder", "is_set_environ_pf_worker_count", "pf_worker_count", "n_process"), [(SAMPLE_FLOW, True, "3", 3), (SAMPLE_FLOW, False, None, 4)], ) def test_process_pool_parallelism_in_fork_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): if "fork" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: fork") p = multiprocessing.Process( target=execute_in_fork_mode_subprocess, args=(dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process), ) p.start() p.join() assert p.exitcode == 0 @pytest.mark.parametrize( ( "flow_folder", "is_set_environ_pf_worker_count", "is_calculation_smaller_than_set", "pf_worker_count", "estimated_available_worker_count", "n_process", ), [ (SAMPLE_FLOW, True, False, "2", 4, 2), (SAMPLE_FLOW, True, True, "6", 2, 6), (SAMPLE_FLOW, False, True, None, 2, 2), ], ) def test_process_pool_parallelism_in_spawn_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): if "spawn" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: spawn") p = multiprocessing.Process( target=execute_in_spawn_mode_subprocess, args=( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_successed(self, dev_connections): p = multiprocessing.Process( target=set_environment_successed_in_subprocess, args=( dev_connections, "spawn", ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_failed(self, dev_connections): p = multiprocessing.Process(target=set_environment_failed_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 def test_process_not_set_environment_variable(self, dev_connections): p = multiprocessing.Process(target=not_set_environment_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 @pytest.mark.skipif(sys.platform == "win32" or sys.platform == "darwin", reason="Only test on linux") @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) @patch( "promptflow.executor._process_manager.create_spawned_fork_process_manager", custom_create_spawned_fork_process_manager, ) def test_spawned_fork_process_manager_crashed_in_fork_mode(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with pytest.raises(SpawnedForkProcessManagerStartFailure) as e: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: pool.run(zip(range(nlines), bulk_inputs)) assert "Failed to start spawned fork process manager" in str(e.value) class TestGetAvailableMaxWorkerCount: @pytest.mark.parametrize( "available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count", [ (128.0, 64.0, 2, 2), # available_memory/process_memory > 1 (63.0, 64.0, 1, 0), # available_memory/process_memory < 1 ], ) def test_get_available_max_worker_count( self, available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count ): with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = available_memory * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = process_memory * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None estimated_available_worker_count = get_available_max_worker_count() assert estimated_available_worker_count == expected_max_worker_count if actual_calculate_worker_count < 1: mock_logger.warning.assert_called_with( f"Current system's available memory is {available_memory}MB, less than the memory " f"{process_memory}MB required by the process. The maximum available worker count is 1." ) else: mock_logger.info.assert_called_with( f"Current system's available memory is {available_memory}MB, " f"memory consumption of current process is {process_memory}MB, " f"estimated available worker count is {available_memory}/{process_memory} " f"= {actual_calculate_worker_count}" ) @pytest.mark.unittest class TestFormatCurrentProcess: def test_format_current_process_info(self): process_name = "process_name" process_pid = 123 line_number = 13 formatted_message = format_current_process_info(process_name, process_pid, line_number) expected_returned_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number})" ) assert formatted_message == expected_returned_log_message @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_start_execution(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) start execution." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_completed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_completed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) completed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_failed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_failed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) failed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_batch_engine.py
from pathlib import Path from tempfile import mkdtemp from unittest.mock import Mock, patch import pytest from promptflow._core._errors import UnexpectedError from promptflow.batch import APIBasedExecutorProxy, BatchEngine, CSharpExecutorProxy, PythonExecutorProxy from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget from promptflow.executor._errors import ConnectionNotFound from promptflow.executor._result import AggregationResult from ...utils import MemoryRunStorage, get_yaml_file, load_jsonl from .test_result import get_line_results, get_node_run_infos @pytest.mark.unittest class TestBatchEngine: @pytest.mark.parametrize( "side_effect, ex_type, ex_target, ex_codes, ex_msg", [ ( Exception("test error"), UnexpectedError, ErrorTarget.BATCH, ["SystemError", "UnexpectedError"], "Unexpected error occurred while executing the batch run. Error: (Exception) test error.", ), ( ConnectionNotFound(message="Connection 'aoai_conn' not found"), ConnectionNotFound, ErrorTarget.EXECUTOR, ["UserError", "ValidationError", "InvalidRequest", "ConnectionNotFound"], "Connection 'aoai_conn' not found", ), ], ) def test_batch_engine_run_error(self, side_effect, ex_type, ex_target, ex_codes, ex_msg): batch_engine = BatchEngine(get_yaml_file("print_input_flow")) with patch("promptflow.batch._batch_engine.BatchEngine._exec_in_task") as mock_func: mock_func.side_effect = side_effect with patch( "promptflow.batch._batch_inputs_processor.BatchInputsProcessor.process_batch_inputs", new=Mock() ): with pytest.raises(ex_type) as e: batch_engine.run({}, {}, Path(".")) assert e.value.target == ex_target assert e.value.error_codes == ex_codes assert e.value.message == ex_msg def test_register_executor(self): # assert original values assert BatchEngine.executor_proxy_classes["python"] == PythonExecutorProxy assert BatchEngine.executor_proxy_classes["csharp"] == CSharpExecutorProxy class MockJSExecutorProxy(APIBasedExecutorProxy): pass # register new proxy BatchEngine.register_executor("js", MockJSExecutorProxy) assert BatchEngine.executor_proxy_classes["js"] == MockJSExecutorProxy assert len(BatchEngine.executor_proxy_classes) == 3 def test_cancel(self): batch_engine = BatchEngine(get_yaml_file("print_input_flow")) assert batch_engine._is_canceled is False batch_engine.cancel() assert batch_engine._is_canceled is True def test_persist_run_info(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } line_results = get_line_results(line_dict) mem_run_storge = MemoryRunStorage() batch_engine = BatchEngine(get_yaml_file("print_input_flow"), "", storage=mem_run_storge) batch_engine._persist_run_info(line_results) assert len(mem_run_storge._flow_runs) == 3 assert len(mem_run_storge._node_runs) == 9 def test_persist_outputs(self): outputs = [ {"line_number": 0, "output": "Hello World!"}, {"line_number": 1, "output": "Hello Microsoft!"}, {"line_number": 2, "output": "Hello Promptflow!"}, ] output_dir = Path(mkdtemp()) batch_engine = BatchEngine(get_yaml_file("print_input_flow")) batch_engine._persist_outputs(outputs, output_dir) actual_outputs = load_jsonl(output_dir / "output.jsonl") assert actual_outputs == outputs def test_update_aggr_result(self): output = {"output": "Hello World!"} metrics = {"accuracy": 0.9} node_run_infos = get_node_run_infos({"aggr_1": Status.Completed, "aggr_2": Status.Completed}) aggre_result = AggregationResult(output={}, metrics={}, node_run_infos={}) aggr_exec_result = AggregationResult(output=output, metrics=metrics, node_run_infos=node_run_infos) batch_engine = BatchEngine(get_yaml_file("print_input_flow")) batch_engine._update_aggr_result(aggre_result, aggr_exec_result) assert aggre_result.output == output assert aggre_result.metrics == metrics assert aggre_result.node_run_infos == node_run_infos
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_csharp_executor_proxy.py
import json import socket import subprocess from pathlib import Path from tempfile import mkdtemp from unittest.mock import MagicMock, patch import pytest from promptflow._core._errors import MetaFileNotFound, MetaFileReadError from promptflow._sdk._constants import FLOW_TOOLS_JSON, PROMPT_FLOW_DIR_NAME from promptflow.batch import CSharpExecutorProxy from promptflow.executor._result import AggregationResult from ...utils import get_flow_folder, get_yaml_file async def get_executor_proxy(): flow_file = get_yaml_file("csharp_flow") working_dir = get_flow_folder("csharp_flow") with patch.object(CSharpExecutorProxy, "ensure_executor_startup", return_value=None): return await CSharpExecutorProxy.create(flow_file, working_dir) @pytest.mark.unittest class TestCSharpExecutorProxy: @pytest.mark.asyncio async def test_create(self): with patch("subprocess.Popen") as mock_popen: mock_popen.return_value = MagicMock() executor_proxy = await get_executor_proxy() mock_popen.assert_called_once() assert executor_proxy is not None assert executor_proxy._process is not None assert executor_proxy._port is not None assert executor_proxy.api_endpoint == f"http://localhost:{executor_proxy._port}" @pytest.mark.asyncio async def test_destroy_with_already_terminated(self): mock_process = MagicMock() mock_process.poll.return_value = 0 executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_not_called() @pytest.mark.asyncio async def test_destroy_with_terminates_gracefully(self): mock_process = MagicMock() mock_process.poll.return_value = None executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_called_once() mock_process.wait.assert_called_once_with(timeout=5) mock_process.kill.assert_not_called() @pytest.mark.asyncio async def test_destroy_with_force_kill(self): mock_process = MagicMock() mock_process.poll.return_value = None mock_process.wait.side_effect = subprocess.TimeoutExpired(cmd="cmd", timeout=5) executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_called_once() mock_process.wait.assert_called_once_with(timeout=5) mock_process.kill.assert_called_once() @pytest.mark.asyncio async def test_exec_aggregation_async(self): executor_proxy = await get_executor_proxy() aggr_result = await executor_proxy.exec_aggregation_async("", "", "") assert isinstance(aggr_result, AggregationResult) @pytest.mark.asyncio @pytest.mark.parametrize( "exit_code, expected_result", [ (None, True), (0, False), (1, False), ], ) async def test_is_executor_active(self, exit_code, expected_result): executor_proxy = await get_executor_proxy() executor_proxy._process = MagicMock() executor_proxy._process.poll.return_value = exit_code assert executor_proxy._is_executor_active() == expected_result def test_get_tool_metadata_succeed(self): working_dir = Path(mkdtemp()) expected_tool_meta = {"name": "csharp_flow", "version": "0.1.0"} tool_meta_file = working_dir / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON tool_meta_file.parent.mkdir(parents=True, exist_ok=True) with open(tool_meta_file, "w") as file: json.dump(expected_tool_meta, file, indent=4) tool_meta = CSharpExecutorProxy.get_tool_metadata("", working_dir) assert tool_meta == expected_tool_meta def test_get_tool_metadata_failed_with_file_not_found(self): working_dir = Path(mkdtemp()) with pytest.raises(MetaFileNotFound): CSharpExecutorProxy.get_tool_metadata("", working_dir) def test_get_tool_metadata_failed_with_content_not_json(self): working_dir = Path(mkdtemp()) tool_meta_file = working_dir / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON tool_meta_file.parent.mkdir(parents=True, exist_ok=True) tool_meta_file.touch() with pytest.raises(MetaFileReadError): CSharpExecutorProxy.get_tool_metadata("", working_dir) def test_find_available_port(self): port = CSharpExecutorProxy.find_available_port() assert isinstance(port, str) assert int(port) > 0, "Port number should be greater than 0" try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("localhost", int(port))) except OSError: pytest.fail("Port is not actually available")
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_base_executor_proxy.py
import json from pathlib import Path from tempfile import mkdtemp from typing import Optional from unittest.mock import AsyncMock, patch import httpx import pytest from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._base_executor_proxy import APIBasedExecutorProxy from promptflow.batch._errors import ExecutorServiceUnhealthy from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ...mock_execution_server import _get_aggr_result_dict, _get_line_result_dict @pytest.mark.unittest class TestAPIBasedExecutorProxy: @pytest.mark.asyncio @pytest.mark.parametrize( "has_error", [False, True], ) async def test_exec_line_async(self, has_error): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" index = 1 inputs = {"question": "test"} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: line_result_dict = _get_line_result_dict(run_id, index, inputs, has_error=has_error) status_code = 400 if has_error else 200 mock.return_value = httpx.Response(status_code, json=line_result_dict) line_result = await mock_executor_proxy.exec_line_async(inputs, index, run_id) assert line_result.output == {} if has_error else {"answer": "Hello world!"} assert line_result.run_info.run_id == run_id assert line_result.run_info.index == index assert line_result.run_info.status == Status.Failed if has_error else Status.Completed assert line_result.run_info.inputs == inputs assert (line_result.run_info.error is not None) == has_error @pytest.mark.asyncio async def test_exec_aggregation_async(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" batch_inputs = {"question": ["test", "error"]} aggregation_inputs = {"${get_answer.output}": ["Incorrect", "Correct"]} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: aggr_result_dict = _get_aggr_result_dict(run_id, aggregation_inputs) mock.return_value = httpx.Response(200, json=aggr_result_dict) aggr_result = await mock_executor_proxy.exec_aggregation_async(batch_inputs, aggregation_inputs, run_id) assert aggr_result.metrics == {"accuracy": 0.5} assert len(aggr_result.node_run_infos) == 1 assert aggr_result.node_run_infos["aggregation"].flow_run_id == run_id assert aggr_result.node_run_infos["aggregation"].inputs == aggregation_inputs assert aggr_result.node_run_infos["aggregation"].status == Status.Completed @pytest.mark.asyncio async def test_ensure_executor_startup_when_no_error(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: with patch.object(APIBasedExecutorProxy, "_check_startup_error_from_file") as mock_check_startup_error: await mock_executor_proxy.ensure_executor_startup("") mock_check_startup_error.assert_not_called() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_not_healthy(self): # empty error file error_file = Path(mkdtemp()) / "error.json" error_file.touch() mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ExecutorServiceUnhealthy) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == "executor unhealthy" mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_existing_validation_error(self): # prepare the error file error_file = Path(mkdtemp()) / "error.json" error_message = "Connection 'aoai_conn' not found" error_dict = ExceptionPresenter.create(ConnectionNotFound(message=error_message)).to_dict() with open(error_file, "w") as file: json.dump(error_dict, file, indent=4) mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ValidationException) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == error_message assert ex.value.target == ErrorTarget.BATCH @pytest.mark.asyncio async def test_ensure_executor_health_when_healthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=True) as mock: await mock_executor_proxy.ensure_executor_health() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_health_when_unhealthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() assert mock.call_count == 20 @pytest.mark.asyncio async def test_ensure_executor_health_when_not_active(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with patch.object(APIBasedExecutorProxy, "_is_executor_active", return_value=False): with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() mock.assert_not_called() @pytest.mark.asyncio @pytest.mark.parametrize( "mock_value, expected_result", [ (httpx.Response(200), True), (httpx.Response(500), False), (Exception("error"), False), ], ) async def test_check_health(self, mock_value, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch("httpx.AsyncClient.get", new_callable=AsyncMock) as mock: mock.return_value = mock_value assert await mock_executor_proxy._check_health() is expected_result @pytest.mark.asyncio @pytest.mark.parametrize( "response, expected_result", [ ( httpx.Response(200, json={"result": "test"}), {"result": "test"}, ), ( httpx.Response(500, json={"error": "test error"}), "test error", ), ( httpx.Response(400, json={"detail": "test"}), { "message": 'Unexpected error when executing a line, status code: 400, error: {"detail": "test"}', "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "400", "error": '{"detail": "test"}', }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ( httpx.Response(502, text="test"), { "message": "Unexpected error when executing a line, status code: 502, error: test", "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "502", "error": "test", }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ], ) async def test_process_http_response(self, response, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") assert mock_executor_proxy._process_http_response(response) == expected_result class MockAPIBasedExecutorProxy(APIBasedExecutorProxy): @property def api_endpoint(self) -> str: return "http://localhost:8080" @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockAPIBasedExecutorProxy": return MockAPIBasedExecutorProxy()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_result.py
from datetime import datetime import pytest from promptflow.batch._result import BatchResult, ErrorSummary, LineError, SystemMetrics from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo from promptflow.contracts.run_info import Status from promptflow.executor._result import AggregationResult, LineResult def get_node_run_infos(node_dict: dict, index=None, api_calls=None, system_metrics=None): return { k: NodeRunInfo( node=k, flow_run_id="flow_run_id", run_id=f"{index}_run_id_{k}", status=v, inputs=[], output={}, metrics={}, error={"code": "UserError", "message": "test message"} if v == Status.Failed else None, parent_run_id="", start_time=None, end_time=None, index=index, api_calls=api_calls, system_metrics=system_metrics, ) for k, v in node_dict.items() } def get_flow_run_info(status_dict: dict, index: int): status = Status.Failed if any(status == Status.Failed for status in status_dict.values()) else Status.Completed error = {"code": "UserError", "message": "test message"} if status == Status.Failed else None return FlowRunInfo( run_id=f"{index}_run_id", status=status, error=error, inputs={}, output={}, metrics={}, request=None, parent_run_id="", root_run_id="", source_run_id="", flow_id="", start_time=datetime.utcnow(), end_time=datetime.utcnow(), index=index, ) def get_line_results(line_dict: dict, api_calls=None, system_metrics=None): return [ LineResult( output={}, aggregation_inputs={}, run_info=get_flow_run_info(status_dict=v, index=k), node_run_infos=get_node_run_infos(node_dict=v, index=k, api_calls=api_calls, system_metrics=system_metrics), ) for k, v in line_dict.items() ] def get_aggregation_result(aggr_dict: dict, api_calls=None, system_metrics=None): return AggregationResult( output={}, metrics={}, node_run_infos=get_node_run_infos(node_dict=aggr_dict, api_calls=api_calls, system_metrics=system_metrics), ) def get_batch_result(line_dict, aggr_dict, line_api_calls=None, aggr_api_calls=None): line_results = get_line_results(line_dict=line_dict, api_calls=line_api_calls) aggr_result = get_aggregation_result(aggr_dict=aggr_dict, api_calls=aggr_api_calls) return BatchResult.create(datetime.utcnow(), datetime.utcnow(), line_results=line_results, aggr_result=aggr_result) def get_api_call(type, name, inputs={}, output={}, children=None): return {"type": type, "name": name, "inputs": inputs, "output": output, "children": children} @pytest.mark.unittest class TestBatchResult: def test_node_status(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed} batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.completed_lines == 2 assert batch_result.failed_lines == 1 assert batch_result.node_status == { "node_0.completed": 3, "node_1.completed": 2, "node_1.failed": 1, "node_2.completed": 2, "node_2.bypassed": 1, "aggr_0.completed": 1, "aggr_1.failed": 1, "aggr_2.bypassed": 1, } def test_system_metrics(self): from openai.types.completion import Completion, CompletionChoice line_dict = {0: {"node_0": Status.Completed}} aggr_dict = {"aggr_0": Status.Completed} api_call_1 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={"prompt": "Please tell me a joke.", "model": "text-davinci-003"}, output={"choices": [{"text": "text"}]}, ) api_call_2 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={ "prompt": ["Please tell me a joke.", "Please tell me a joke about fruit."], "model": "text-davinci-003", }, output=[ Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), ], ) line_api_calls = get_api_call("Chain", "Chain", children=[api_call_1, api_call_2]) aggr_api_call = get_api_call( "LLM", "openai.resources.chat.completions.Completions.create", inputs={ "messages": [{"system": "You are a helpful assistant.", "user": "Please tell me a joke."}], "model": "gpt-35-turbo", }, output={"choices": [{"message": {"content": "content"}}]}, ) batch_result = get_batch_result( line_dict=line_dict, aggr_dict=aggr_dict, line_api_calls=[line_api_calls], aggr_api_calls=[aggr_api_call] ) assert batch_result.system_metrics.total_tokens == 42 assert batch_result.system_metrics.prompt_tokens == 38 assert batch_result.system_metrics.completion_tokens == 4 system_metrics_dict = { "total_tokens": 42, "prompt_tokens": 38, "completion_tokens": 4, } assert system_metrics_dict.items() <= batch_result.system_metrics.to_dict().items() @pytest.mark.parametrize( "api_call", [ get_api_call("LLM", "Completion", inputs="invalid"), get_api_call("LLM", "Completion", output="invalid"), get_api_call("LLM", "Invalid"), get_api_call("LLM", "Completion"), get_api_call("LLM", "Completion", inputs={"api_type": "azure"}), get_api_call("LLM", "ChatCompletion", inputs={"api_type": "azure", "engine": "invalid"}), ], ) def test_invalid_api_calls(self, api_call): line_dict = {0: {"node_0": Status.Completed}} batch_result = get_batch_result(line_dict=line_dict, aggr_dict={}, line_api_calls=[api_call]) assert batch_result.system_metrics.total_tokens == 0 assert batch_result.system_metrics.completion_tokens == 0 assert batch_result.system_metrics.prompt_tokens == 0 def test_error_summary(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = { "aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed, "aggr_4": Status.Failed, } batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.error_summary.failed_system_error_lines == 0 assert batch_result.error_summary.failed_user_error_lines == 1 assert batch_result.error_summary.error_list == [ LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert batch_result.error_summary.error_list[0].to_dict() == { "line_number": 1, "error": { "code": "UserError", "message": "test message", }, } assert batch_result.error_summary.aggr_error_dict == { "aggr_1": {"code": "UserError", "message": "test message"}, "aggr_4": {"code": "UserError", "message": "test message"}, } @pytest.mark.unittest class TestErrorSummary: def test_create(self): line_dict = { 0: {"node_0": Status.Failed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, } line_results = get_line_results(line_dict) line_results[0].run_info.error = {"code": "SystemError", "message": "test system error message"} aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed} aggr_result = get_aggregation_result(aggr_dict) error_summary = ErrorSummary.create(line_results, aggr_result) assert error_summary.failed_user_error_lines == 1 assert error_summary.failed_system_error_lines == 1 assert error_summary.error_list == [ LineError(line_number=0, error={"code": "SystemError", "message": "test system error message"}), LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert error_summary.aggr_error_dict == {"aggr_1": {"code": "UserError", "message": "test message"}} @pytest.mark.unittest class TestSystemMetrics: def test_create(slef): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Completed}, } line_system_metrics = { "total_tokens": 5, "prompt_tokens": 3, "completion_tokens": 2, } line_results = get_line_results(line_dict, system_metrics=line_system_metrics) aggr_dict = {"aggr_0": Status.Completed} # invalid system metrics aggr_system_metrics = { "total_tokens": 10, "prompt_tokens": 6, } aggr_result = get_aggregation_result(aggr_dict, system_metrics=aggr_system_metrics) system_metrics = SystemMetrics.create(datetime.utcnow(), datetime.utcnow(), line_results, aggr_result) assert system_metrics.total_tokens == 20 assert system_metrics.prompt_tokens == 12 assert system_metrics.completion_tokens == 8 system_metrics_dict = { "total_tokens": 20, "prompt_tokens": 12, "completion_tokens": 8, } assert system_metrics_dict.items() <= system_metrics.to_dict().items()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_batch_inputs_processor.py
import json from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._core._errors import UnexpectedError from promptflow._utils.utils import dump_list_to_jsonl from promptflow.batch._batch_inputs_processor import BatchInputsProcessor, apply_inputs_mapping from promptflow.batch._errors import EmptyInputsData, InputMappingError from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType from ...utils import DATA_ROOT @pytest.mark.unittest class TestBatchInputsProcessor: def test_process_batch_inputs(self): data = [ {"question": "What's promptflow?"}, {"question": "Do you like promptflow?"}, ] data_file = Path(mkdtemp()) / "data.jsonl" dump_list_to_jsonl(data_file, data) input_dirs = {"data": data_file} inputs_mapping = {"question": "${data.question}"} batch_inputs = BatchInputsProcessor("", {}).process_batch_inputs(input_dirs, inputs_mapping) assert batch_inputs == [ {"line_number": 0, "question": "What's promptflow?"}, {"line_number": 1, "question": "Do you like promptflow?"}, ] def test_process_batch_inputs_error(self): data_file = Path(mkdtemp()) / "data.jsonl" data_file.touch() input_dirs = {"data": data_file} inputs_mapping = {"question": "${data.question}"} with pytest.raises(EmptyInputsData) as e: BatchInputsProcessor("", {}).process_batch_inputs(input_dirs, inputs_mapping) expected_error_message = ( "Couldn't find any inputs data at the given input paths. " "Please review the provided path and consider resubmitting." ) assert expected_error_message in e.value.message def test_resolve_data_from_input_path(self): inputs_dir = Path(mkdtemp()) # data.jsonl data = [ {"question": "What's promptflow?"}, {"question": "Do you like promptflow?"}, ] data_file = inputs_dir / "data.jsonl" dump_list_to_jsonl(data_file, data) # inputs.json inputs_file = inputs_dir / "inputs.json" with open(inputs_file, "w") as file: file.write(json.dumps(data)) result = BatchInputsProcessor("", {})._resolve_data_from_input_path(inputs_dir) assert result == data + data # if has max_lines_count result = BatchInputsProcessor("", {}, max_lines_count=1)._resolve_data_from_input_path(inputs_dir) assert result == [ {"question": "What's promptflow?"}, ] @pytest.mark.parametrize( "data_path", [ "10k.jsonl", "10k", ], ) def test_resolve_data_from_input_path_with_large_data(self, data_path): data_path = DATA_ROOT / "load_data_cases" / data_path result = BatchInputsProcessor("", {})._resolve_data_from_input_path(Path(data_path)) assert isinstance(result, list) assert len(result) == 10000 # specify max_rows_count max_rows_count = 5 head_results = BatchInputsProcessor( working_dir="", flow_inputs={}, max_lines_count=max_rows_count, )._resolve_data_from_input_path(Path(data_path)) assert isinstance(head_results, list) assert len(head_results) == max_rows_count assert result[:max_rows_count] == head_results @pytest.mark.parametrize( "inputs, inputs_mapping, expected", [ ( {"data.test": {"question": "longer input key has lower priority."}, "line_number": 0}, { "question": "${data.test.question}", # Question from the data "value": 1, }, {"question": "longer input key has lower priority.", "value": 1, "line_number": 0}, ), ( { # Missing line_number is also valid data. "data.test": {"question": "longer input key has lower priority."}, "data": {"test.question": "Shorter input key has higher priority."}, }, { "question": "${data.test.question}", # Question from the data "deployment_name": "text-davinci-003", # literal value }, { "question": "Shorter input key has higher priority.", "deployment_name": "text-davinci-003", }, ), ], ) def test_apply_inputs_mapping(self, inputs, inputs_mapping, expected): result = apply_inputs_mapping(inputs, inputs_mapping) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) @pytest.mark.parametrize( "inputs, inputs_mapping, error_code, error_message", [ ( { "baseline": {"answer": 123, "question": "dummy"}, }, { "question": "${baseline.output}", "answer": "${data.output}", }, InputMappingError, "Couldn't find these mapping relations: ${baseline.output}, ${data.output}. " "Please make sure your input mapping keys and values match your YAML input section and input data.", ), ], ) def test_apply_inputs_mapping_error(self, inputs, inputs_mapping, error_code, error_message): with pytest.raises(error_code) as e: apply_inputs_mapping(inputs, inputs_mapping) assert error_message in str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize( "inputs, expected", [ ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "output": [{"answer": "output_ans1"}, {"answer": "output_ans2"}], }, [ # Get 2 lines data. { "data": {"question": "q1", "answer": "ans1"}, "output": {"answer": "output_ans1"}, "line_number": 0, }, { "data": {"question": "q2", "answer": "ans2"}, "output": {"answer": "output_ans2"}, "line_number": 1, }, ], ), ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "output": [{"answer": "output_ans2", "line_number": 1}], }, [ # Only one line valid data. { "data": {"question": "q2", "answer": "ans2"}, "output": {"answer": "output_ans2", "line_number": 1}, "line_number": 1, }, ], ), ], ) def test_merge_input_dicts_by_line(self, inputs, expected): result = BatchInputsProcessor("", {})._merge_input_dicts_by_line(inputs) json.dumps(result) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) @pytest.mark.parametrize( "inputs, error_code, error_message", [ ( { "baseline": [], }, InputMappingError, "The input for batch run is incorrect. Input from key 'baseline' is an empty list, which means we " "cannot generate a single line input for the flow run. Please rectify the input and try again.", ), ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "baseline": [{"answer": "baseline_ans2"}], }, InputMappingError, "The input for batch run is incorrect. Line numbers are not aligned. Some lists have dictionaries " "missing the 'line_number' key, and the lengths of these lists are different. List lengths are: " "{'data': 2, 'baseline': 1}. Please make sure these lists have the same length " "or add 'line_number' key to each dictionary.", ), ], ) def test_merge_input_dicts_by_line_error(self, inputs, error_code, error_message): with pytest.raises(error_code) as e: BatchInputsProcessor("", {})._merge_input_dicts_by_line(inputs) assert error_message == str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize("inputs_mapping", [{"question": "${data.question}"}, {}]) def test_complete_inputs_mapping_by_default_value(self, inputs_mapping): inputs = { "question": None, "groundtruth": None, "input_with_default_value": FlowInputDefinition(type=ValueType.BOOL, default=False), } updated_inputs_mapping = BatchInputsProcessor("", inputs)._complete_inputs_mapping_by_default_value( inputs_mapping ) assert "input_with_default_value" not in updated_inputs_mapping assert updated_inputs_mapping == {"question": "${data.question}", "groundtruth": "${data.groundtruth}"} @pytest.mark.parametrize( "inputs, inputs_mapping, expected", [ ( # Use default mapping generated from flow inputs. { "data": [{"question": "q1", "groundtruth": "ans1"}, {"question": "q2", "groundtruth": "ans2"}], }, {}, [ { "question": "q1", "groundtruth": "ans1", "line_number": 0, }, { "question": "q2", "groundtruth": "ans2", "line_number": 1, }, ], ), ( # Partially use default mapping generated from flow inputs. { "data": [{"question": "q1", "groundtruth": "ans1"}, {"question": "q2", "groundtruth": "ans2"}], }, { "question": "${data.question}", }, [ { "question": "q1", "groundtruth": "ans1", "line_number": 0, }, { "question": "q2", "groundtruth": "ans2", "line_number": 1, }, ], ), ( { "data": [ {"question": "q1", "answer": "ans1", "line_number": 5}, {"question": "q2", "answer": "ans2", "line_number": 6}, ], "baseline": [ {"answer": "baseline_ans1", "line_number": 5}, {"answer": "baseline_ans2", "line_number": 7}, ], }, { "question": "${data.question}", # Question from the data "groundtruth": "${data.answer}", # Answer from the data "baseline": "${baseline.answer}", # Answer from the baseline "deployment_name": "text-davinci-003", # literal value "line_number": "${data.question}", # line_number mapping should be ignored }, [ { "question": "q1", "groundtruth": "ans1", "baseline": "baseline_ans1", "deployment_name": "text-davinci-003", "line_number": 5, }, ], ), ], ) def test_validate_and_apply_inputs_mapping(self, inputs, inputs_mapping, expected): flow_inputs = {"question": None, "groundtruth": None} result = BatchInputsProcessor("", flow_inputs)._validate_and_apply_inputs_mapping(inputs, inputs_mapping) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) def test_validate_and_apply_inputs_mapping_empty_input(self): inputs = { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "baseline": [{"answer": "baseline_ans1"}, {"answer": "baseline_ans2"}], } result = BatchInputsProcessor("", {})._validate_and_apply_inputs_mapping(inputs, {}) assert result == [ {"line_number": 0}, {"line_number": 1}, ], "Empty flow inputs and inputs_mapping should return list with empty dicts." @pytest.mark.parametrize( "inputs_mapping, error_code", [ ( {"question": "${question}"}, InputMappingError, ), ], ) def test_validate_and_apply_inputs_mapping_error(self, inputs_mapping, error_code): flow_inputs = {"question": None} with pytest.raises(error_code) as _: BatchInputsProcessor("", flow_inputs)._validate_and_apply_inputs_mapping( inputs={}, inputs_mapping=inputs_mapping ) @pytest.mark.parametrize( "inputs, inputs_mapping, error_code, error_message", [ ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], }, None, UnexpectedError, "The input for batch run is incorrect. Please make sure to set up a proper input mapping " "before proceeding. If you need additional help, feel free to contact support for further assistance.", ), ], ) def test_inputs_mapping_for_all_lines_error(self, inputs, inputs_mapping, error_code, error_message): with pytest.raises(error_code) as e: BatchInputsProcessor("", {})._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping) assert error_message == str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value))
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_execution_utils.py
import pytest from promptflow._utils.execution_utils import apply_default_value_for_input from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType @pytest.mark.unittest class TestFlowExecutor: @pytest.mark.parametrize( "flow_inputs, inputs, expected_inputs", [ ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, None, # Could handle None input {"input_from_default": "default_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {"input_from_default": "default_value"}, ), ( { "input_no_default": FlowInputDefinition(type=ValueType.STRING), }, {}, {}, # No default value for input. ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"input_from_default": "input_value", "another_key": "input_value"}, {"input_from_default": "input_value", "another_key": "input_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.BOOL, default=False), }, {}, {"input_from_default": False}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.LIST, default=[]), }, {}, {"input_from_default": []}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.OBJECT, default={}), }, {}, {"input_from_default": {}}, ), ], ) def test_apply_default_value_for_input(self, flow_inputs, inputs, expected_inputs): result = apply_default_value_for_input(flow_inputs, inputs) assert result == expected_inputs
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_tool_utils.py
import inspect from typing import Union import pytest from promptflow._core._errors import DuplicateToolMappingError from promptflow._utils.tool_utils import ( DynamicListError, ListFunctionResponseError, _find_deprecated_tools, append_workspace_triple_to_func_input_params, function_to_interface, load_function_from_function_path, param_to_definition, validate_dynamic_list_func_response_type, ) from promptflow.connections import AzureOpenAIConnection, CustomConnection from promptflow.contracts.tool import ValueType, Tool, ToolType # mock functions for dynamic list function testing def mock_dynamic_list_func1(): pass def mock_dynamic_list_func2(input1): pass def mock_dynamic_list_func3(input1, input2): pass def mock_dynamic_list_func4(input1, input2, **kwargs): pass def mock_dynamic_list_func5(input1, input2, subscription_id): pass def mock_dynamic_list_func6(input1, input2, subscription_id, resource_group_name, workspace_name): pass def mock_dynamic_list_func7(input1, input2, subscription_id, **kwargs): pass def mock_dynamic_list_func8(input1, input2, subscription_id, resource_group_name, workspace_name, **kwargs): pass @pytest.mark.unittest class TestToolUtils: def test_function_to_interface(self): def func(conn: [AzureOpenAIConnection, CustomConnection], input: [str, int]): pass input_defs, _, connection_types, _ = function_to_interface(func) assert len(input_defs) == 2 assert input_defs["conn"].type == ["AzureOpenAIConnection", "CustomConnection"] assert input_defs["input"].type == [ValueType.OBJECT] assert connection_types == [["AzureOpenAIConnection", "CustomConnection"]] def test_function_to_interface_with_invalid_initialize_inputs(self): def func(input_str: str): pass with pytest.raises(Exception) as exec_info: function_to_interface(func, {"input_str": "test"}) assert "Duplicate inputs found from" in exec_info.value.args[0] def test_function_to_interface_with_kwargs(self): def func(input_str: str, **kwargs): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is True def func(input_str: str): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is False def test_param_to_definition(self): from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow.contracts.tool import Secret class MyFirstConnection(CustomStrongTypeConnection): api_key: Secret api_base: str class MySecondConnection(CustomStrongTypeConnection): api_key: Secret api_base: str def some_func( conn1: MyFirstConnection, conn2: Union[CustomConnection, MyFirstConnection], conn3: Union[MyFirstConnection, CustomConnection], conn4: Union[MyFirstConnection, MySecondConnection], conn5: CustomConnection, conn6: Union[CustomConnection, int], conn7: Union[MyFirstConnection, int], ): pass sig = inspect.signature(some_func) input_def, _ = param_to_definition(sig.parameters.get("conn1"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn2"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn3"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn4"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection", "MySecondConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn5"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn6"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn7"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None @pytest.mark.parametrize( "func, func_input_params_dict, use_ws_triple, expected_res", [ (mock_dynamic_list_func1, None, False, {}), (mock_dynamic_list_func2, {"input1": "value1"}, False, {"input1": "value1"}), ( mock_dynamic_list_func3, {"input1": "value1", "input2": "value2"}, False, {"input1": "value1", "input2": "value2"}, ), (mock_dynamic_list_func3, {"input1": "value1"}, False, {"input1": "value1"}), (mock_dynamic_list_func3, {"input1": "value1"}, True, {"input1": "value1"}), ( mock_dynamic_list_func4, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func5, {"input1": "value1"}, True, {"input1": "value1", "subscription_id": "mock_subscription_id"}, ), ( mock_dynamic_list_func5, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, {"input1": "value1", "subscription_id": "input_subscription_id"}, ), ( mock_dynamic_list_func6, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func6, { "input1": "value1", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "workspace_name": "input_workspace_name", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", }, ), ( mock_dynamic_list_func7, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func7, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, ), ], ) def test_append_workspace_triple_to_func_input_params( self, func, func_input_params_dict, use_ws_triple, expected_res, mocked_ws_triple ): ws_triple_dict = mocked_ws_triple._asdict() if use_ws_triple else None func_sig_params = inspect.signature(func).parameters actual_combined_inputs = append_workspace_triple_to_func_input_params( func_sig_params=func_sig_params, func_input_params_dict=func_input_params_dict, ws_triple_dict=ws_triple_dict, ) assert actual_combined_inputs == expected_res @pytest.mark.parametrize( "res", [ ( [ { "value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0", "description": "this is 0 item", }, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ([{"value": "fig0"}, {"value": "kiwi1"}]), ([{"value": "fig0", "display_value": "My_fig0"}, {"value": "kiwi1", "display_value": "My_kiwi1"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", }, ] ), ([{"value": "fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "description": "this is 0 item"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ], ) def test_validate_dynamic_list_func_response_type(self, res): validate_dynamic_list_func_response_type(response=res, f="mock_func") @pytest.mark.parametrize( "res, err_msg", [ (None, "mock_func response can not be empty."), ([], "mock_func response can not be empty."), (["a", "b"], "mock_func response must be a list of dict. a is not a dict."), ({"a": "b"}, "mock_func response must be a list."), ([{"a": "b"}], "mock_func response dict must have 'value' key."), ([{"value": 1 + 2j}], "mock_func response dict value \\(1\\+2j\\) is not json serializable."), ], ) def test_validate_dynamic_list_func_response_type_with_error(self, res, err_msg): error_message = ( f"Unable to display list of items due to '{err_msg}'. \nPlease contact the tool " f"author/support team for troubleshooting assistance." ) with pytest.raises(ListFunctionResponseError, match=error_message): validate_dynamic_list_func_response_type(response=res, f="mock_func") def test_load_function_from_function_path(self, mock_module_with_list_func): func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" load_function_from_function_path(func_path) def test_load_function_from_function_path_with_error(self, mock_module_with_list_func): func_path = "mock_func_path" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'mock_func_path'. Expected format: format 'my_module.my_func'. Detailed error: not enough " "values to unpack \\(expected 2, got 1\\)'. \nPlease contact the tool author/support team for " "troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func'. Expected format: format " "'my_module.my_func'. Detailed error: No module named 'fake_tool_pkg''. \nPlease contact the tool " "author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_field" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'my_tool_package.tools.tool_with_dynamic_list_input.my_field'. Expected format: " "format 'my_module.my_func'. Detailed error: Unable to display list of items due to ''1' " "is not callable.'. \nPlease contact the tool author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) def test_find_deprecated_tools(self): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), } with pytest.raises(DuplicateToolMappingError, match="secure operation"): _find_deprecated_tools(package_tools)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_logger_utils.py
import io import logging import time from multiprocessing.pool import ThreadPool from pathlib import Path from tempfile import mkdtemp from unittest.mock import Mock from uuid import uuid4 import pytest from promptflow._utils.credential_scrubber import CredentialScrubber from promptflow._utils.logger_utils import ( CredentialScrubberFormatter, FileHandler, FileHandlerConcurrentWrapper, LogContext, bulk_logger, scrub_credentials, update_log_path, update_single_log_path, ) from promptflow.contracts.run_mode import RunMode from ...utils import load_content def _set_handler(logger: logging.Logger, handler: FileHandler, log_content: str): for h in logger.handlers: if isinstance(h, FileHandlerConcurrentWrapper): h.handler = handler time.sleep(1) logger.warning(log_content) h.clear() class DummyException(Exception): pass @pytest.fixture def logger(): logger = logging.getLogger(str(uuid4())) logger.setLevel(logging.INFO) return logger @pytest.fixture def stream_handler(): stream = io.StringIO() return logging.StreamHandler(stream) @pytest.mark.unittest class TestCredentialScrubberFormatter: def test_log(self, logger, stream_handler): """Make sure credentials by logger.log are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=signature") logger.error("testerror&key=accountkey") logger.warning("testwarning&sig=signature") logger.critical("print dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER}\n" f"testerror&key={CredentialScrubber.PLACE_HOLDER}\n" f"testwarning&sig={CredentialScrubber.PLACE_HOLDER}\n" f"print {CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_args(self, logger, stream_handler): """Make sure credentials by logger.log (in args) are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=%s credential=%s", "signature", "dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER} " f"credential={CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_exc_info(self, logger, stream_handler): """Make sure credentials in exception are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) exception = DummyException("credential=dummy secret accountkey=accountkey") logger.exception("test exception", exc_info=exception) expected_log_output = "credential=**data_scrubbed** accountkey=**data_scrubbed**" assert expected_log_output in stream_handler.stream.getvalue() def test_set_credential_list_thread_safe(self): formatter = CredentialScrubberFormatter() def set_and_check_credential_list(credential_list): formatter.set_credential_list(credential_list) time.sleep(1) assert formatter.credential_scrubber.custom_str_set == set(credential_list) with ThreadPool(processes=3) as pool: results = pool.map(set_and_check_credential_list, [[f"secret {i}", f"credential {i}"] for i in range(3)]) _ = list(results) @pytest.mark.unittest class TestFileHandlerConcurrentWrapper: def test_set_handler_thread_safe(self): wrapper = FileHandlerConcurrentWrapper() logger = logging.getLogger("test execution log handler") logger.addHandler(wrapper) process_num = 3 folder_path = Path(mkdtemp()) log_path_list = [str(folder_path / f"log_{i}.log") for i in range(process_num)] with ThreadPool(processes=process_num) as pool: results = pool.starmap( _set_handler, ((logger, FileHandler(log_path_list[i]), f"log {i}") for i in range(process_num)) ) results = list(results) # Make sure log content is as expected. for i, log_path in enumerate(log_path_list): with open(log_path, "r") as f: log = f.read() log_lines = log.split("\n") assert len(log_lines) == 2 assert f"log {i}" in log_lines[0] assert log_lines[1] == "" def test_clear(self): wrapper = FileHandlerConcurrentWrapper() assert wrapper.handler is None log_path = str(Path(mkdtemp()) / "logs.log") file_handler = FileHandler(log_path) file_handler.close = Mock(side_effect=Exception("test exception")) wrapper.handler = file_handler wrapper.clear() assert wrapper.handler is None @pytest.mark.unittest class TestLogContext: def test_context_manager(self): log_handler = FileHandlerConcurrentWrapper() logger = logging.getLogger("test_setup_logger_context") logger.addHandler(log_handler) log_path = str(Path(mkdtemp()) / "test.log") try: log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() log_context.input_logger = logger assert LogContext.get_current() is None with log_context: assert LogContext.get_current() is not None # Make sure context variables are set. inner_handler = log_handler._context_var.get() assert isinstance(inner_handler, FileHandler) assert isinstance(inner_handler._formatter, CredentialScrubberFormatter) scrubber = inner_handler._formatter._context_var.get() assert scrubber is not None logger.warning("Print %s", "&sig=signature") # Raise exception for test. raise DummyException("Raise exception for test.") except DummyException: pass # Make sure log content is as expected. with open(log_path, "r") as f: log_content = f.read() assert f"Print &sig={CredentialScrubber.PLACE_HOLDER}" in log_content # Make sure context variables are cleaned up. assert log_handler._context_var.get() is None def test_empty_file_path(self, logger, stream_handler): logger.addHandler(stream_handler) logger.addHandler(FileHandlerConcurrentWrapper()) with LogContext("", input_logger=logger): logger.info("test log") assert stream_handler.stream.getvalue() == "test log\n" def test_update_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path log_path = str(folder_path / "log_without_input_logger.log") update_log_path(log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") log = load_content(log_path) keywords = ["test update log", "test update input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in log for keyword in keywords) def test_update_single_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path bulk_log_path = str(folder_path / "update_bulk_log.log") update_single_log_path(bulk_log_path, bulk_logger) input_log_path = str(folder_path / "update_input_log.log") update_single_log_path(input_log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") bulk_log = load_content(bulk_log_path) input_log = load_content(input_log_path) bulk_keywords = ["test update log", "execution.bulk", "INFO"] input_keywords = ["test update input log", "input_logger", "WARNING"] assert all(keyword in bulk_log for keyword in bulk_keywords) assert all(keyword not in bulk_log for keyword in input_keywords) assert all(keyword in input_log for keyword in input_keywords) assert all(keyword not in input_log for keyword in bulk_keywords) def test_scrub_credentials(self): log_content = "sig=signature&key=accountkey" folder_path = Path(mkdtemp()) logs_path = str(folder_path / "logs.log") scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**" with LogContext(logs_path): scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_feature_utils.py
import pytest from promptflow._utils.feature_utils import Feature, get_feature_list @pytest.mark.unittest def test_get_feature_list(): feature_list = get_feature_list() assert isinstance(feature_list, list) assert all(isinstance(feature, Feature) for feature in feature_list)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_utils.py
import pytest import os from unittest.mock import patch from datetime import datetime from promptflow._utils.utils import is_json_serializable, get_int_env_var, log_progress class MyObj: pass @pytest.mark.unittest class TestUtils: @pytest.mark.parametrize("value, expected_res", [(None, True), (1, True), ("", True), (MyObj(), False)]) def test_is_json_serializable(self, value, expected_res): assert is_json_serializable(value) == expected_res @pytest.mark.parametrize( "env_var, env_value, default_value, expected_result", [ ("TEST_VAR", "10", None, 10), # Valid integer string ("TEST_VAR", "invalid", None, None), # Invalid integer strings ("TEST_VAR", None, 5, 5), # Environment variable does not exist ("TEST_VAR", "10", 5, 10), # Valid integer string with a default value ("TEST_VAR", "invalid", 5, 5), # Invalid integer string with a default value ]) def test_get_int_env_var(self, env_var, env_value, default_value, expected_result): with patch.dict(os.environ, {env_var: env_value} if env_value is not None else {}): assert get_int_env_var(env_var, default_value) == expected_result @pytest.mark.parametrize( "env_var, env_value, expected_result", [ ("TEST_VAR", "10", 10), # Valid integer string ("TEST_VAR", "invalid", None), # Invalid integer strings ("TEST_VAR", None, None), # Environment variable does not exist ]) def test_get_int_env_var_without_default_vaue(self, env_var, env_value, expected_result): with patch.dict(os.environ, {env_var: env_value} if env_value is not None else {}): assert get_int_env_var(env_var) == expected_result @patch('promptflow.executor._line_execution_process_pool.bulk_logger', autospec=True) def test_log_progress(self, mock_logger): run_start_time = datetime.utcnow() count = 1 # Tests do not log when not specified at specified intervals (interval = 2) total_count = 20 log_progress(run_start_time, mock_logger, count, total_count) mock_logger.info.assert_not_called() # Test logging at specified intervals (interval = 2) count = 8 log_progress(run_start_time, mock_logger, count, total_count) mock_logger.info.assert_any_call("Finished 8 / 20 lines.") mock_logger.reset_mock() # Test logging using last_log_count parameter (conut - last_log_count > interval(2)) log_progress(run_start_time, mock_logger, count, total_count, last_log_count=5) mock_logger.info.assert_any_call("Finished 8 / 20 lines.") mock_logger.reset_mock() # Test don't log using last_log_count parameter ((conut - last_log_count < interval(2)) log_progress(run_start_time, mock_logger, count, total_count, last_log_count=7) mock_logger.info.assert_not_called()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_exception_utils.py
import json import re from traceback import TracebackException import pytest from promptflow._core._errors import ToolExecutionError from promptflow._core.operation_context import OperationContext from promptflow._utils.exception_utils import ( ErrorResponse, ExceptionPresenter, JsonSerializedPromptflowException, get_tb_next, infer_error_code_from_class, last_frame_info, remove_suffix, ) from promptflow.exceptions import ( ErrorTarget, PromptflowException, SystemErrorException, UserErrorException, ValidationException, ) def set_inner_exception_by_parameter(): raise PromptflowException("test", error=ValueError("bad number")) def set_inner_exception_by_raise_from(): raise PromptflowException("test") from ValueError("bad number") def code_with_bug(): 1 / 0 def raise_tool_execution_error(): try: code_with_bug() except Exception as e: raise ToolExecutionError(node_name="MyTool") from e def raise_exception_with_object(): raise PromptflowException(message_format="{inner_exception}", inner_exception=Exception("exception message")) def raise_user_error(): try: code_with_bug() except Exception as e: raise UserErrorException("run failed", target=ErrorTarget.TOOL) from e def raise_context_exception(): try: code_with_bug() except Exception as e: raise CustomizedContextException(e) class CustomizedContextException(Exception): def __init__(self, inner_exception): self.inner_exception = inner_exception @property def message(self): code_with_bug() return "context exception" class CustomizedException(Exception): pass class CustomUserError(UserErrorException): pass class CustomDefaultTargetError(UserErrorException): def __init__(self, target=ErrorTarget.EXECUTOR, **kwargs): super().__init__(target=target, **kwargs) def raise_general_exception(): try: code_with_bug() except Exception as e: raise CustomizedException("General exception") from e def raise_promptflow_exception(): try: code_with_bug() except Exception as e: raise PromptflowException("Promptflow exception") from e def raise_promptflow_exception_without_inner_exception(): try: code_with_bug() except Exception: raise PromptflowException("Promptflow exception") TOOL_EXECUTION_ERROR_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 ZeroDivisionError: division by zero """ TOOL_EXCEPTION_TRACEBACK = r""" The above exception was the direct cause of the following exception: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_.* raise_tool_execution_error\(\) File ".*test_exception_utils.py", line .*, in raise_tool_execution_error raise ToolExecutionError\(node_name="MyTool"\) from e """ TOOL_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_tool_execution_error code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ GENERAL_EXCEPTION_TRACEBACK = r""" The above exception was the direct cause of the following exception: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_debug_info_for_general_exception raise_general_exception\(\) File ".*test_exception_utils.py", line .*, in raise_general_exception raise CustomizedException\("General exception"\) from e """ GENERAL_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_general_exception code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ CONTEXT_EXCEPTION_TRACEBACK = r""" During handling of the above exception, another exception occurred: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_debug_info_for_context_exception raise_context_exception\(\) File ".*test_exception_utils.py", line .*, in raise_context_exception raise CustomizedContextException\(e\) """ CONTEXT_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_context_exception code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ @pytest.mark.unittest class TestExceptionUtilsCommonMethod: def test_get_tb_next(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() tb_next = get_tb_next(e.value.__traceback__, 3) te = TracebackException(type(e.value), e.value, tb_next) formatted_tb = "".join(te.format()) assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, formatted_tb) def test_last_frame_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() frame_info = last_frame_info(e.value) assert "test_exception_utils.py" in frame_info.get("filename") assert frame_info.get("lineno") > 0 assert frame_info.get("name") == "raise_tool_execution_error" assert last_frame_info(None) == {} @pytest.mark.parametrize( "error_class, expected_error_code", [ (UserErrorException, "UserError"), (SystemErrorException, "SystemError"), (ValidationException, "ValidationError"), (ToolExecutionError, "ToolExecutionError"), (ValueError, "ValueError"), ], ) def test_infer_error_code_from_class(self, error_class, expected_error_code): assert infer_error_code_from_class(error_class) == expected_error_code @pytest.mark.unittest class TestExceptionPresenter: def test_debug_info(self): # Test ToolExecutionError with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "ToolExecutionError" assert re.match(TOOL_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_debug_info_for_context_exception(self): with pytest.raises(CustomizedContextException) as e: raise_context_exception() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "CustomizedContextException" assert re.match(CONTEXT_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(CONTEXT_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_debug_info_for_general_exception(self): # Test General Exception with pytest.raises(CustomizedException) as e: raise_general_exception() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "CustomizedException" assert re.match(GENERAL_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(GENERAL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_to_dict_for_general_exception(self): with pytest.raises(CustomizedException) as e: raise_general_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=True) assert "debugInfo" in dct dct.pop("debugInfo") assert dct == { "code": "SystemError", "message": "General exception", "messageFormat": "", "messageParameters": {}, "innerError": { "code": "CustomizedException", "innerError": None, }, } def test_to_dict_for_promptflow_exception(self): with pytest.raises(PromptflowException) as e: raise_promptflow_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=False) assert dct == { "code": "SystemError", "message": "Promptflow exception", "messageFormat": "", "messageParameters": {}, "referenceCode": "Unknown", "innerError": { "code": "ZeroDivisionError", "innerError": None, }, } def test_to_dict_for_promptflow_exception_without_inner_exception(self): with pytest.raises(PromptflowException) as e: raise_promptflow_exception_without_inner_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=False) assert dct == { "code": "SystemError", "message": "Promptflow exception", "messageFormat": "", "messageParameters": {}, "referenceCode": "Unknown", "innerError": None, } def test_to_dict_for_tool_execution_error(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() presenter = ExceptionPresenter.create(e.value) assert re.search(TOOL_EXCEPTION_INNER_TRACEBACK, presenter.formatted_traceback) assert re.search(TOOL_EXCEPTION_TRACEBACK, presenter.formatted_traceback) dct = presenter.to_dict(include_debug_info=False) assert dct.pop("additionalInfo") is not None assert dct == { "code": "UserError", "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } @pytest.mark.parametrize( "raise_exception_func, error_class, expected_error_codes", [ (raise_general_exception, CustomizedException, ["SystemError", "CustomizedException"]), (raise_tool_execution_error, ToolExecutionError, ["UserError", "ToolExecutionError"]), (raise_promptflow_exception, PromptflowException, ["SystemError", "ZeroDivisionError"]), (raise_promptflow_exception_without_inner_exception, PromptflowException, ["SystemError"]), ], ) def test_error_codes(self, raise_exception_func, error_class, expected_error_codes): with pytest.raises(error_class) as e: raise_exception_func() presenter = ExceptionPresenter.create(e.value) assert presenter.error_codes == expected_error_codes @pytest.mark.unittest class TestErrorResponse: def test_from_error_dict(self): error_dict = { "code": "UserError", "message": "Flow run failed.", } response = ErrorResponse.from_error_dict(error_dict) assert response.response_code == "400" assert response.error_codes == ["UserError"] assert response.message == "Flow run failed." response_dct = response.to_dict() assert response_dct["time"] is not None response_dct.pop("time") component_name = response_dct.pop("componentName", None) assert component_name == OperationContext.get_instance().get_user_agent() assert "promptflow" in component_name assert response_dct == { "error": { "code": "UserError", "message": "Flow run failed.", }, "correlation": None, "environment": None, "location": None, } def test_to_simplied_dict(self): with pytest.raises(CustomizedException) as e: raise_general_exception() error_response = ErrorResponse.from_exception(e.value) assert error_response.to_simplified_dict() == { "error": { "code": "SystemError", "message": "General exception", } } def test_from_exception(self): with pytest.raises(CustomizedException) as e: raise_general_exception() response = ErrorResponse.from_exception(e.value).to_dict() assert response["time"] is not None response.pop("time") component_name = response.pop("componentName", None) assert component_name == OperationContext.get_instance().get_user_agent() assert "promptflow" in component_name assert response == { "error": { "code": "SystemError", "message": "General exception", "messageFormat": "", "messageParameters": {}, "innerError": { "code": "CustomizedException", "innerError": None, }, }, "correlation": None, "environment": None, "location": None, } @pytest.mark.unittest @pytest.mark.parametrize( "input_dict, expected", [ ({"code": "firstError"}, "firstError"), ({"code": "firstError", "innerError": {}}, "firstError"), ({"code": "firstError", "innerError": {"code": "secondError"}}, "firstError/secondError"), ({"code": None, "innerError": {"code": "secondError"}}, ""), # Dict doesn't have code in outmost will return empty string. ({"error": {"code": "firstError", "innerError": {"code": "secondError"}}}, ""), ], ) def test_error_code_hierarchy(self, input_dict, expected): assert ErrorResponse.from_error_dict(input_dict).error_code_hierarchy == expected @pytest.mark.parametrize( "error_dict, expected_innermost_error_code", [ ( { "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, }, "ToolExecutionError", ), ({"code": "UserError", "innerError": None}, "UserError"), ({"message": "UserError", "innerError": None}, None), ], ) def test_innermost_error_code_with_code(self, error_dict, expected_innermost_error_code): inner_error_code = ErrorResponse.from_error_dict(error_dict).innermost_error_code assert inner_error_code == expected_innermost_error_code @pytest.mark.parametrize( "error_dict, expected_additional_info", [ ({"code": "UserError"}, {}), ( { "code": "UserError", "additionalInfo": [ { "type": "test_additional_info", "info": "This is additional info for testing.", }, "not_dict", { "type": "empty_info", }, { "info": "Empty type", }, { "test": "Invalid additional info", }, ], }, {"test_additional_info": "This is additional info for testing."}, ), ], ) def test_additional_info(self, error_dict, expected_additional_info): error_response = ErrorResponse.from_error_dict(error_dict) assert error_response.additional_info == expected_additional_info assert all(error_response.get_additional_info(key) == value for key, value in expected_additional_info.items()) @pytest.mark.parametrize( "raise_exception_func, error_class", [ (raise_general_exception, CustomizedException), (raise_tool_execution_error, ToolExecutionError), ], ) def test_get_user_execution_error_info(self, raise_exception_func, error_class): with pytest.raises(error_class) as e: raise_exception_func() error_repsonse = ErrorResponse.from_exception(e.value) actual_error_info = error_repsonse.get_user_execution_error_info() self.assert_user_execution_error_info(e.value, actual_error_info) def assert_user_execution_error_info(self, exception, error_info): if isinstance(exception, ToolExecutionError): assert error_info["type"] == "ZeroDivisionError" assert error_info["message"] == "division by zero" assert error_info["filename"].endswith("test_exception_utils.py") assert error_info["lineno"] > 0 assert error_info["name"] == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", error_info["traceback"], ) # assert re.match(TOOL_EXECUTION_ERROR_TRACEBACK, error_info["traceback"]) else: assert error_info == {} @pytest.mark.unittest class TestExceptions: @pytest.mark.parametrize( "ex, expected_message, expected_message_format, expected_message_parameters", [ ( CustomUserError("message"), "message", "", {}, ), ( CustomUserError(message="message"), "message", "", {}, ), ( CustomUserError("message", target=ErrorTarget.TOOL), "message", "", {}, ), ( CustomUserError(message="message", target=ErrorTarget.TOOL), "message", "", {}, ), ( CustomUserError(message_format="Hello world"), "Hello world", "Hello world", {}, ), ( CustomUserError(message_format="Hello {name}", name="world"), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name}", name="world", not_used="whatever"), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name}", name="world", target=ErrorTarget.TOOL), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name} and {name}", name="world"), "Hello world and world", "Hello {name} and {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name} and {name}", name="world"), "Hello world and world", "Hello {name} and {name}", { "name": "world", }, ), ( CustomUserError( message_format="Tool '{tool_name}' execution failed due to {error}", tool_name="my tool", error="bug", ), "Tool 'my tool' execution failed due to bug", "Tool '{tool_name}' execution failed due to {error}", { "tool_name": "my tool", "error": "bug", }, ), ], ) def test_message_and_format(self, ex, expected_message, expected_message_format, expected_message_parameters): with pytest.raises(CustomUserError) as exc: raise ex assert exc.value.message == expected_message assert exc.value.message_format == expected_message_format assert exc.value.message_parameters == expected_message_parameters @pytest.mark.parametrize( "ex, expected_message, exepcted_target", [ ( CustomDefaultTargetError(message="message", target=ErrorTarget.TOOL), "message", ErrorTarget.TOOL, ), ( CustomDefaultTargetError(message="message"), "message", ErrorTarget.EXECUTOR, ), ], ) def test_target_and_message(self, ex, expected_message, exepcted_target): with pytest.raises(CustomDefaultTargetError) as exc: raise ex assert exc.value.message == expected_message assert exc.value.target == exepcted_target def test_reference_code(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value assert e.reference_code == ErrorTarget.TOOL.value module = "promptflow_vectordb.tool.faiss_index_loopup" e.module = module assert e.reference_code == f"{ErrorTarget.TOOL.value}/{module}" @pytest.mark.parametrize( "func_that_raises_exception", [ set_inner_exception_by_parameter, set_inner_exception_by_raise_from, ], ) def test_inner_exception(self, func_that_raises_exception): with pytest.raises(PromptflowException) as e: func_that_raises_exception() inner_exception = e.value.inner_exception assert isinstance(inner_exception, ValueError) assert str(inner_exception) == "bad number" assert str(e.value) == "test" def test_tool_execution_error(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() inner_exception = e.value.inner_exception assert isinstance(inner_exception, ZeroDivisionError) assert str(inner_exception) == "division by zero" assert e.value.message == "Execution failure in 'MyTool': (ZeroDivisionError) division by zero" last_frame_info = e.value.tool_last_frame_info assert "test_exception_utils.py" in last_frame_info.get("filename") assert last_frame_info.get("lineno") > 0 assert last_frame_info.get("name") == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", e.value.tool_traceback, ) def test_code_hierarchy(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value assert e.error_codes == ["UserError", "ToolExecutionError"] assert ExceptionPresenter.create(e).error_code_recursed == { "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_debug_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value presenter = ExceptionPresenter.create(e) assert presenter.debug_info["type"] == "ToolExecutionError" assert re.match(TOOL_EXCEPTION_TRACEBACK, presenter.debug_info["stackTrace"]) inner_exception = presenter.debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_additional_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() additional_info = ExceptionPresenter.create(e.value).to_dict().get("additionalInfo") assert len(additional_info) == 1 info_0 = additional_info[0] assert info_0["type"] == "ToolExecutionErrorDetails" info_0_value = info_0["info"] assert info_0_value.get("type") == "ZeroDivisionError" assert info_0_value.get("message") == "division by zero" assert re.match(r".*test_exception_utils.py", info_0_value["filename"]) assert info_0_value.get("lineno") > 0 assert info_0_value.get("name") == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", info_0_value.get("traceback"), ) def test_additional_info_for_empty_inner_error(self): ex = ToolExecutionError(node_name="Node1") dct = ExceptionPresenter.create(ex).to_dict() additional_info = dct.get("additionalInfo") assert additional_info is None def test_additional_info_for_empty_case(self): with pytest.raises(UserErrorException) as e: raise_user_error() dct = ExceptionPresenter.create(e.value).to_dict() additional_info = dct.get("additionalInfo") assert additional_info is None @pytest.mark.parametrize("include_debug_info", [True, False]) def test_to_dict_turning_on_or_off_debug_info(self, include_debug_info): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value result = ExceptionPresenter.create(e).to_dict(include_debug_info=include_debug_info) if include_debug_info: assert "debugInfo" in result else: assert "debugInfo" not in result def test_to_dict(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value # We do not check include_debug_info=True since the traceback already checked in other cases result = ExceptionPresenter.create(e).to_dict(include_debug_info=False) # Wo do not check additonalInfo since it is already checked in other cases result.pop("additionalInfo") assert result == { "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_to_dict_object_parameter(self): with pytest.raises(PromptflowException) as e: raise_exception_with_object() e = e.value # We do not check include_debug_info=True since the traceback already checked in other cases result = ExceptionPresenter.create(e).to_dict(include_debug_info=False) # Assert message is str(exception) assert result == { "message": "exception message", "messageFormat": "{inner_exception}", "messageParameters": {"inner_exception": "exception message"}, "referenceCode": "Unknown", "code": "SystemError", "innerError": None, } @pytest.mark.parametrize("include_debug_info", [True, False]) def test_to_dict_for_JsonSerializedPromptflowException(self, include_debug_info): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() exception_dict = ExceptionPresenter.create(e.value).to_dict(include_debug_info=True) message = json.dumps(exception_dict) exception = JsonSerializedPromptflowException(message=message) assert str(exception) == message json_serialized_exception_dict = ExceptionPresenter.create(exception).to_dict( include_debug_info=include_debug_info ) error_dict = exception.to_dict(include_debug_info=include_debug_info) assert error_dict == json_serialized_exception_dict if include_debug_info: assert "debugInfo" in error_dict error_dict.pop("debugInfo") error_dict.pop("additionalInfo") assert error_dict == { "code": "UserError", "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_remove_suffix(self): assert remove_suffix('PackageToolNotFoundError.', '.') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', 'Error') == 'PackageToolNotFound' assert remove_suffix('PackageToolNotFoundError', 'PackageToolNotFoundError') == '' assert remove_suffix('PackageToolNotFoundError', 'NonExistedSuffix') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', '') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', None) == 'PackageToolNotFoundError' assert remove_suffix('', 'NonExistedSuffix') == '' assert remove_suffix(None, 'NonExistedSuffix') is None
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_dataclass_serializer.py
import pytest from datetime import datetime from dataclasses import dataclass from typing import Dict, List from promptflow._core.generator_proxy import GeneratorProxy from promptflow._utils.dataclass_serializer import \ get_type, serialize, deserialize_dataclass, deserialize_value, assertEqual from promptflow.contracts.run_info import RunInfo, Status from promptflow._core.connection_manager import ConnectionManager from promptflow.storage.run_records import NodeRunRecord from unittest.mock import patch, Mock import sys def get_connection_dict(): return { "azure_open_ai_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "<azure-openai-key>", "api_base": "<aoai-api-endpoint>", "api_type": "azure", "api_version": "2023-07-01-preview", }, }, "custom_connection": { "type": "CustomConnection", "value": { "api_key": "<your-key>", "url": "<connection-endpoint>", }, "module": "promptflow.connections", "secret_keys": ["api_key"], }, } @pytest.mark.unittest @pytest.mark.parametrize( "type_input, expected", [ (NodeRunRecord, NodeRunRecord), ([NodeRunRecord], List[NodeRunRecord]), (dict(a=NodeRunRecord), Dict[str, NodeRunRecord]), (int, int), (str, str), ] ) def test_get_type(type_input, expected): assert get_type(type_input) == expected @pytest.mark.unittest def test_serialize_dataclass(): start_time = datetime(2023, 9, 4) end_time = datetime(2023, 9, 4) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) serialized_info = serialize(node_run_info) serialized_record = serialize(node_record) # test dataclass without serialize attribute assert serialized_info['status'] == "Completed" assert serialized_info['start_time'] == "2023-09-04T00:00:00Z" assert deserialize_value(serialized_info, RunInfo) == node_run_info # test dataclass with serialize attribute assert serialized_record == node_record.serialize() @pytest.mark.unittest @pytest.mark.parametrize( "value, value_type, expected", [ (datetime(2023, 9, 4), datetime, "2023-09-04T00:00:00Z"), (Status.Completed, Status, "Completed"), ([1, 2, 3], List[int], [1, 2, 3]), ({"a": 1, "b": 2}, Dict[str, int], {"a": 1, "b": 2}), (1, int, 1), ("a", str, "a"), ] ) def test_serialize_value(value, value_type, expected): assert serialize(value) == expected assert deserialize_value(serialize(value), value_type) == value @pytest.mark.unittest def test_serialize_remove_null(): value = {"a": 1, "b": None} value_type = Dict[str, int] assert deserialize_value(serialize(value, remove_null=True), value_type) == {"a": 1, "b": None} @dataclass class DummyDataClass: name: str age: int assert serialize(DummyDataClass("Dummy", None), remove_null=True) == {'name': 'Dummy'} @pytest.mark.unittest def test_serialize_connection(): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) assert serialize(connection_manager.get("azure_open_ai_connection")) == "azure_open_ai_connection" @pytest.mark.unittest def test_serialize_generator(): def generator(): for i in range(3): yield i g = GeneratorProxy(generator()) next(g) assert serialize(g) == [0] @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': None}) def test_import_pydantic_error(): # mock pydantic is not installed class DummyClass: def __init__(self, name, age): self.name = name self.age = age dummy = DummyClass('Test', 20) assert serialize(dummy) == dummy @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': Mock()}) def test_import_pydantic(): # mock pydantic is installed class MockBaseModel: def dict(self): return {"key": "value"} mock_value = MockBaseModel() sys.modules['pydantic'].BaseModel = MockBaseModel assert serialize(mock_value) == mock_value.dict() assert serialize(123) == 123 @pytest.mark.unittest def test_deserialize_dataclass(): # test when cls is not dataclass with pytest.raises(ValueError): deserialize_dataclass(int, 1) # test when data is not a dict with pytest.raises(ValueError): deserialize_dataclass(NodeRunRecord, "NodeRunRecord") @dataclass class DummyDataClassWithDefault: name: str = "Default Name" age: int = 0 # test deserialize dataclass with default value data = {"age": 25} obj = deserialize_dataclass(DummyDataClassWithDefault, data) assert obj.name == "Default Name" assert obj.age == 25 @pytest.mark.unittest @pytest.mark.parametrize( "a, b, expected", [ (1, 2, 1), (Status.Completed, Status, Status.Completed), (None, datetime, None), ("2022-01-01T00:00:00", datetime, datetime.fromisoformat("2022-01-01T00:00:00")), ] ) def test_deserialize_value(a, b, expected): assert deserialize_value(a, b) == expected @pytest.mark.unittest @pytest.mark.parametrize( "a, b, path, are_equal", [ # Test with identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key2': 'value2'}, \ "unittests/_utils/test_dataclass_serializer", True), # Test with non-identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key3': 'value3'}, \ "unittests/_utils/test_dataclass_serializer", False), # Test with identical lists (['item1', 'item2'], ['item1', 'item2'], "", True), # Test with non-identical lists (['item1', 'item2'], ['item1', 'item3'], "", False), # Test with other types (1, 1, "", True), (1, 2, "", False), ('string', 'string', "", True), ('string1', 'string2', "", False), ] ) def test_assertEqual(a, b, path, are_equal): if are_equal: assertEqual(a, b, path) else: with pytest.raises(AssertionError): assertEqual(a, b, path)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_generate_tool_meta_utils.py
import os import re import sys from multiprocessing import Pool from pathlib import Path from unittest.mock import patch import pytest from promptflow._core.tool_meta_generator import ( JinjaParsingError, MultipleToolsDefined, NoToolDefined, PythonLoadError, PythonParsingError, generate_prompt_meta, generate_python_meta, generate_tool_meta_dict_by_file, ) from promptflow._utils.exception_utils import ExceptionPresenter from ...utils import FLOW_ROOT, load_json TEST_ROOT = Path(__file__).parent.parent.parent.parent TOOLS_ROOT = TEST_ROOT / "test_configs/wrong_tools" def cd_and_run(working_dir, source_path, tool_type): os.chdir(working_dir) sys.path.insert(0, working_dir) try: return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def cd_and_run_with_read_text_error(working_dir, source_path, tool_type): def mock_read_text_error(self: Path, *args, **kwargs): raise Exception("Mock read text error.") os.chdir(working_dir) sys.path.insert(0, working_dir) try: with patch("promptflow._core.tool_meta_generator.Path.read_text", new=mock_read_text_error): return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def cd_and_run_with_bad_function_interface(working_dir, source_path, tool_type): def mock_function_to_interface(*args, **kwargs): raise Exception("Mock function to interface error.") os.chdir(working_dir) sys.path.insert(0, working_dir) try: with patch("promptflow._core.tool_meta_generator.function_to_interface", new=mock_function_to_interface): return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, func): with Pool(1) as pool: return pool.apply(func, (wd, tool_path, tool_type)) @pytest.mark.unittest class TestToolMetaUtils: @pytest.mark.parametrize( "flow_dir, tool_path, tool_type", [ ("prompt_tools", "summarize_text_content_prompt.jinja2", "prompt"), ("prompt_tools", "summarize_text_content_prompt.jinja2", "llm"), ("script_with_import", "dummy_utils/main.py", "python"), ("script_with___file__", "script_with___file__.py", "python"), ("script_with_special_character", "script_with_special_character.py", "python"), ], ) def test_generate_tool_meta_dict_by_file(self, flow_dir, tool_path, tool_type): wd = str((FLOW_ROOT / flow_dir).resolve()) meta_dict = generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, cd_and_run) assert isinstance(meta_dict, dict), "Call cd_and_run failed:\n" + meta_dict target_file = (Path(wd) / tool_path).with_suffix(".meta.json") expected_dict = load_json(target_file) if tool_type == "llm": expected_dict["type"] = "llm" # We use prompt as default for jinja2 assert meta_dict == expected_dict @pytest.mark.parametrize( "flow_dir, tool_path, tool_type, func, msg_pattern", [ pytest.param( "prompt_tools", "summarize_text_content_prompt.jinja2", "python", cd_and_run, r"\(PythonLoaderNotFound\) Failed to load python file '.*summarize_text_content_prompt.jinja2'. " r"Please make sure it is a valid .py file.", id="PythonLoaderNotFound", ), pytest.param( "script_with_import", "fail.py", "python", cd_and_run, r"\(PythonLoadError\) Failed to load python module from file '.*fail.py': " r"\(ModuleNotFoundError\) No module named 'aaa'", id="PythonLoadError", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "python", cd_and_run_with_bad_function_interface, r"\(BadFunctionInterface\) Parse interface for tool 'divide_num' failed: " r"\(Exception\) Mock function to interface error.", id="BadFunctionInterface", ), pytest.param( "script_with_import", "aaa.py", "python", cd_and_run, r"\(MetaFileNotFound\) Generate tool meta failed for python tool. " r"Meta file 'aaa.py' can not be found.", id="MetaFileNotFound", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "python", cd_and_run_with_read_text_error, r"\(MetaFileReadError\) Generate tool meta failed for python tool. " r"Read meta file 'divide_num.py' failed: \(Exception\) Mock read text error.", id="MetaFileReadError", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "action", cd_and_run, r"\(NotSupported\) Generate tool meta failed. The type 'action' is currently unsupported. " r"Please choose from available types: python,llm,prompt and try again.", id="NotSupported", ), ], ) def test_generate_tool_meta_dict_by_file_exception(self, flow_dir, tool_path, tool_type, func, msg_pattern): wd = str((FLOW_ROOT / flow_dir).resolve()) ret = generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, func) assert isinstance(ret, str), "Call cd_and_run should fail but succeeded:\n" + str(ret) assert re.match(msg_pattern, ret) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "zzz", PythonParsingError, "Failed to load python module. Python parsing failed: (NameError) name 'zzz' is not defined", id="PythonParsingError_NameError", ), pytest.param( "# Nothing", NoToolDefined, "No tool found in the python script. " "Please make sure you have one and only one tool definition in your script.", id="NoToolDefined", ), pytest.param( "multiple_tools.py", MultipleToolsDefined, "Expected 1 but collected 2 tools: tool1, tool2. " "Please make sure you have one and only one tool definition in your script.", id="MultipleToolsDefined", ), pytest.param( "{% zzz", PythonParsingError, "Failed to load python module. Python parsing failed: " "(SyntaxError) invalid syntax (<string>, line 1)", id="PythonParsingError_SyntaxError", ), ], ) def test_custom_python_meta(self, content, error_code, message) -> None: if content.endswith(".py"): source = TOOLS_ROOT / content with open(source, "r") as f: code = f.read() else: code = content source = None with pytest.raises(error_code) as ex: generate_python_meta("some_tool", code, source) assert message == str(ex.value) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "{% zzz", JinjaParsingError, "Generate tool meta failed for llm tool. Jinja parsing failed at line 1: " "(TemplateSyntaxError) Encountered unknown tag 'zzz'.", id="JinjaParsingError_Code", ), pytest.param( "no_end.jinja2", JinjaParsingError, "Generate tool meta failed for llm tool. Jinja parsing failed at line 2: " "(TemplateSyntaxError) Unexpected end of template. Jinja was looking for the following tags: " "'endfor' or 'else'. The innermost block that needs to be closed is 'for'.", id="JinjaParsingError_File", ), ], ) def test_custom_llm_meta(self, content, error_code, message) -> None: if content.endswith(".jinja2"): with open(TOOLS_ROOT / content, "r") as f: code = f.read() else: code = content with pytest.raises(error_code) as ex: generate_prompt_meta("some_tool", code) assert message == str(ex.value) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "{% zzz", JinjaParsingError, "Generate tool meta failed for prompt tool. Jinja parsing failed at line 1: " "(TemplateSyntaxError) Encountered unknown tag 'zzz'.", id="JinjaParsingError_Code", ), pytest.param( "no_end.jinja2", JinjaParsingError, "Generate tool meta failed for prompt tool. Jinja parsing failed at line 2: " "(TemplateSyntaxError) Unexpected end of template. Jinja was looking for the following tags: " "'endfor' or 'else'. The innermost block that needs to be closed is 'for'.", id="JinjaParsingError_File", ), ], ) def test_custom_prompt_meta(self, content, error_code, message) -> None: if content.endswith(".jinja2"): with open(TOOLS_ROOT / content, "r") as f: code = f.read() else: code = content with pytest.raises(error_code) as ex: generate_prompt_meta("some_tool", code, prompt_only=True) assert message == str(ex.value) @pytest.mark.unittest class TestPythonLoadError: def test_additional_info(self): source = TOOLS_ROOT / "load_error.py" with open(source, "r") as f: code = f.read() with pytest.raises(PythonLoadError) as ex: generate_python_meta("some_tool", code, source) additional_info = ExceptionPresenter.create(ex.value).to_dict().get("additionalInfo") assert len(additional_info) == 1 info_0 = additional_info[0] assert info_0["type"] == "UserCodeStackTrace" info_0_value = info_0["info"] assert info_0_value.get("type") == "ZeroDivisionError" assert info_0_value.get("message") == "division by zero" assert re.match(r".*load_error.py", info_0_value["filename"]) assert info_0_value.get("lineno") == 3 assert info_0_value.get("name") == "<module>" assert re.search( r"Traceback \(most recent call last\):\n" r' File ".*load_error.py", line .*, in <module>\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", info_0_value.get("traceback"), ) def test_additional_info_for_empty_inner_error(self): ex = PythonLoadError(message_format="Test empty error") additional_info = ExceptionPresenter.create(ex).to_dict().get("additionalInfo") assert additional_info is None
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_thread_utils.py
import re import sys import time from io import StringIO from logging import WARNING, Logger, StreamHandler import pytest from promptflow._utils.thread_utils import RepeatLogTimer from promptflow._utils.utils import generate_elapsed_time_messages class DummyException(Exception): pass @pytest.mark.skipif(sys.platform == "darwin", reason="Skip on Mac") @pytest.mark.unittest class TestRepeatLogTimer: def test_context_manager(self): s = StringIO() logger = Logger("test_repeat_log_timer") logger.addHandler(StreamHandler(s)) interval_seconds = 1 start_time = time.perf_counter() with RepeatLogTimer( interval_seconds=interval_seconds, logger=logger, level=WARNING, log_message_function=generate_elapsed_time_messages, args=("Test", start_time, interval_seconds, None), ): time.sleep(10.5) logs = s.getvalue().split("\n") logs = [log for log in logs if log] log_pattern = re.compile( r"^Test has been running for [0-9]+ seconds, thread None cannot be found in sys._current_frames, " r"maybe it has been terminated due to unexpected errors.$" ) assert logs, "Logs are empty." for log in logs: assert re.match(log_pattern, log), f"The wrong log: {log}"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_connection_utils.py
import pytest from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow._utils.connection_utils import ( generate_custom_strong_type_connection_spec, generate_custom_strong_type_connection_template, ) from promptflow.contracts.types import Secret class MyCustomConnectionWithNoComments(CustomStrongTypeConnection): api_key: Secret api_base: str class MyCustomConnectionWithDefaultValue(CustomStrongTypeConnection): api_key: Secret api_base: str = "default value of api-base" class MyCustomConnectionWithInvalidComments(CustomStrongTypeConnection): """My custom connection with invalid comments. :param api_key: The api key. :type api_key: String :param api_base: The api base. :type api_base: String :param api_key_2: The api key 2. :type api_key_2: String """ api_key: Secret api_base: str class MyCustomConnectionMissingTypeComments(CustomStrongTypeConnection): """My custom connection with missing type comments. :param api_key: The api key. """ api_key: Secret api_base: str class MyCustomConnectionMissingParamComments(CustomStrongTypeConnection): """My custom connection with missing param comments. :type api_key: String """ api_key: Secret api_base: str @pytest.mark.unittest class TestConnectionUtils: @pytest.mark.parametrize( "cls, expected_str_in_template", [ ( MyCustomConnectionWithNoComments, ['api_base: "to_replace_with_api_base"\n', 'api_key: "to_replace_with_api_key"\n'], ), ( MyCustomConnectionWithInvalidComments, [ 'api_base: "to_replace_with_api_base" # String type. The api base.\n', 'api_key: "to_replace_with_api_key" # String type. The api key.\n', ], ), (MyCustomConnectionMissingTypeComments, ['api_key: "to_replace_with_api_key" # The api key.']), (MyCustomConnectionMissingParamComments, ['api_key: "to_replace_with_api_key" # String type.']), ], ) def test_generate_custom_strong_type_connection_template_with_comments(self, cls, expected_str_in_template): package = "test-package" package_version = "0.0.1" spec = generate_custom_strong_type_connection_spec(cls, package, package_version) template = generate_custom_strong_type_connection_template(cls, spec, package, package_version) for comment in expected_str_in_template: assert comment in template def test_generate_custom_strong_type_connection_template_with_default_value(self): package = "test-package" package_version = "0.0.1" spec = generate_custom_strong_type_connection_spec(MyCustomConnectionWithDefaultValue, package, package_version) template = generate_custom_strong_type_connection_template( MyCustomConnectionWithDefaultValue, spec, package, package_version ) assert 'api_base: "default value of api-base"' in template @pytest.mark.parametrize( "input_value, expected_connection_names", [ pytest.param( "new_ai_connection", ["new_ai_connection"], id="standard", ), pytest.param( "${node.output}", [], id="output_reference", ), pytest.param( "${inputs.question}", [], id="input_reference", ), ], ) def test_get_used_connection_names_from_flow_meta(self, input_value: str, expected_connection_names: list): from promptflow._sdk._submitter.utils import SubmitterHelper connection_names = SubmitterHelper.get_used_connection_names( { "package": { "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat": { "name": "Promptflow.Tools.BuiltInTools.AOAI.Chat", "type": "csharp", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "prompt": {"type": ["string"]}, "deployment_name": {"type": ["string"]}, "objects": {"type": ["object"]}, }, "description": "", "class_name": "AOAI", "module": "Promptflow.Tools.BuiltInTools.AOAI", "function": "Chat", "is_builtin": True, "package": "Promptflow.Tools", "package_version": "0.0.14.0", "toolId": "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat", }, }, "code": {}, }, { "nodes": [ { "name": "get_summarized_text_content", "type": "csharp", "source": { "type": "package", "tool": "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat", }, "inputs": { "connection": input_value, }, }, ] }, ) assert connection_names == expected_connection_names
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_credential_scrubber.py
import pytest from promptflow._utils.credential_scrubber import CredentialScrubber def mock_connection_string(): connection_str_before_key = "DefaultEndpointsProtocol=https;AccountName=accountName;" connection_str_after_key = "EndpointSuffix=core.windows.net" return ( f"{connection_str_before_key}AccountKey=accountKey;{connection_str_after_key}", f"{connection_str_before_key}AccountKey={CredentialScrubber.PLACE_HOLDER};{connection_str_after_key}", ) def mock_sas_uri(): uri_without_signature = "https://bloburi/containerName/file.txt?sv=2021-10-04&se=2023-05-17&sr=b&sp=rw" return (f"{uri_without_signature}&sig=signature", f"{uri_without_signature}&sig={CredentialScrubber.PLACE_HOLDER}") @pytest.mark.unittest class TestCredentialScrubber: def test_scrub_sigature_in_sasuri(self): input_str, ground_truth = mock_sas_uri() assert CredentialScrubber().scrub(input_str) == ground_truth def test_scrub_key_in_connection_string(self): input_str, ground_truth = mock_connection_string() output = CredentialScrubber().scrub(input_str) assert output == ground_truth def test_add_regex(self): scrubber = CredentialScrubber() scrubber.add_regex(r"(?<=credential=)[^\s;&]+") assert scrubber.scrub("test&credential=credential") == f"test&credential={CredentialScrubber.PLACE_HOLDER}" def test_add_str(self): scrubber = CredentialScrubber() scrubber.add_str(None) assert len(scrubber.custom_str_set) == 0 scrubber.add_str("credential") assert len(scrubber.custom_str_set) == 1 assert scrubber.scrub("test&secret=credential") == f"test&secret={CredentialScrubber.PLACE_HOLDER}" def test_add_str_length_threshold(self): """If the secret is too short (length <= 2 chars), it will not be scrubbed.""" scrubber = CredentialScrubber() scrubber.add_str("yy") assert scrubber.scrub("test&secret=yy") == "test&secret=yy" def test_normal_str_not_affected(self): assert CredentialScrubber().scrub("no secret") == "no secret" def test_clear(self): scrubber = CredentialScrubber() scrubber.add_str("credential") scrubber.add_regex(r"(?<=credential=)[^\s;&]+") assert len(scrubber.custom_str_set) == 1 assert len(scrubber.custom_regex_set) == 1 scrubber.clear() assert len(scrubber.custom_str_set) == 0 assert len(scrubber.custom_regex_set) == 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_utils.py
import re from pathlib import Path from unittest.mock import MagicMock, mock_open, patch import pytest from promptflow._utils._errors import InvalidImageInput, LoadMultimediaDataError from promptflow._utils.multimedia_utils import ( _create_image_from_base64, _create_image_from_file, _create_image_from_url, _process_multimedia_dict_recursively, _process_recursively, convert_multimedia_data_to_base64, create_image, load_multimedia_data, persist_multimedia_data, resolve_multimedia_data_recursively, ) from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.multimedia import Image from promptflow.contracts.tool import ValueType from ...utils import DATA_ROOT TEST_IMAGE_PATH = DATA_ROOT / "logo.jpg" @pytest.mark.unittest class TestMultimediaUtils: @pytest.mark.parametrize("image_path", ["logo.jpg", "logo.png", "logo.webp", "logo.gif"]) def test_create_image_from_base64(self, image_path): image = _create_image_from_file(DATA_ROOT / image_path) base64_str = image.to_base64() image_from_base64 = _create_image_from_base64(base64_str) assert str(image) == str(image_from_base64) format = image_path.split(".")[-1] mime_type = f"image/{format}" if format != "jpg" else "image/jpeg" assert mime_type == image_from_base64._mime_type @patch("requests.get") def test_create_image_from_url_with_mime_type(self, mock_get): url = "https://example.com/image.jpg" content = b"image content" mime_type = "image/jpeg" mock_get.return_value = MagicMock(status_code=200, content=content) image = _create_image_from_url(url, mime_type) assert isinstance(image, Image) assert image._mime_type == mime_type assert image.source_url == url @patch("requests.get") def test_create_image_from_url_failure(self, mock_get): url = "https://example.com/image.jpg" message = "Failed to fetch image" code = 404 mock_get.return_value = MagicMock(status_code=code, text=message) with pytest.raises(InvalidImageInput) as ex: _create_image_from_url(url) expected_message = f"Failed to fetch image from URL: {url}. Error code: {code}. Error message: {message}." assert str(ex.value) == expected_message def test_create_image_with_dict(self, mocker): ## From path image_dict = {"data:image/jpg;path": TEST_IMAGE_PATH} image_from_path = create_image(image_dict) assert image_from_path._mime_type == "image/jpg" ## From base64 image_dict = {"data:image/jpg;base64": image_from_path.to_base64()} image_from_base64 = create_image(image_dict) assert str(image_from_path) == str(image_from_base64) assert image_from_base64._mime_type == "image/jpg" ## From url mocker.patch("requests.get", return_value=mocker.Mock(content=image_from_path, status_code=200)) image_dict = {"data:image/jpg;url": ""} image_from_url = create_image(image_dict) assert str(image_from_path) == str(image_from_url) assert image_from_url._mime_type == "image/jpg" mocker.patch("requests.get", return_value=mocker.Mock(content=None, status_code=404)) with pytest.raises(InvalidImageInput) as ex: create_image(image_dict) assert "Failed to fetch image from URL" in ex.value.message_format def test_create_image_with_string(self, mocker): ## From path image_from_path = create_image(str(TEST_IMAGE_PATH)) assert image_from_path._mime_type == "image/jpeg" # From base64 image_from_base64 = create_image(image_from_path.to_base64()) assert str(image_from_path) == str(image_from_base64) assert image_from_base64._mime_type == "image/jpeg" ## From url mocker.patch("promptflow._utils.multimedia_utils._is_url", return_value=True) mocker.patch("promptflow._utils.multimedia_utils._is_base64", return_value=False) mocker.patch("requests.get", return_value=mocker.Mock(content=image_from_path, status_code=200)) image_from_url = create_image("Test") assert str(image_from_path) == str(image_from_url) assert image_from_url._mime_type == "image/jpeg" ## From image image_from_image = create_image(image_from_path) assert str(image_from_path) == str(image_from_image) def test_create_image_with_invalid_cases(self): # Test invalid input type with pytest.raises(InvalidImageInput) as ex: create_image(0) assert "Unsupported image input type" in ex.value.message_format # Test invalid image dict with pytest.raises(InvalidImageInput) as ex: invalid_image_dict = {"invalid_image": "invalid_image"} create_image(invalid_image_dict) assert "Invalid image input format" in ex.value.message_format # Test none or empty input value with pytest.raises(InvalidImageInput) as ex: create_image(None) assert "Unsupported image input type" in ex.value.message_format with pytest.raises(InvalidImageInput) as ex: create_image("") assert "The image input should not be empty." in ex.value.message_format def test_persist_multimedia_date(self, mocker): image = _create_image_from_file(TEST_IMAGE_PATH) mocker.patch("builtins.open", mock_open()) data = {"image": image, "images": [image, image, "other_data"], "other_data": "other_data"} persisted_data = persist_multimedia_data(data, base_dir=Path(__file__).parent) file_name = re.compile(r"^[0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12}.jpeg$") assert re.match(file_name, persisted_data["image"]["data:image/jpeg;path"]) assert re.match(file_name, persisted_data["images"][0]["data:image/jpeg;path"]) assert re.match(file_name, persisted_data["images"][1]["data:image/jpeg;path"]) def test_convert_multimedia_date_to_base64(self): image = _create_image_from_file(TEST_IMAGE_PATH) data = {"image": image, "images": [image, image, "other_data"], "other_data": "other_data"} base64_data = convert_multimedia_data_to_base64(data) assert base64_data == { "image": image.to_base64(), "images": [image.to_base64(), image.to_base64(), "other_data"], "other_data": "other_data", } base64_data = convert_multimedia_data_to_base64(data, with_type=True) prefix = f"data:{image._mime_type};base64," assert base64_data == { "image": prefix + image.to_base64(), "images": [prefix + image.to_base64(), prefix + image.to_base64(), "other_data"], "other_data": "other_data", } def test_load_multimedia_data(self): # Case 1: Test normal node inputs = { "image": FlowInputDefinition(type=ValueType.IMAGE), "images": FlowInputDefinition(type=ValueType.LIST), "object": FlowInputDefinition(type=ValueType.OBJECT), } image_dict = {"data:image/jpg;path": str(TEST_IMAGE_PATH)} line_inputs = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } updated_inputs = load_multimedia_data(inputs, line_inputs) image = _create_image_from_file(TEST_IMAGE_PATH) assert updated_inputs == { "image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}, } # Case 2: Test aggregation node line_inputs = { "image": [image_dict, image_dict], "images": [[image_dict, image_dict], [image_dict]], "object": [{"image": image_dict, "other_data": "other_data"}, {"other_data": "other_data"}], } updated_inputs = load_multimedia_data(inputs, line_inputs) assert updated_inputs == { "image": [image, image], "images": [[image, image], [image]], "object": [{"image": image, "other_data": "other_data"}, {"other_data": "other_data"}], } # Case 3: Test invalid input type with pytest.raises(LoadMultimediaDataError) as ex: line_inputs = {"image": 0} load_multimedia_data(inputs, line_inputs) assert ( "Failed to load image for input 'image': " "(InvalidImageInput) Unsupported image input type") in ex.value.message def test_resolve_multimedia_data_recursively(self): image_dict = {"data:image/jpg;path": "logo.jpg"} value = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } input_dir = TEST_IMAGE_PATH updated_value = resolve_multimedia_data_recursively(input_dir, value) updated_image_dict = {"data:image/jpg;path": str(DATA_ROOT / "logo.jpg")} assert updated_value == { "image": updated_image_dict, "images": [updated_image_dict, updated_image_dict], "object": {"image": updated_image_dict, "other_data": "other_data"}, } def test_process_recursively(self): image = _create_image_from_file(TEST_IMAGE_PATH) value = {"image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}} process_funcs = {Image: lambda x: str(x)} updated_value = _process_recursively(value, process_funcs) image_str = str(image) assert updated_value == { "image": image_str, "images": [image_str, image_str], "object": {"image": image_str, "other_data": "other_data"}, } assert value != updated_value def test_process_recursively_inplace(self): image = _create_image_from_file(TEST_IMAGE_PATH) value = {"image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}} process_funcs = {Image: lambda x: str(x)} _process_recursively(value, process_funcs, inplace=True) image_str = str(image) assert value == { "image": image_str, "images": [image_str, image_str], "object": {"image": image_str, "other_data": "other_data"}, } def test_process_multimedia_dict_recursively(self): def process_func(image_dict): return "image_placeholder" image_dict = {"data:image/jpg;path": "logo.jpg"} value = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } updated_value = _process_multimedia_dict_recursively(value, process_func) assert updated_value == { "image": "image_placeholder", "images": ["image_placeholder", "image_placeholder"], "object": {"image": "image_placeholder", "other_data": "other_data"}, }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_data_converter.py
from pathlib import Path from unittest.mock import Mock import pytest from promptflow._utils.multimedia_data_converter import ( AbstractMultimediaInfoConverter, MultimediaConverter, MultimediaFormatAdapter20231201, MultimediaInfo, ResourceType, ) @pytest.mark.unittest class TestMultimediaConverter: def test_convert_content_recursively(self): converter = MultimediaConverter(Path("flow.yaml")) # Don't convert anything. content = { "image": {"data:image/jpg;url": "https://example.com/logo.jpg"}, "images": [ {"data:image/jpg;url": "https://example.com/logo.jpg"}, {"data:image/jpg;base64": "base64 string"}, ], "object": {"image": {"data:image/png;path": "random_path"}, "other_data": "other_data"}, } mock_converter = Mock(spec=AbstractMultimediaInfoConverter) mock_converter.convert.side_effect = lambda x: x result = converter.convert_content_recursively(content, mock_converter) assert result == content # Convert all valid images. mock_converter.convert.side_effect = lambda x: MultimediaInfo("image/jpg", ResourceType("path"), "logo.jpg") result = converter.convert_content_recursively(content, mock_converter) expected_result = { "image": {"data:image/jpg;path": "logo.jpg"}, "images": [ {"data:image/jpg;path": "logo.jpg"}, {"data:image/jpg;path": "logo.jpg"}, ], "object": {"image": {"data:image/jpg;path": "logo.jpg"}, "other_data": "other_data"}, } assert result == expected_result @pytest.mark.unittest class TestMultimediaFormatAdapter20231201: def test_is_valid_format(self): adapter = MultimediaFormatAdapter20231201() assert adapter.is_valid_format({"data:image/jpg;path": "logo.jpg"}) assert adapter.is_valid_format({"data:image/jpg;url": "https://example.com/logo.jpg"}) assert not adapter.is_valid_format({"data:audio/mp3;path": "audio.mp3"}) assert not adapter.is_valid_format({"data:video/mp4;url": "https://example.com/video.mp4"}) def test_extract_info(self): adapter = MultimediaFormatAdapter20231201() # Valid formats expected_result = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") assert adapter.extract_info({"data:image/jpg;path": "random_path"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") assert adapter.extract_info({"data:image/jpg;url": "random_url"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.BASE64, "random_base64") assert adapter.extract_info({"data:image/jpg;base64": "random_base64"}) == expected_result # Invalid format assert adapter.extract_info({"data:video/mp4;url": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"data:image/mp4;url2": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"content:image/mp4;path": "random_path"}) is None def test_create_data(self): adapter = MultimediaFormatAdapter20231201() info = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") expected_result = {"data:image/jpg;path": "random_path"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") expected_result = {"data:image/jpg;url": "random_url"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.BASE64, "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} assert adapter.create_data(info) == expected_result # Bad case when client provides invalid resource type. info = MultimediaInfo("image/jpg", "path", "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} with pytest.raises(AttributeError): adapter.create_data(info)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_connection_manager.py
import pytest from promptflow._core.connection_manager import ConnectionManager from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.tool import ConnectionType def get_connection_dict(): return { "azure_open_ai_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "<azure-openai-key>", "api_base": "<api-base>", "api_type": "azure", "api_version": "2023-07-01-preview", }, }, "custom_connection": { "type": "CustomConnection", "value": { "api_key": "<your-key>", "url": "https://api.bing.microsoft.com/v7.0/search", }, "module": "promptflow.connections", "secret_keys": ["api_key"], }, } @pytest.mark.unittest class TestConnectionManager: def test_build_connections(self): new_connection = get_connection_dict() # Add not exist key new_connection["azure_open_ai_connection"]["value"]["not_exist"] = "test" connection_manager = ConnectionManager(new_connection) assert len(connection_manager._connections) == 2 assert isinstance(connection_manager.get("azure_open_ai_connection"), AzureOpenAIConnection) assert connection_manager.to_connections_dict() == new_connection def test_serialize(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) assert ( ConnectionType.serialize_conn(connection_manager.get("azure_open_ai_connection")) == "azure_open_ai_connection" ) assert ConnectionType.serialize_conn(connection_manager.get("custom_connection")) == "custom_connection" def test_get_secret_list(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) expected_list = ["<azure-openai-key>", "<your-key>"] assert set(connection_manager.get_secret_list()) == set(expected_list) def test_is_secret(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) connection = connection_manager.get("custom_connection") assert connection.is_secret("api_key") is True assert connection.is_secret("url") is False
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_run_tracker.py
import pytest from promptflow._core._errors import RunRecordNotFound from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.run_tracker import RunTracker from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.run_info import Status class UnserializableClass: def __init__(self, data: str): self.data = data @pytest.mark.unittest class TestRunTracker: def test_run_tracker(self): # TODO: Refactor this test case, it's very confusing now. # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id") assert len(run_tracker._flow_runs) == 1 assert run_tracker._current_run_id == "test_flow_run_id" flow_input = {"flow_input": "input_0"} run_tracker.set_inputs("test_flow_run_id", flow_input) # Start node runs run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_0", index=0) run_info.index = 0 run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_1", index=1) run_info.index = 1 run_tracker.start_node_run("node_aggr", "test_root_run_id", "test_flow_run_id", "run_id_aggr", index=None) assert len(run_tracker._node_runs) == 3 assert run_tracker._current_run_id == "run_id_aggr" # Test collect_all_run_infos_as_dicts run_tracker.allow_generator_types = True run_tracker.set_inputs( "run_id_0", {"input": "input_0", "connection": AzureOpenAIConnection("api_key", "api_base")} ) run_tracker.set_inputs( "run_id_1", {"input": "input_1", "generator": GeneratorProxy(item for item in range(10))} ) run_infos = run_tracker.collect_all_run_infos_as_dicts() assert len(run_infos["flow_runs"]) == 1 assert len(run_infos["node_runs"]) == 3 assert run_infos["node_runs"][0]["inputs"] == {"input": "input_0", "connection": "AzureOpenAIConnection"} assert run_infos["node_runs"][1]["inputs"] == {"input": "input_1", "generator": []} # Test end run with normal result result = {"result": "result"} run_info_0 = run_tracker.end_run(run_id="run_id_0", result=result) assert run_info_0.status == Status.Completed assert run_info_0.output == result # Test end run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_1 = run_tracker.end_run(run_id="run_id_1", result=result) assert run_info_1.status == Status.Completed assert run_info_1.output == str(result) # Test end run with invalid run id with pytest.raises(RunRecordNotFound): run_tracker.end_run(run_id="invalid_run_id") # Test end run with exception ex = Exception("Failed") run_info_aggr = run_tracker.end_run(run_id="run_id_aggr", ex=ex) assert run_info_aggr.status == Status.Failed assert run_info_aggr.error["message"] == "Failed" # Test end flow run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_flow = run_tracker.end_run(run_id="test_flow_run_id", result=result) assert run_info_flow.status == Status.Failed assert "The output 'unserialized_value' for flow is incorrect." in run_info_flow.error["message"] # Test _update_flow_run_info_with_node_runs run_info_0.api_calls, run_info_0.system_metrics = [{"name": "caht"}], {"total_tokens": 10} run_info_1.api_calls, run_info_1.system_metrics = [{"name": "completion"}], {"total_tokens": 20} run_info_aggr.api_calls, run_info_aggr.system_metrics = [ {"name": "caht"}, {"name": "completion"}], {"total_tokens": 30} run_tracker._update_flow_run_info_with_node_runs(run_info_flow) assert len(run_info_flow.api_calls) == 1, "There should be only one top level api call for flow run." assert run_info_flow.system_metrics["total_tokens"] == 60 assert run_info_flow.api_calls[0]["name"] == "flow" assert run_info_flow.api_calls[0]["node_name"] == "flow" assert run_info_flow.api_calls[0]["type"] == "Flow" assert run_info_flow.api_calls[0]["system_metrics"]["total_tokens"] == 60 assert isinstance(run_info_flow.api_calls[0]["start_time"], float) assert isinstance(run_info_flow.api_calls[0]["end_time"], float) assert len(run_info_flow.api_calls[0]["children"]) == 4, "There should be 4 children under root." # Test get_status_summary status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 0, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 2, "__pf__.nodes.node_aggr.completed": 0, } def test_run_tracker_flow_run_without_node_run(self): """When line timeout, there will be flow run info without node run info.""" # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_0", index=0) run_tracker.end_run("test_flow_run_id_0", ex=Exception("Timeout")) run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_1", index=1) run_tracker.end_run("test_flow_run_id_1", result={"result": "result"}) assert len(run_tracker._flow_runs) == 2 # Start node runs run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id_2", "test_node_run_id_1", index=0) run_tracker.end_run("test_node_run_id_1", result={"result": "result"}) assert len(run_tracker._node_runs) == 1 status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 1, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 1, }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py
import textwrap from pathlib import Path from unittest.mock import patch import pytest from mock import MagicMock from promptflow import tool from promptflow._core._errors import InputTypeMismatch, InvalidSource, PackageToolNotFoundError from promptflow._core.tools_manager import ( BuiltinsManager, ToolLoader, collect_package_tools, collect_package_tools_and_connections, ) from promptflow._utils.yaml_utils import load_yaml_string from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import Tool, ToolType from promptflow.exceptions import UserErrorException @pytest.mark.unittest class TestToolLoader: def test_load_tool_for_node_with_invalid_node(self): tool_loader = ToolLoader(working_dir="test_working_dir") node: Node = Node(name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON) with pytest.raises(UserErrorException, match="Node test does not have source defined."): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for python tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.CUSTOM_LLM, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for custom_llm tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type="invalid_type", source=ToolSource(type=ToolSourceType.Code) ) with pytest.raises(NotImplementedError, match="Tool type invalid_type is not supported yet."): tool_loader.load_tool_for_node(node) def test_load_tool_for_package_node(self, mocker): package_tools = {"test_tool": Tool(name="test_tool", type=ToolType.PYTHON, inputs={}).serialize()} mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader( working_dir="test_working_dir", package_tool_keys=["promptflow._core.tools_manager.collect_package_tools"] ) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="test_tool"), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "test_tool" node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="invalid_tool"), ) msg = ( "Package tool 'invalid_tool' is not found in the current environment. " "All available package tools are: ['test_tool']." ) with pytest.raises(PackageToolNotFoundError) as ex: tool_loader.load_tool_for_node(node) assert str(ex.value) == msg def test_load_tool_for_package_node_with_legacy_tool_id(self, mocker): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"] ).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_2"] ).serialize(), "old_tool_2": Tool(name="old tool 2", type=ToolType.PYTHON, inputs={}).serialize(), } mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader(working_dir="test_working_dir", package_tool_keys=list(package_tools.keys())) node_with_legacy_tool: Node = Node( name="test_legacy_tool", tool="old_tool_1", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_1"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool).name == "new tool 1" node_with_legacy_tool_but_in_package_tools: Node = Node( name="test_legacy_tool_but_in_package_tools", tool="old_tool_2", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_2"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool_but_in_package_tools).name == "old tool 2" def test_load_tool_for_script_node(self): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) file = "test_tools_manager.py" node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=file), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "sample_tool" @pytest.mark.parametrize( "source_path, error_message", [ (None, "Load tool failed for node 'test'. The source path is 'None'."), ("invalid_file.py", "Load tool failed for node 'test'. Tool file 'invalid_file.py' can not be found."), ], ) def test_load_tool_for_script_node_exception(self, source_path, error_message): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=source_path), ) with pytest.raises(InvalidSource) as ex: tool_loader.load_tool_for_script_node(node) assert str(ex.value) == error_message # This tool is for testing tools_manager.ToolLoader.load_tool_for_script_node @tool def sample_tool(input: str): return input @pytest.mark.unittest class TestToolsManager: def test_collect_package_tools_if_node_source_tool_is_legacy(self): legacy_node_source_tools = ["content_safety_text.tools.content_safety_text_tool.analyze_text"] package_tools = collect_package_tools(legacy_node_source_tools) assert "promptflow.tools.azure_content_safety.analyze_text" in package_tools.keys() def test_collect_package_tools_and_connections(self, install_custom_tool_pkg): keys = ["my_tool_package.tools.my_tool_2.MyTool.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(tools) == 1 assert specs == { "my_tool_package.connections.MyFirstConnection": { "connectionCategory": "CustomKeys", "flowValueType": "CustomConnection", "connectionType": "MyFirstConnection", "ConnectionTypeDisplayName": "MyFirstConnection", "configSpecs": [ {"name": "api_key", "displayName": "Api Key", "configValueType": "Secret", "isOptional": False}, {"name": "api_base", "displayName": "Api Base", "configValueType": "str", "isOptional": True}, ], "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", } } expected_template = { "$schema": "https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json", "name": "to_replace_with_connection_name", "type": "custom", "custom_type": "MyFirstConnection", "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", "configs": {"api_base": "This is my first connection."}, "secrets": {"api_key": "to_replace_with_api_key"}, } loaded_yaml = load_yaml_string(templates["my_tool_package.connections.MyFirstConnection"]) assert loaded_yaml == expected_template keys = ["my_tool_package.tools.my_tool_with_custom_strong_type_connection.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(templates) == 1 expected_template = """ name: "to_replace_with_connection_name" type: custom custom_type: MyCustomConnection module: my_tool_package.tools.my_tool_with_custom_strong_type_connection package: test-custom-tools package_version: 0.0.2 configs: api_url: "This is a fake api url." # String type. The api url. secrets: # must-have api_key: "to_replace_with_api_key" # String type. The api key. """ content = templates["my_tool_package.tools.my_tool_with_custom_strong_type_connection.MyCustomConnection"] expected_template_str = textwrap.dedent(expected_template) assert expected_template_str in content def test_gen_dynamic_list(self, mocked_ws_triple, mock_module_with_list_func): from promptflow._sdk._utils import _gen_dynamic_list func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" func_kwargs = {"prefix": "My"} result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 # test gen_dynamic_list with ws_triple. with patch("promptflow._cli._utils.get_workspace_triad_from_local", return_value=mocked_ws_triple): result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 @pytest.mark.unittest class TestBuiltinsManager: def test_load_tool_from_module( self, ): # Test case 1: When class_name is None module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = None method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.LITERAL, value="value1")} # Mock the behavior of the module and class module.test_method = MagicMock() # Call the method api, init_inputs = BuiltinsManager._load_tool_from_module( module, tool_name, module_name, class_name, method_name, node_inputs ) # Assertions assert api == module.test_method assert init_inputs == {} # Non literal input for init parameter will raise exception. module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = "TestClass" method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.FLOW_INPUT, value="value1")} # Mock the behavior of the module and class module.TestClass = MagicMock() module.TestClass.get_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.get_required_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.test_method = MagicMock() # Call the method with pytest.raises(InputTypeMismatch) as ex: BuiltinsManager._load_tool_from_module(module, tool_name, module_name, class_name, method_name, node_inputs) expected_message = ( "Invalid input for 'test_tool': Initialization input 'input1' requires a literal value, " "but ${flow.value1} was received." ) assert expected_message == str(ex.value)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tracer.py
import inspect import pytest from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.tracer import Tracer, _create_trace_from_function_call, _traced, trace from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.trace import Trace, TraceType def generator(): for i in range(3): yield i @pytest.mark.unittest class TestTracer: def test_end_tracing(self): # Activate the tracer in the current context tracer = Tracer("test_run_id") tracer._activate_in_context() # Assert that there is an active tracer instance assert Tracer.active_instance() is tracer # End tracing and get the traces as a JSON string traces = Tracer.end_tracing() # Assert that the traces is a list assert isinstance(traces, list) # Assert that there is no active tracer instance after ending tracing assert Tracer.active_instance() is None # Test the raise_ex argument of the end_tracing method with pytest.raises(Exception): # Try to end tracing again with raise_ex=True Tracer.end_tracing(raise_ex=True) # Try to end tracing again with raise_ex=False traces = Tracer.end_tracing(raise_ex=False) # Assert that the traces are empty assert not traces def test_start_tracing(self): # Assert that there is no active tracer instance before starting tracing assert Tracer.active_instance() is None # Start tracing with a mock run_id Tracer.start_tracing("test_run_id") # Assert that there is an active tracer instance after starting tracing assert Tracer.active_instance() is not None # Assert that the active tracer instance has the correct run_id assert Tracer.active_instance()._run_id == "test_run_id" Tracer.end_tracing() def test_push_pop(self, caplog): # test the push method with a single trace Tracer.start_tracing("test_run_id") tracer = Tracer.active_instance() trace1 = Trace("test1", inputs=[1, 2, 3], type=TraceType.TOOL) trace2 = Trace("test2", inputs=[4, 5, 6], type=TraceType.TOOL) Tracer.push(trace1) assert tracer._traces == [trace1] assert tracer._id_to_trace == {trace1.id: trace1} # test the push method with a nested trace Tracer.push(trace2) assert tracer._traces == [trace1] # check if the tracer still has only the first trace in its _traces list # check if the tracer has both traces in its trace dict assert tracer._id_to_trace == {trace1.id: trace1, trace2.id: trace2} assert trace1.children == [trace2] # check if the first trace has the second trace as its child # test the pop method with generator output tool_output = generator() error1 = ValueError("something went wrong") assert tracer._get_current_trace() is trace2 output = Tracer.pop(output=tool_output, error=error1) # check output iterator for i in range(3): assert next(output) == i assert isinstance(trace2.output, GeneratorProxy) assert trace2.error == { "message": str(error1), "type": type(error1).__qualname__, } assert tracer._get_current_trace() is trace1 # test the pop method with no arguments output = Tracer.pop() assert tracer._get_current_trace() is None assert trace1.output is None assert output is None Tracer.end_tracing() # test the push method with no active tracer Tracer.push(trace1) # assert that the warning message is logged assert "Try to push trace but no active tracer in current context." in caplog.text def test_unserializable_obj_to_serializable(self): # assert that the function returns a str object for unserializable objects assert Tracer.to_serializable(generator) == str(generator) @pytest.mark.parametrize("obj", [({"name": "Alice", "age": 25}), ([1, 2, 3]), (GeneratorProxy(generator())), (42)]) def test_to_serializable(self, obj): assert Tracer.to_serializable(obj) == obj def func_with_no_parameters(): pass def func_with_args_and_kwargs(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) async def func_with_args_and_kwargs_async(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) def func_with_connection_parameter(a: int, conn: AzureOpenAIConnection): _ = (a, conn) class MyClass: def my_method(self, a: int): _ = a @pytest.mark.unittest class TestCreateTraceFromFunctionCall: """This class tests the `_create_trace_from_function_call` function.""" def test_basic_fields_are_filled_and_others_are_not(self): trace = _create_trace_from_function_call(func_with_no_parameters) # These fields should be filled in this method call. assert trace.name == "func_with_no_parameters" assert trace.type == TraceType.FUNCTION assert trace.inputs == {} # start_time should be a timestamp, which is a float value currently. assert isinstance(trace.start_time, float) # These should be left empty in this method call. # They will be filled by the tracer later. assert trace.output is None assert trace.end_time is None assert trace.children == [] assert trace.error is None def test_basic_fields_are_filled_for_async_functions(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs_async, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.name == "func_with_args_and_kwargs_async" assert trace.type == TraceType.FUNCTION assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_trace_name_should_contain_class_name_for_class_methods(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[obj, 1]) assert trace.name == "MyClass.my_method" def test_trace_type_can_be_set_correctly(self): trace = _create_trace_from_function_call(func_with_no_parameters, trace_type=TraceType.TOOL) assert trace.type == TraceType.TOOL def test_args_and_kwargs_are_filled_correctly(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_args_called_with_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1], kwargs={"arg2": 2, "kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg2": 4} def test_kwargs_called_without_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1, 2, 3], kwargs={"kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_empty_args_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1]) assert trace.inputs == {"arg1": 1} def test_empty_kwargs_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg1": 1}) assert trace.inputs == {"kwarg1": 1} trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg2": 2}) assert trace.inputs == {"kwarg2": 2} def test_args_and_kwargs_should_be_filled_in_called_order(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg2": 4, "kwarg1": 3} ) assert list(trace.inputs.keys()) == ["arg1", "arg2", "kwarg2", "kwarg1"] def test_connections_should_be_serialized(self): conn = AzureOpenAIConnection("test_name", "test_secret") trace = _create_trace_from_function_call(func_with_connection_parameter, args=[1, conn]) assert trace.inputs == {"a": 1, "conn": "AzureOpenAIConnection"} def test_self_arg_should_be_excluded_from_inputs(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[1]) assert trace.inputs == {"a": 1} def sync_func(a: int): return a async def async_func(a: int): return a def sync_error_func(a: int): a / 0 async def async_error_func(a: int): a / 0 @pytest.mark.unittest class TestTraced: """This class tests the `_traced` function.""" def test_traced_sync_func_should_be_a_sync_func(self): assert inspect.iscoroutinefunction(_traced(sync_func)) is False def test_traced_async_func_should_be_an_async_func(self): assert inspect.iscoroutinefunction(_traced(async_func)) is True @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_should_have_same_name(self, func): traced_func = _traced(func) assert traced_func.__name__ == func.__name__ @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_attributes_are_set(self, func): traced_func = _traced(func) assert getattr(traced_func, "__original_function") == func @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_not_generated_when_tracer_is_not_active(self, func): # Do not call Tracer.start_tracing() here traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 # Check the generated trace is not generated traces = Tracer.end_tracing() assert len(traces) == 0 @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_generated_when_tracer_is_active(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_error_func, async_error_func]) async def test_trace_is_generated_when_errors_occurred(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) with pytest.raises(ZeroDivisionError): if inspect.iscoroutinefunction(traced_func): await traced_func(1) else: traced_func(1) traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] is None assert trace["error"] == {"message": "division by zero", "type": "ZeroDivisionError"} assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_type_can_be_set_correctly(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func, trace_type=TraceType.TOOL) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.TOOL @trace def my_tool(a: int): return a @trace async def my_tool_async(a: int): return a @pytest.mark.unittest class TestTrace: """This class tests `trace` function.""" @pytest.mark.asyncio @pytest.mark.parametrize( "func", [ my_tool, my_tool_async, ], ) async def test_traces_are_created_correctly(self, func): Tracer.start_tracing("test_run_id") if inspect.iscoroutinefunction(func): result = await func(1) else: result = func(1) assert result == 1 traces = Tracer.end_tracing() assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_generator_proxy.py
import pytest from promptflow._core.generator_proxy import GeneratorProxy, generate_from_proxy def generator(): for i in range(3): yield i def iterator(): return iter([0, 1, 2]) @pytest.mark.unittest def test_generator_proxy_next(): proxy = GeneratorProxy(generator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generator_proxy_iter(): original_generator = generator() proxy = GeneratorProxy(generator()) for num in proxy: assert num == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_proxy(): proxy = GeneratorProxy(generator()) original_generator = generator() for i in generate_from_proxy(proxy): assert i == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_next(): proxy = GeneratorProxy(iterator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_iter(): original_iterator = iterator() proxy = GeneratorProxy(iterator()) for num in proxy: assert num == next(original_iterator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_iterator_proxy(): proxy = GeneratorProxy(iterator()) original_iterator = iterator() for i in generate_from_proxy(proxy): assert i == next(original_iterator) assert proxy.items == [0, 1, 2]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tool.py
import inspect import pytest from promptflow import tool from promptflow._core.tool import InputSetting, ToolType from promptflow._core.tracer import Tracer, TraceType from promptflow.exceptions import UserErrorException @tool def decorated_without_parentheses(a: int): return a @tool() def decorated_with_parentheses(a: int): return a @tool async def decorated_without_parentheses_async(a: int): return a @tool() async def decorated_with_parentheses_async(a: int): return a @tool( name="tool_with_attributes", description="Sample tool with a lot of attributes", type=ToolType.LLM, input_settings=InputSetting(), streaming_option_parameter="stream", extra_a="a", extra_b="b", ) def tool_with_attributes(stream: bool, a: int, b: int): return stream, a, b @pytest.mark.unittest class TestTool: """This class tests the `tool` decorator.""" @pytest.mark.asyncio @pytest.mark.parametrize( "func", [ decorated_with_parentheses, decorated_without_parentheses, decorated_with_parentheses_async, decorated_without_parentheses_async, ], ) async def test_traces_are_created_correctly(self, func): Tracer.start_tracing("test_run_id") if inspect.iscoroutinefunction(func): result = await func(1) else: result = func(1) assert result == 1 traces = Tracer.end_tracing() assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.TOOL assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) def test_attributes_are_set_to_the_tool_function(self): stream, a, b = tool_with_attributes(True, 1, 2) # Check the results are as expected assert stream is True assert a == 1 assert b == 2 # Check the attributes are set to the function assert getattr(tool_with_attributes, "__tool") is None assert getattr(tool_with_attributes, "__name") == "tool_with_attributes" assert getattr(tool_with_attributes, "__description") == "Sample tool with a lot of attributes" assert getattr(tool_with_attributes, "__type") == ToolType.LLM assert getattr(tool_with_attributes, "__input_settings") == InputSetting() assert getattr(tool_with_attributes, "__extra_info") == {"extra_a": "a", "extra_b": "b"} assert getattr(tool_with_attributes, "_streaming_option_parameter") == "stream" def test_invalid_tool_type_should_raise_error(self): with pytest.raises(UserErrorException, match="Tool type invalid_type is not supported yet."): @tool(type="invalid_type") def invalid_tool_type(): pass
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_metric_logger.py
import pytest from promptflow._core.metric_logger import MetricLoggerManager, add_metric_logger, log_metric, remove_metric_logger @pytest.mark.unittest class TestMetricLogger: def test_add_and_remove_metric_logger(self): # define log metric function metrics = {} def _log_metric(key, value): metrics[key] = value def _log_metric_invalid(key, value, variant_id, extra_param): metrics[key] = {variant_id: {value: extra_param}} add_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger(_log_metric_invalid) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger("test") assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] remove_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [] def test_log_metric(self): # define log metric function metrics = {} def _log_metric(key, value): metrics[key] = value def _log_metric_with_variant_id(key, value, variant_id): metrics[key] = {variant_id: value} add_metric_logger(_log_metric) log_metric("test1", 1) assert metrics == {"test1": 1} add_metric_logger(_log_metric_with_variant_id) log_metric("test2", 1, "line_0") assert metrics == {"test1": 1, "test2": {"line_0": 1}}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_log_manager.py
import logging import sys import time from multiprocessing.pool import ThreadPool import pytest from dateutil.parser import parse from promptflow._core.log_manager import NodeLogManager, NodeLogWriter RUN_ID = "dummy_run_id" NODE_NAME = "dummy_node" LINE_NUMBER = 1 def assert_print_result(i: int, run_logger: NodeLogWriter): run_id = f"{RUN_ID}-{i}" run_logger.set_node_info(run_id, NODE_NAME, LINE_NUMBER) time.sleep(i / 10) print(i) assert_datetime_prefix(run_logger.get_log(run_id), str(i) + "\n") def is_datetime(string: str) -> bool: """Check if a string follows datetime format.""" try: parse(string) return True except ValueError: return False def assert_datetime_prefix(string: str, expected_str: str): """Assert if string has a datetime prefix, such as: [2023-04-17T07:49:54+0000] example string """ datetime_prefix = string[string.index("[") + 1 : string.index("]")] inner_str = string[string.index("]") + 2 :] assert is_datetime(datetime_prefix) assert inner_str == expected_str @pytest.mark.unittest class TestNodeLogManager: def test_get_logs(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") print("test stderr", file=sys.stderr) assert lm.get_logs(RUN_ID).get("stdout") == "test\ntest2\n" assert lm.get_logs(RUN_ID).get("stderr") == "test stderr\n" lm.clear_node_context(RUN_ID) assert lm.get_logs(RUN_ID).get("stdout") is None assert lm.get_logs(RUN_ID).get("stderr") is None def test_logging(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) stdout_logger = logging.getLogger("stdout") stderr_logger = logging.getLogger("stderr") stdout_logger.addHandler(logging.StreamHandler(stream=sys.stdout)) stderr_logger.addHandler(logging.StreamHandler(stream=sys.stderr)) stdout_logger.warning("test stdout") stderr_logger.warning("test stderr") logs = lm.get_logs(RUN_ID) assert logs.get("stdout") == "test stdout\n" assert logs.get("stderr") == "test stderr\n" def test_exit_context_manager(self): with NodeLogManager() as lm: assert lm.stdout_logger is sys.stdout assert lm.stdout_logger != sys.stdout def test_datetime_prefix(self): with NodeLogManager(record_datetime=True) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") output = lm.get_logs(RUN_ID).get("stdout") outputs = output.split("\n") assert_datetime_prefix(outputs[0], "test") assert_datetime_prefix(outputs[1], "test2") assert outputs[2] == "" @pytest.mark.unittest class TestNodeLogWriter: def test_set_node_info(self): run_logger = NodeLogWriter(sys.stdout) assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) assert run_logger.get_log(RUN_ID) == "" def test_clear_node_info(self): run_logger = NodeLogWriter(sys.stdout) run_logger.clear_node_info(RUN_ID) run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) run_logger.clear_node_info(RUN_ID) assert run_logger.run_id_to_stdout.get(RUN_ID) is None def test_get_log(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger print("test") assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") assert_datetime_prefix(run_logger.get_log(RUN_ID), "test\n") run_logger.clear_node_info(RUN_ID) assert run_logger.get_log(RUN_ID) is None def test_multi_thread(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger with ThreadPool(processes=10) as pool: results = pool.starmap(assert_print_result, ((i, run_logger) for i in range(10))) for r in results: pass
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_operation_context.py
import threading import pytest from promptflow._core.operation_context import OperationContext from promptflow._version import VERSION from promptflow.contracts.run_mode import RunMode def set_run_mode(context: OperationContext, run_mode: RunMode): """This method simulates the runtime.execute_request() It is aimed to set the run_mode into operation context. """ context.run_mode = run_mode.name if run_mode is not None else "" @pytest.mark.unittest class TestOperationContext: def test_get_user_agent(self): operation_context = OperationContext() assert operation_context.get_user_agent() == f"promptflow/{VERSION}" operation_context.user_agent = "test_agent/0.0.2" assert operation_context.get_user_agent() == f"test_agent/0.0.2 promptflow/{VERSION}" @pytest.mark.parametrize( "run_mode, expected", [ (RunMode.Test, "Test"), (RunMode.SingleNode, "SingleNode"), (RunMode.Batch, "Batch"), ], ) def test_run_mode(self, run_mode, expected): context = OperationContext() set_run_mode(context, run_mode) assert context.run_mode == expected def test_context_dict(self): context = OperationContext() context.run_mode = "Flow" context.user_agent = "test_agent/0.0.2" context.none_value = None context_dict = context.get_context_dict() assert context_dict["run_mode"] == "Flow" assert context_dict["user_agent"] == "test_agent/0.0.2" assert context_dict["none_value"] is None def test_setattr(self): context = OperationContext() context.run_mode = "Flow" assert context["run_mode"] == "Flow" def test_setattr_non_primitive(self): # Test set non-primitive type context = OperationContext() with pytest.raises(TypeError): context.foo = [1, 2, 3] def test_getattr(self): context = OperationContext() context["run_mode"] = "Flow" assert context.run_mode == "Flow" def test_getattr_missing(self): context = OperationContext() with pytest.raises(AttributeError): context.foo def test_delattr(self): # test that delattr works as expected context = OperationContext() context.foo = "bar" del context.foo assert "foo" not in context # test that delattr raises AttributeError for non-existent name with pytest.raises(AttributeError): del context.baz def test_append_user_agent(self): context = OperationContext() user_agent = ' ' + context.user_agent if 'user_agent' in context else '' context.append_user_agent("test_agent/0.0.2") assert context.user_agent == "test_agent/0.0.2" + user_agent context.append_user_agent("test_agent/0.0.3") assert context.user_agent == "test_agent/0.0.2 test_agent/0.0.3" + user_agent def test_get_instance(self): context1 = OperationContext.get_instance() context2 = OperationContext.get_instance() assert context1 is context2 def test_set_batch_input_source_from_inputs_mapping_run(self): input_mapping = {"input1": "${run.outputs.output1}", "input2": "${run.outputs.output2}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Run" def test_set_batch_input_source_from_inputs_mapping_data(self): input_mapping = {"url": "${data.url}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_none(self): input_mapping = None context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_empty(self): input_mapping = {} context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_different_thread_have_different_instance(self): # create a list to store the OperationContext instances from each thread instances = [] # define a function that gets the OperationContext instance and appends it to the list def get_instance(): instance = OperationContext.get_instance() instances.append(instance) # create two threads and run the function in each thread thread1 = threading.Thread(target=get_instance) thread2 = threading.Thread(target=get_instance) thread1.start() thread2.start() thread1.join() thread2.join() # assert that the list has two elements and they are different objects assert len(instances) == 2 assert instances[0] is not instances[1]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_api_injector.py
import logging from collections import namedtuple from importlib.metadata import version from types import GeneratorType from unittest.mock import MagicMock, patch import openai import pytest from promptflow._core.openai_injector import ( PROMPTFLOW_PREFIX, USER_AGENT_HEADER, _generate_api_and_injector, _openai_api_list, get_aoai_telemetry_headers, inject_async, inject_openai_api, inject_operation_headers, inject_sync, recover_openai_api, ) from promptflow._core.operation_context import OperationContext from promptflow._core.tracer import Tracer from promptflow._version import VERSION from promptflow.connections import AzureOpenAIConnection from promptflow.exceptions import UserErrorException from promptflow.tools.aoai import AzureOpenAI from promptflow.tools.embedding import embedding IS_LEGACY_OPENAI = version("openai").startswith("0.") # Mock classes and functions for test class MockAPI: def create(self): pass @pytest.mark.unittest def test_inject_operation_headers_sync(): @inject_operation_headers def f(**kwargs): return kwargs if IS_LEGACY_OPENAI: headers = "headers" kwargs_1 = {"headers": {"a": 1, "b": 2}} kwargs_2 = {"headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} else: headers = "extra_headers" kwargs_1 = {"extra_headers": {"a": 1, "b": 2}} kwargs_2 = {"extra_headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} injected_headers = get_aoai_telemetry_headers() assert f(a=1, b=2) == {"a": 1, "b": 2, headers: injected_headers} merged_headers = {**injected_headers, "a": 1, "b": 2} assert f(**kwargs_1) == {headers: merged_headers} aoai_tools_headers = injected_headers.copy() aoai_tools_headers.update({"ms-azure-ai-promptflow-called-from": "aoai-tool"}) assert f(**kwargs_2) == {headers: aoai_tools_headers} @pytest.mark.unittest @pytest.mark.asyncio async def test_inject_operation_headers_async(): @inject_operation_headers async def f(**kwargs): return kwargs if IS_LEGACY_OPENAI: headers = "headers" kwargs_1 = {"headers": {"a": 1, "b": 2}} kwargs_2 = {"headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} else: headers = "extra_headers" kwargs_1 = {"extra_headers": {"a": 1, "b": 2}} kwargs_2 = {"extra_headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} injected_headers = get_aoai_telemetry_headers() assert await f(a=1, b=2) == {"a": 1, "b": 2, headers: injected_headers} merged_headers = {**injected_headers, "a": 1, "b": 2} assert await f(**kwargs_1) == {headers: merged_headers} aoai_tools_headers = injected_headers.copy() aoai_tools_headers.update({"ms-azure-ai-promptflow-called-from": "aoai-tool"}) assert await f(**kwargs_2) == {headers: aoai_tools_headers} @pytest.mark.unittest def test_aoai_generator_proxy_sync(): def mock_aoai(**kwargs): # check if args has a stream parameter if "stream" in kwargs and kwargs["stream"]: # stream parameter is true, yield a string def generator(): yield "This is a yielded string" return generator() else: # stream parameter is false or not given, return a string return "This is a returned string" if IS_LEGACY_OPENAI: apis = ["openai.Completion.create", "openai.ChatCompletion.create", "openai.Embedding.create"] else: apis = [ "openai.resources.Completions.create", "openai.resources.chat.Completions.create", "openai.resources.Embeddings.create", ] with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): Tracer.start_tracing("mock_run_id") inject_openai_api() if IS_LEGACY_OPENAI: return_string = openai.Completion.create(stream=False) return_generator = openai.Completion.create(stream=True) else: return_string = openai.resources.Completions.create(stream=False) return_generator = openai.resources.Completions.create(stream=True) assert return_string == "This is a returned string" assert isinstance(return_generator, GeneratorType) for _ in return_generator: pass traces = Tracer.end_tracing() assert len(traces) == 2 for trace in traces: assert trace["type"] == "LLM" if trace["inputs"]["stream"]: assert trace["output"] == ["This is a yielded string"] else: assert trace["output"] == "This is a returned string" @pytest.mark.unittest @pytest.mark.asyncio async def test_aoai_generator_proxy_async(): async def mock_aoai(**kwargs): # check if args has a stream parameter if "stream" in kwargs and kwargs["stream"]: # stream parameter is true, yield a string def generator(): yield "This is a yielded string" return generator() else: # stream parameter is false or not given, return a string return "This is a returned string" if IS_LEGACY_OPENAI: apis = ["openai.Completion.acreate", "openai.ChatCompletion.acreate", "openai.Embedding.acreate"] else: apis = [ "openai.resources.AsyncCompletions.create", "openai.resources.chat.AsyncCompletions.create", "openai.resources.AsyncEmbeddings.create", ] with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): Tracer.start_tracing("mock_run_id") inject_openai_api() if IS_LEGACY_OPENAI: return_string = await openai.Completion.acreate(stream=False) return_generator = await openai.Completion.acreate(stream=True) else: return_string = await openai.resources.AsyncCompletions.create(stream=False) return_generator = await openai.resources.AsyncCompletions.create(stream=True) assert return_string == "This is a returned string" assert isinstance(return_generator, GeneratorType) for _ in return_generator: pass traces = Tracer.end_tracing() assert len(traces) == 2 for trace in traces: assert trace["type"] == "LLM" if trace["inputs"]["stream"]: assert trace["output"] == ["This is a yielded string"] else: assert trace["output"] == "This is a returned string" @pytest.mark.unittest def test_aoai_call_inject(): if IS_LEGACY_OPENAI: headers = "headers" apis = ["openai.Completion.create", "openai.ChatCompletion.create", "openai.Embedding.create"] else: headers = "extra_headers" apis = [ "openai.resources.Completions.create", "openai.resources.chat.Completions.create", "openai.resources.Embeddings.create", ] def mock_aoai(**kwargs): return kwargs.get(headers) with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): inject_openai_api() injected_headers = get_aoai_telemetry_headers() if IS_LEGACY_OPENAI: return_headers_1 = openai.Completion.create(headers=None) return_headers_2 = openai.ChatCompletion.create(headers="abc") return_headers_3 = openai.Embedding.create(headers=1) else: return_headers_1 = openai.resources.Completions.create(extra_headers=None) return_headers_2 = openai.resources.chat.Completions.create(extra_headers="abc") return_headers_3 = openai.resources.Embeddings.create(extra_headers=1) assert return_headers_1 is not None assert injected_headers.items() <= return_headers_1.items() assert return_headers_2 is not None assert injected_headers.items() <= return_headers_2.items() assert return_headers_3 is not None assert injected_headers.items() <= return_headers_3.items() @pytest.mark.unittest def test_aoai_tool_header(): def mock_complete(*args, **kwargs): Response = namedtuple("Response", ["choices"]) Choice = namedtuple("Choice", ["text"]) choice = Choice(text=kwargs.get("extra_headers", {})) response = Response(choices=[choice]) return response def mock_chat(*args, **kwargs): Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["message"]) Message = namedtuple("Message", ["content"]) message = Message(content=kwargs.get("extra_headers", {})) choice = Choice(message=message) completion = Completion(choices=[choice]) return completion def mock_embedding(*args, **kwargs): Response = namedtuple("Response", ["data"]) Embedding = namedtuple("Embedding", ["embedding"]) response = Response(data=[Embedding(embedding=kwargs.get("extra_headers", {}))]) return response with patch("openai.resources.Completions.create", new=mock_complete), patch( "openai.resources.chat.Completions.create", new=mock_chat ), patch("openai.resources.Embeddings.create", new=mock_embedding): inject_openai_api() aoai_tool_header = {"ms-azure-ai-promptflow-called-from": "aoai-tool"} return_headers = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).completion( prompt="test", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() return_headers = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\ntest", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() return_headers = embedding( AzureOpenAIConnection(api_key="test", api_base="test"), input="test", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() @pytest.mark.unittest def test_aoai_chat_tool_prompt(): def mock_chat(*args, **kwargs): Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["message"]) Message = namedtuple("Message", ["content"]) message = Message(content=kwargs.get("messages", {})) choice = Choice(message=message) completion = Completion(choices=[choice]) return completion with patch("openai.resources.chat.Completions.create", new=mock_chat): inject_openai_api() return_messages = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\ntest", deployment_name="test" ) assert return_messages == [{"role": "user", "content": "test"}] return_messages = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\r\n", deployment_name="test" ) assert return_messages == [{"role": "user", "content": ""}] with pytest.raises(UserErrorException, match="The Chat API requires a specific format for prompt"): AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:", deployment_name="test" ) # The new generator-based test function @pytest.mark.parametrize( "is_legacy, expected_apis_with_injectors", [ ( True, [ ( ( ("openai", "Completion", "create"), ("openai", "ChatCompletion", "create"), ("openai", "Embedding", "create"), ), inject_sync, ), ( ( ("openai", "Completion", "acreate"), ("openai", "ChatCompletion", "acreate"), ("openai", "Embedding", "acreate"), ), inject_async, ), ], ), ( False, [ ( ( ("openai.resources.chat", "Completions", "create"), ("openai.resources", "Completions", "create"), ("openai.resources", "Embeddings", "create"), ), inject_sync, ), ( ( ("openai.resources.chat", "AsyncCompletions", "create"), ("openai.resources", "AsyncCompletions", "create"), ("openai.resources", "AsyncEmbeddings", "create"), ), inject_async, ), ], ), ], ) def test_api_list(is_legacy, expected_apis_with_injectors): with patch("promptflow._core.openai_injector.IS_LEGACY_OPENAI", is_legacy): # Using list comprehension to get all items from the generator actual_apis_with_injectors = list(_openai_api_list()) # Assert that the actual list matches the expected list assert actual_apis_with_injectors == expected_apis_with_injectors @pytest.mark.parametrize( "apis_with_injectors, expected_output, expected_logs", [ ([((("MockModule", "MockAPI", "create"),), inject_sync)], [(MockAPI, "create", inject_sync)], []), ([((("MockModule", "MockAPI", "create"),), inject_async)], [(MockAPI, "create", inject_async)], []), ], ) def test_generate_api_and_injector(apis_with_injectors, expected_output, expected_logs, caplog): with patch("importlib.import_module", return_value=MagicMock(MockAPI=MockAPI)) as mock_import_module: # Capture the logs with caplog.at_level(logging.WARNING): # Run the generator and collect the output result = list(_generate_api_and_injector(apis_with_injectors)) # Check if the result matches the expected output assert result == expected_output # Check if the logs match the expected logs assert len(caplog.records) == len(expected_logs) for record, expected_message in zip(caplog.records, expected_logs): assert expected_message in record.message mock_import_module.assert_called_with("MockModule") def test_generate_api_and_injector_attribute_error_logging(caplog): apis = [ ((("NonExistentModule", "NonExistentAPI", "create"),), MagicMock()), ((("MockModuleMissingMethod", "MockAPIMissingMethod", "missing_method"),), MagicMock()), ] # Set up the side effect for the mock def import_module_effect(name): if name == "MockModuleMissingMethod": module = MagicMock() delattr(module, "MockAPIMissingMethod") # Use delattr to remove the attribute return module else: raise ModuleNotFoundError(f"No module named '{name}'") with patch("importlib.import_module") as mock_import_module: mock_import_module.side_effect = import_module_effect with caplog.at_level(logging.WARNING): list(_generate_api_and_injector(apis)) assert len(caplog.records) == 2 assert "An unexpected error occurred" in caplog.records[0].message assert "NonExistentModule" in caplog.records[0].message assert "does not have the class" in caplog.records[1].message assert "MockAPIMissingMethod" in caplog.records[1].message # Verify that `importlib.import_module` was called with correct module names mock_import_module.assert_any_call("NonExistentModule") mock_import_module.assert_any_call("MockModuleMissingMethod") @pytest.mark.unittest def test_get_aoai_telemetry_headers(): # create a mock operation context mock_operation_context = OperationContext() mock_operation_context.user_agent = "test-user-agent" mock_operation_context.update( { "flow_id": "test-flow-id", "root_run_id": "test-root-run-id", "index": 1, "run_id": "test-run-id", "variant_id": "test-variant-id", } ) # patch the OperationContext.get_instance method to return the mock operation context with patch("promptflow._core.operation_context.OperationContext.get_instance") as mock_get_instance: mock_get_instance.return_value = mock_operation_context # call the function under test and get the headers headers = get_aoai_telemetry_headers() for key in headers.keys(): assert key.startswith(PROMPTFLOW_PREFIX) or key == USER_AGENT_HEADER assert "_" not in key # assert that the headers are correct assert headers[USER_AGENT_HEADER] == f"test-user-agent promptflow/{VERSION}" assert headers[f"{PROMPTFLOW_PREFIX}flow-id"] == "test-flow-id" assert headers[f"{PROMPTFLOW_PREFIX}root-run-id"] == "test-root-run-id" assert headers[f"{PROMPTFLOW_PREFIX}index"] == "1" assert headers[f"{PROMPTFLOW_PREFIX}run-id"] == "test-run-id" assert headers[f"{PROMPTFLOW_PREFIX}variant-id"] == "test-variant-id" @pytest.mark.unittest def test_inject_and_recover_openai_api(): class FakeAPIWithoutOriginal: @staticmethod def create(): pass class FakeAPIWithOriginal: @staticmethod def create(): pass def dummy_api(): pass # Real injector function that adds an _original attribute def injector(f): def wrapper_fun(*args, **kwargs): return f(*args, **kwargs) wrapper_fun._original = f return wrapper_fun # Set an _original attribute for the create method of FakeAPIWithOriginal FakeAPIWithOriginal.create._original = dummy_api # Store the original create methods before injection original_api_without_original = FakeAPIWithoutOriginal.create original_api_with_original = FakeAPIWithOriginal.create # Mock the generator function to yield our mocked api and method with patch( "promptflow._core.openai_injector.available_openai_apis_and_injectors", return_value=[(FakeAPIWithoutOriginal, "create", injector), (FakeAPIWithOriginal, "create", injector)], ): # Call the function to inject the APIs inject_openai_api() # Check that the _original attribute was set for the method that didn't have it assert hasattr(FakeAPIWithoutOriginal.create, "_original") # Ensure the _original attribute points to the correct original method assert FakeAPIWithoutOriginal.create._original is original_api_without_original # Check that the injector was not applied again to the method that already had an _original attribute # The _original attribute should still point to the mock, not the original method assert getattr(FakeAPIWithOriginal.create, "_original") is not FakeAPIWithOriginal.create # The original method should remain unchanged assert FakeAPIWithOriginal.create is original_api_with_original # Call the function to recover the APIs recover_openai_api() # Check that the _original attribute was removed for the method that didn't have it assert not hasattr(FakeAPIWithoutOriginal.create, "_original") assert not hasattr(FakeAPIWithOriginal.create, "_original") # The original methods should be restored assert FakeAPIWithoutOriginal.create is original_api_without_original assert FakeAPIWithOriginal.create is dummy_api
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_flow.py
from pathlib import Path import pytest from promptflow._sdk.entities._connection import AzureContentSafetyConnection from promptflow.contracts._errors import FailedToImportModule from promptflow.contracts.flow import ( Flow, FlowInputAssignment, FlowInputDefinition, FlowOutputDefinition, InputAssignment, InputValueType, Node, NodeVariant, NodeVariants, ToolSource, ToolSourceType, ) from promptflow.contracts.tool import Tool, ToolType, ValueType from ...utils import EAGER_FLOWS_ROOT, FLOW_ROOT, get_flow_folder, get_flow_package_tool_definition, get_yaml_file PACKAGE_TOOL_BASE = Path(__file__).parent.parent.parent / "package_tools" @pytest.mark.e2etest class TestFlowContract: @pytest.mark.parametrize( "flow_folder, expected_connection_names", [ ("web_classification", {"azure_open_ai_connection"}), ("basic-with-connection", {"azure_open_ai_connection"}), ("flow_with_dict_input_with_variant", {"mock_custom_connection"}), ], ) def test_flow_get_connection_names(self, flow_folder, expected_connection_names): flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_names() == expected_connection_names def test_flow_get_connection_input_names_for_node_with_variants(self): # Connection input exists only in python node flow_folder = "flow_with_dict_input_with_variant" flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_input_names_for_node("print_val") == ["conn"] def test_flow_get_connection_names_with_package_tool(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_names() assert connection_names == {"azure_open_ai_connection"} def test_flow_get_connection_input_names_for_node(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_input_names_for_node(flow.nodes[0].name) assert connection_names == ["connection", "connection_2"] assert flow.get_connection_input_names_for_node("not_exist") == [] @pytest.mark.parametrize( "flow_folder_name, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), ], ) def test_flow_get_environment_variables_with_overrides( self, flow_folder_name, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name) flow_file = "flow.dag.yaml" flow = Flow.from_yaml(flow_file=flow_file, working_dir=flow_folder) merged_environment_variables = flow.get_environment_variables_with_overrides( environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.parametrize( "flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", None, {}, id="LoadEnvVariablesForEagerFlow", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesForEagerFlowWithOverrides", ), ], ) def test_load_env_variables( self, flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name, folder_root) merged_environment_variables = Flow.load_env_variables( flow_file=flow_file, working_dir=flow_folder, environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.unittest class TestFlow: @pytest.mark.parametrize( "flow, expected_value", [ ( Flow(id="flow_id", name="flow_name", nodes=[], inputs={}, outputs={}, tools=[]), { "id": "flow_id", "name": "flow_name", "nodes": [], "inputs": {}, "outputs": {}, "tools": [], "language": "python", }, ), ( Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={"input1": FlowInputDefinition(type=ValueType.STRING)}, outputs={"output1": FlowOutputDefinition(type=ValueType.STRING, reference=None)}, tools=[], ), { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], "language": "python", }, ), ], ) def test_flow_serialize(self, flow, expected_value): assert flow.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}, "outputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], }, Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={ "input1": FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ) }, outputs={ "output1": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment( value="", value_type=InputValueType.LITERAL, section="", property="" ), description="", evaluation_only=False, is_chat_output=False, ) }, tools=[], node_variants={}, program_language="python", environment_variables={}, ), ), ], ) def test_flow_deserialize(self, data, expected_value): assert Flow.deserialize(data) == expected_value def test_import_requisites(self): tool1 = Tool(name="tool1", type=ToolType.PYTHON, inputs={}, module="yaml") tool2 = Tool(name="tool2", type=ToolType.PYTHON, inputs={}, module="module") node1 = Node(name="node1", tool="tool1", inputs={}, module="yaml") node2 = Node(name="node2", tool="tool2", inputs={}, module="module") with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool1], [node2]) assert str(e.value).startswith( "Failed to import modules with error: Import node 'node2' provider module 'module' failed." ) with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool2], [node1]) assert str(e.value).startswith( "Failed to import modules with error: Import tool 'tool2' module 'module' failed." ) def test_apply_default_node_variants(self): node_variant = NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}, use_variants=False), description=None, ) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": node_variant}, ) } flow1 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is True flow1._apply_default_node_variants() assert flow1.nodes[0].use_variants is False assert flow1.nodes[0].inputs.keys() == {"input2"} assert flow1.nodes[0].name == "print_val" flow2 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=False)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is False tmp_nodes = flow2.nodes flow2._apply_default_node_variants() assert flow2.nodes == tmp_nodes @pytest.mark.parametrize( "node_variants", [ (None), ( { "test": NodeVariants( default_variant_id="variant1", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ( { "print_val": NodeVariants( default_variant_id="test", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ], ) def test_apply_default_node_variant(self, node_variants): node = Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True) assert Flow._apply_default_node_variant(node, node_variants) == node def test_apply_node_overrides(self): llm_node = Node(name="llm_node", tool=None, inputs={}, connection="open_ai_connection") test_node = Node( name="test_node", tool=None, inputs={"test": InputAssignment("test_value1", InputValueType.LITERAL)} ) flow = Flow(id="test_flow_id", name="test_flow", nodes=[llm_node, test_node], inputs={}, outputs={}, tools=[]) assert flow == flow._apply_node_overrides(None) assert flow == flow._apply_node_overrides({}) node_overrides = { "other_node.connection": "some_connection", } with pytest.raises(ValueError): flow._apply_node_overrides(node_overrides) node_overrides = { "llm_node.connection": "custom_connection", "test_node.test": "test_value2", } flow = flow._apply_node_overrides(node_overrides) assert flow.nodes[0].connection == "custom_connection" assert flow.nodes[1].inputs["test"].value == "test_value2" def test_has_aggregation_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow1 = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert not flow1.has_aggregation_node() flow2 = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow2.has_aggregation_node() def test_get_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) flow = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert flow.get_node("llm_node") is llm_node assert flow.get_node("other_node") is None def test_get_tool(self): tool = Tool(name="tool", type=ToolType.PYTHON, inputs={}) flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[tool]) assert flow.get_tool("tool") is tool assert flow.get_tool("other_tool") is None def test_is_reduce_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_reduce_node("llm_node") assert flow.is_reduce_node("aggre_node") def test_is_normal_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_normal_node("llm_node") assert not flow.is_normal_node("aggre_node") def test_is_llm_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}, type=ToolType.LLM) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_llm_node(llm_node) assert not flow.is_llm_node(aggre_node) def test_is_referenced_by_flow_output(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) output = { "output": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("llm_node", InputValueType.NODE_REFERENCE, "output") ) } flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs=output, tools=[]) assert flow.is_referenced_by_flow_output(llm_node) assert not flow.is_referenced_by_flow_output(aggre_node) def test_is_node_referenced_by(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_node_referenced_by(aggre_node, llm_node) assert flow.is_node_referenced_by(llm_node, aggre_node) def test_is_referenced_by_other_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_referenced_by_other_node(aggre_node) assert flow.is_referenced_by_other_node(llm_node) def test_is_chat_flow(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert not standard_flow.is_chat_flow() assert chat_flow.is_chat_flow() def test_get_chat_input_name(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert standard_flow.get_chat_input_name() is None assert chat_flow.get_chat_input_name() == "question" def test_get_chat_output_name(self): chat_output = {"answer": FlowOutputDefinition(type=ValueType.STRING, reference=None, is_chat_output=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs=chat_output, tools=[]) assert standard_flow.get_chat_output_name() is None assert chat_flow.get_chat_output_name() == "answer" def test_replace_with_variant(self): node0 = Node(name="node0", tool=None, inputs={"input0": None}, use_variants=True) node1 = Node(name="node1", tool="tool1", inputs={"input1": None}, use_variants=False) node2 = Node(name="node2", tool="tool2", inputs={"input2": None}, use_variants=False) node_variant = Node(name="node0", tool="tool3", inputs={"input3": None}, use_variants=False) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": NodeVariant(node_variant, None)}, ) } flow = Flow("test_flow_id", "test_flow", [node0, node1, node2], {}, {}, [], node_variants) # flow = Flow.from_yaml(get_yaml_file("web_classification")) tool_cnt = len(flow.tools) flow._replace_with_variant(node_variant, [flow.nodes[1].tool, flow.nodes[2].tool]) assert "input3" in flow.nodes[0].inputs assert flow.nodes[0].tool == "tool3" assert len(flow.tools) == tool_cnt + 2 @pytest.mark.unittest class TestInputAssignment: @pytest.mark.parametrize( "value, expected_value", [ (InputAssignment("value", InputValueType.LITERAL), "value"), (InputAssignment("value", InputValueType.FLOW_INPUT), "${flow.value}"), (InputAssignment("value", InputValueType.NODE_REFERENCE, "section"), "${value.section}"), ( InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), "${value.section.property}", ), (InputAssignment(AzureContentSafetyConnection, InputValueType.LITERAL, "section", "property"), "ABCMeta"), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "serialized_value, expected_value", [ ( "${value.section.property}", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), ), ( "${flow.section.property}", FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT), ), ("${value}", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("$value", InputAssignment("$value", InputValueType.LITERAL)), ("value", InputAssignment("value", InputValueType.LITERAL)), ], ) def test_deserialize(self, serialized_value, expected_value): input_assignment = InputAssignment.deserialize(serialized_value) assert input_assignment == expected_value @pytest.mark.parametrize( "serialized_reference, expected_value", [ ("input", InputAssignment("input", InputValueType.NODE_REFERENCE, "output")), ("flow.section", FlowInputAssignment("section", value_type=InputValueType.FLOW_INPUT, prefix="flow.")), ( "flow.section.property", FlowInputAssignment("section.property", value_type=InputValueType.FLOW_INPUT, prefix="flow."), ), ], ) def test_deserialize_reference(self, serialized_reference, expected_value): assert InputAssignment.deserialize_reference(serialized_reference) == expected_value @pytest.mark.parametrize( "serialized_node_reference, expected_value", [ ("value", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("value.section", InputAssignment("value", InputValueType.NODE_REFERENCE, "section")), ("value.section.property", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property")), ], ) def test_deserialize_node_reference(self, serialized_node_reference, expected_value): assert InputAssignment.deserialize_node_reference(serialized_node_reference) == expected_value @pytest.mark.unittest class TestFlowInputAssignment: @pytest.mark.parametrize( "input_value, expected_value", [ ("flow.section.property", True), ("inputs.section.property", True), ("section.property", False), ("", False), ], ) def test_is_flow_input(self, input_value, expected_value): assert FlowInputAssignment.is_flow_input(input_value) == expected_value def test_deserialize(self): expected_input = FlowInputAssignment("section.property", prefix="inputs.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("inputs.section.property") == expected_input expected_flow = FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("flow.section.property") == expected_flow with pytest.raises(ValueError): FlowInputAssignment.deserialize("value") @pytest.mark.unittest class TestToolSource: @pytest.mark.parametrize( "tool_source, expected_value", [ ({}, ToolSource(type=ToolSourceType.Code)), ({"type": ToolSourceType.Code.value}, ToolSource(type=ToolSourceType.Code)), ( {"type": ToolSourceType.Package.value, "tool": "tool", "path": "path"}, ToolSource(type=ToolSourceType.Package, tool="tool", path="path"), ), ], ) def test_deserialize(self, tool_source, expected_value): assert ToolSource.deserialize(tool_source) == expected_value @pytest.mark.unittest class TestNode: @pytest.mark.parametrize( "node, expected_value", [ ( Node(name="test_node", tool="test_tool", inputs={}), {"name": "test_node", "tool": "test_tool", "inputs": {}}, ), ( Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True, "reduce": True}, ), ], ) def test_serialize(self, node, expected_value): assert node.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( {"name": "test_node", "tool": "test_tool", "inputs": {}}, Node(name="test_node", tool="test_tool", inputs={}), ), ( {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True}, Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), ), ], ) def test_deserialize(self, data, expected_value): assert Node.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowInputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowInputDefinition(type=ValueType.BOOL), {"type": ValueType.BOOL.value}), ( FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), { "type": ValueType.STRING.value, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), ), ( { "type": ValueType.STRING, }, FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowInputDefinition.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowOutputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowOutputDefinition(type=ValueType.BOOL, reference=None), {"type": ValueType.BOOL.value}), ( FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("value", InputValueType.NODE_REFERENCE), description="description", evaluation_only=True, is_chat_output=True, ), { "type": ValueType.STRING.value, "reference": "${value.}", "description": "description", "evaluation_only": True, "is_chat_output": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, }, FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("", InputValueType.LITERAL), ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowOutputDefinition.deserialize(data) == expected_value
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_mode.py
import pytest from promptflow.contracts.run_mode import RunMode @pytest.mark.unittest @pytest.mark.parametrize( "run_mode, expected", [ ("Test", RunMode.Test), ("SingleNode", RunMode.SingleNode), ("Batch", RunMode.Batch), ("Default", RunMode.Test), ], ) def test_parse(run_mode, expected): assert RunMode.parse(run_mode) == expected @pytest.mark.unittest def test_parse_invalid(): with pytest.raises(ValueError): RunMode.parse(123)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_multimedia.py
import pytest from promptflow.contracts.multimedia import Image, PFBytes @pytest.mark.unittest class TestMultimediaContract: @pytest.mark.parametrize( "value, mime_type, source_url", [ (b"test", "image/*", None), (b"test", "image/jpg", None), (b"test", "image/png", None), (b"test", None, None), (b"test", "image/*", "mock_url"), ] ) def test_image_contract(self, value, mime_type, source_url): image = Image(value, mime_type, source_url) if mime_type is None: mime_type = "image/*" assert image._mime_type == mime_type assert image._hash == "a94a8fe5" assert image.to_base64() == "dGVzdA==" assert image.to_base64(with_type=True) == f"data:{mime_type};base64,dGVzdA==" assert image.to_base64(with_type=True, dict_type=True) == {f"data:{mime_type};base64": "dGVzdA=="} assert bytes(image) == value assert image.source_url == source_url assert str(image) == "Image(a94a8fe5)" assert repr(image) == "Image(a94a8fe5)" assert image.serialize() == "Image(a94a8fe5)" assert image.serialize(lambda x: x.to_base64()) == "dGVzdA==" @pytest.mark.parametrize( "value, mime_type, source_url", [ (b"test", "image/*", None), (b"test", "image/jpg", None), (b"test", "image/png", None), (b"test", "image/*", "mock_url"), ] ) def test_pfbytes_contract(self, value, mime_type, source_url): pfBytes = PFBytes(value, mime_type, source_url) assert pfBytes._mime_type == mime_type assert pfBytes._hash == "a94a8fe5" assert pfBytes.to_base64() == "dGVzdA==" assert pfBytes.to_base64(with_type=True) == f"data:{mime_type};base64,dGVzdA==" assert pfBytes.to_base64(with_type=True, dict_type=True) == {f"data:{mime_type};base64": "dGVzdA=="} assert bytes(pfBytes) == value assert pfBytes.source_url == source_url
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_types.py
import pytest from promptflow.contracts.types import AssistantDefinition, Secret, PromptTemplate, FilePath from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker @pytest.mark.unittest def test_secret(): secret = Secret('my_secret') secret.set_secret_name('secret_name') assert secret.secret_name == 'secret_name' @pytest.mark.unittest def test_prompt_template(): prompt = PromptTemplate('my_prompt') assert isinstance(prompt, str) assert str(prompt) == 'my_prompt' @pytest.mark.unittest def test_file_path(): file_path = FilePath('my_file_path') assert isinstance(file_path, str) @pytest.mark.unittest def test_assistant_definition(): data = {"model": "model", "instructions": "instructions", "tools": []} assistant_definition = AssistantDefinition.deserialize(data) assert isinstance(assistant_definition, AssistantDefinition) assert assistant_definition.model == "model" assert assistant_definition.instructions == "instructions" assert assistant_definition.tools == [] assert assistant_definition.serialize() == data assert isinstance(assistant_definition.init_tool_invoker(), AssistantToolInvoker)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_tool.py
from enum import Enum from typing import Any, Callable, NewType, Optional, Tuple, TypeVar, Union import pytest from promptflow._core.tools_manager import connections from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow._sdk.entities._connection import AzureContentSafetyConnection from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import Status from promptflow.contracts.tool import ( AssistantDefinition, ConnectionType, InputDefinition, OutputDefinition, Tool, ToolType, ValueType, _deserialize_enum, ) from promptflow.contracts.types import FilePath, PromptTemplate, Secret class MyConnection(CustomStrongTypeConnection): pass my_connection = MyConnection(name="my_connection", secrets={"key": "value"}) def some_function(): pass class TestStatus(Enum): Running = 1 Preparing = 2 Completed = 3 @pytest.mark.unittest @pytest.mark.parametrize( "enum, value, expected", [ (Status, "Running", Status.Running), (Status, "running", Status.Running), (Status, "FAILED", Status.Failed), (Status, "UNKNOWN", "UNKNOWN"), (TestStatus, "Running", "Running"), ], ) def test_deserialize_enum(enum, value, expected): assert _deserialize_enum(enum, value) == expected @pytest.mark.unittest class TestValueType: @pytest.mark.parametrize( "value, expected", [ (1, ValueType.INT), (1.0, ValueType.DOUBLE), (True, ValueType.BOOL), ("string", ValueType.STRING), ([], ValueType.LIST), ({}, ValueType.OBJECT), (Secret("secret"), ValueType.SECRET), (PromptTemplate("prompt"), ValueType.PROMPT_TEMPLATE), (FilePath("file_path"), ValueType.FILE_PATH), (AssistantDefinition("model", "instructions", []), ValueType.ASSISTANT_DEFINITION), ], ) def test_from_value(self, value, expected): assert ValueType.from_value(value) == expected @pytest.mark.parametrize( "value, expected", [ (int, ValueType.INT), (float, ValueType.DOUBLE), (bool, ValueType.BOOL), (str, ValueType.STRING), (list, ValueType.LIST), (dict, ValueType.OBJECT), (Secret, ValueType.SECRET), (PromptTemplate, ValueType.PROMPT_TEMPLATE), (FilePath, ValueType.FILE_PATH), (Image, ValueType.IMAGE), (AssistantDefinition, ValueType.ASSISTANT_DEFINITION), ], ) def test_from_type(self, value, expected): assert ValueType.from_type(value) == expected @pytest.mark.parametrize( "value, value_type, expected", [ ("1", ValueType.INT, 1), ("1.0", ValueType.DOUBLE, 1.0), ("true", ValueType.BOOL, True), ("false", ValueType.BOOL, False), (True, ValueType.BOOL, True), (123, ValueType.STRING, "123"), ('["a", "b", "c"]', ValueType.LIST, ["a", "b", "c"]), ('{"key": "value"}', ValueType.OBJECT, {"key": "value"}), ("[1, 2, 3]", ValueType.OBJECT, [1, 2, 3]), ("{", ValueType.OBJECT, "{"), ([1, 2, 3], ValueType.OBJECT, [1, 2, 3]), ], ) def test_parse(self, value, value_type, expected): assert value_type.parse(value) == expected @pytest.mark.parametrize( "value, value_type", [ ("1", ValueType.BOOL), ({}, ValueType.LIST), ], ) def test_parse_error(self, value, value_type): with pytest.raises(ValueError): value_type.parse(value) @pytest.mark.unittest class TestConnectionType: @pytest.mark.parametrize( "type_name, expected", [ ("AzureContentSafetyConnection", connections.get("AzureContentSafetyConnection")), ("AzureOpenAIConnection", connections.get("AzureOpenAIConnection")), ("_Connection", connections.get("_Connection")), ("unknown", None), (123, None), ], ) def test_get_connection_class(self, type_name, expected): assert ConnectionType.get_connection_class(type_name) == expected @pytest.mark.parametrize( "type_name, expected", [ ("AzureContentSafetyConnection", True), ("AzureOpenAIConnection", True), ("_Connection", True), ("unknown", False), (123, False), ], ) def test_is_connection_class_name(self, type_name, expected): assert ConnectionType.is_connection_class_name(type_name) == expected @pytest.mark.parametrize( "value, expected", [ (connections.get("AzureContentSafetyConnection"), True), (AzureContentSafetyConnection("api_key", "endpoint"), True), (Status, False), (ConnectionType.is_connection_value("non_connection_instance"), False), ], ) def test_is_connection_value(self, value, expected): assert ConnectionType.is_connection_value(value) == expected @pytest.mark.parametrize( "val, expected_res", [ (my_connection, True), (MyConnection, True), (list, False), # (list[str], False), # Python 3.9 # (list[int], False), ([1, 2, 3], False), (float, False), (int, False), (5, False), (str, False), (some_function, False), (Union[str, int], False), # ((int | str), False), # Python 3.10 (tuple, False), # (tuple[str, int], False), # Python 3.9 (Tuple[int, ...], False), # (dict[str, Any], False), # Python 3.9 ({"test1": [1, 2, 3], "test2": [4, 5, 6], "test3": [7, 8, 9]}, False), (Any, False), (None, False), (Optional[str], False), (TypeVar("T"), False), (TypeVar, False), (Callable, False), (Callable[..., Any], False), (NewType("MyType", int), False), ], ) def test_is_custom_strong_type(self, val, expected_res): assert ConnectionType.is_custom_strong_type(val) == expected_res def test_serialize_conn(self): assert ConnectionType.serialize_conn(AzureContentSafetyConnection) == "ABCMeta" connection_instance = AzureContentSafetyConnection("api_key", "endpoint") assert ConnectionType.serialize_conn(connection_instance) == "AzureContentSafetyConnection" with pytest.raises(ValueError): ConnectionType.serialize_conn("non_connection_instance") @pytest.mark.unittest class TestInputDefinition: def test_serialize(self): # test when len(type) == 1 input_def = InputDefinition( [ValueType.STRING], default="Default", description="Description", enum=["A", "B", "C"], custom_type=["customtype"], ) serialized = input_def.serialize() assert serialized == { "type": "string", "default": "Default", "description": "Description", "enum": ["A", "B", "C"], "custom_type": ["customtype"], } # test when len(type) > 1 input_def = InputDefinition([ValueType.STRING, ValueType.INT]) serialized = input_def.serialize() assert serialized == {"type": ["string", "int"]} def test_deserialize(self): serialized = {"type": "string", "default": "Default", "description": "Description", "enum": ["A", "B", "C"]} deserialized = InputDefinition.deserialize(serialized) assert deserialized.type == [ValueType.STRING] assert deserialized.default == "Default" assert deserialized.description == "Description" assert deserialized.enum == ["A", "B", "C"] serialized = {"type": ["string", "int"]} deserialized = InputDefinition.deserialize(serialized) assert deserialized.type == [ValueType.STRING, ValueType.INT] assert deserialized.default == "" assert deserialized.description == "" assert deserialized.enum == [] @pytest.mark.unittest class TestOutDefinition: @pytest.mark.parametrize( "value, expected", [ ( OutputDefinition([ValueType.STRING], description="Description", is_property=True), {"type": "string", "description": "Description", "is_property": True}, ), (OutputDefinition([ValueType.STRING, ValueType.INT]), {"type": ["string", "int"], "is_property": False}), ], ) def test_serialize(self, value, expected): assert value.serialize() == expected @pytest.mark.parametrize( "value, expected", [ ( {"type": "string", "description": "Description", "is_property": True}, OutputDefinition([ValueType.STRING], description="Description", is_property=True), ), ({"type": ["string", "int"]}, OutputDefinition([ValueType.STRING, ValueType.INT])), ], ) def test_deserialize(self, value, expected): assert OutputDefinition.deserialize(value) == expected @pytest.mark.unittest class TestTool: @pytest.mark.parametrize( "tool_type, expected_keys", [ (ToolType._ACTION, ["name", "description", "enable_kwargs"]), (ToolType.LLM, ["name", "type", "inputs", "description", "enable_kwargs"]), ], ) def test_serialize_tool(self, tool_type, expected_keys): tool = Tool(name="test_tool", type=tool_type, inputs={}, outputs={}, description="description") serialized_tool = tool.serialize() assert set(serialized_tool.keys()) == set(expected_keys) def test_deserialize_tool(self): data = { "name": "test_tool", "type": "LLM", "inputs": {"input1": {"type": "ValueType1"}}, } tool = Tool.deserialize(data) assert tool.name == data["name"] assert tool.type == ToolType[data["type"]] assert "input1" in tool.inputs @pytest.mark.parametrize( "tooltype, connection_type, expected", [ (ToolType.LLM, None, True), (ToolType._ACTION, ["AzureContentSafetyConnection"], True), (ToolType._ACTION, None, False), ], ) def test_require_connection(self, tooltype, connection_type, expected): tool = Tool(name="Test Tool", type=tooltype, inputs={}, connection_type=connection_type) assert tool._require_connection() == expected
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_info.py
from datetime import datetime import pytest from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status @pytest.mark.unittest class TestStatus: @pytest.mark.parametrize( "status,expected", [ (Status.Completed, True), (Status.Failed, True), (Status.Bypassed, True), (Status.Canceled, True), (Status.Running, False), (Status.Preparing, False), (Status.NotStarted, False), (Status.CancelRequested, False), (123, False), ], ) def test_status_is_terminated(self, status, expected): assert Status.is_terminated(status) == expected @pytest.mark.unittest class TestRunInfo: def test_creation(self): run_info = RunInfo( node="node1", flow_run_id="123", run_id="123:456", status=Status.Running, inputs=[], output={}, metrics={}, error={}, parent_run_id="789", start_time=datetime.now(), end_time=datetime.now(), system_metrics={}, ) assert run_info.node == "node1" assert run_info.flow_run_id == "123" assert run_info.run_id == "123:456" assert run_info.status == Status.Running def test_deserialize(self): run_info_dict = { "node": "get_answer", "flow_run_id": "", "run_id": "dummy_run_id", "status": "Completed", "inputs": {"question": "string"}, "output": "Hello world: What's promptflow?", "metrics": None, "error": None, "parent_run_id": "dummy_flow_run_id", "start_time": "2023-11-24T06:03:20.2688262Z", "end_time": "2023-11-24T06:03:20.268858Z", "index": 0, "api_calls": None, "variant_id": "", "cached_run_id": None, "cached_flow_run_id": None, "logs": None, "system_metrics": {"duration": "00:00:00.0000318", "total_tokens": 0}, "result": "Hello world: What's promptflow?", } run_info = RunInfo.deserialize(run_info_dict) assert run_info.index == 0 assert isinstance(run_info.start_time, datetime) and isinstance(run_info.end_time, datetime) assert run_info.status == Status.Completed assert run_info.run_id == "dummy_run_id" assert run_info.api_calls is None assert run_info.system_metrics == {"duration": "00:00:00.0000318", "total_tokens": 0} assert run_info.output == "Hello world: What's promptflow?" @pytest.mark.unittest class TestFlowRunInfo: def test_creation(self): flow_run_info = FlowRunInfo( run_id="123:456", status=Status.Running, error={}, inputs={}, output={}, metrics={}, request={}, parent_run_id="789", root_run_id="123", source_run_id="456", flow_id="flow1", start_time=datetime.now(), end_time=datetime.now(), system_metrics={}, upload_metrics=False, ) assert flow_run_info.run_id == "123:456" assert flow_run_info.status == Status.Running assert flow_run_info.flow_id == "flow1" def test_deserialize(self): flow_run_info_dict = { "run_id": "dummy_run_id", "status": "Completed", "error": None, "inputs": {"question": "What's promptflow?"}, "output": {"answer": "Hello world: What's promptflow?"}, "metrics": None, "request": None, "parent_run_id": None, "root_run_id": None, "source_run_id": None, "flow_id": "Flow", "start_time": "2023-11-23T10:58:37.9436245Z", "end_time": "2023-11-23T10:58:37.9590789Z", "index": 0, "api_calls": None, "variant_id": "", "name": "", "description": "", "tags": None, "system_metrics": {"duration": "00:00:00.0154544", "total_tokens": 0}, "result": {"answer": "Hello world: What's promptflow?"}, "upload_metrics": False, } flow_run_info = FlowRunInfo.deserialize(flow_run_info_dict) assert flow_run_info.index == 0 assert isinstance(flow_run_info.start_time, datetime) and isinstance(flow_run_info.end_time, datetime) assert flow_run_info.status == Status.Completed assert flow_run_info.run_id == "dummy_run_id" assert flow_run_info.api_calls is None assert flow_run_info.system_metrics == {"duration": "00:00:00.0154544", "total_tokens": 0} assert flow_run_info.output == {"answer": "Hello world: What's promptflow?"}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_management.py
import json import pytest from promptflow._sdk._constants import VIS_JS_BUNDLE_FILENAME from promptflow.contracts._run_management import VisualizationRender @pytest.mark.unittest def test_visualization_render(): data = {"key": "value"} viz = VisualizationRender(data) assert viz.data == json.dumps(json.dumps(data)) assert viz.js_path == VIS_JS_BUNDLE_FILENAME
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_assistant_tool_invoker.py
import pytest from pathlib import Path from typing import Callable from promptflow import tool from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker from promptflow.executor._errors import UnsupportedAssistantToolType @pytest.mark.unittest class TestAssistantToolInvoker: @pytest.fixture def tool_definitions(self): return [ {"type": "code_interpreter"}, {"type": "retrieval"}, { "type": "function", "tool_type": "python", "source": {"type": "code", "path": "test_assistant_tool_invoker.py"}, } ] @pytest.mark.parametrize( "predefined_inputs", [({}), ({"input_int": 1})] ) def test_load_tools(self, predefined_inputs): input_int = 1 input_str = "test" tool_definitions = [ {"type": "code_interpreter"}, {"type": "retrieval"}, { "type": "function", "tool_type": "python", "source": {"type": "code", "path": "test_assistant_tool_invoker.py"}, "predefined_inputs": predefined_inputs } ] # Test load tools invoker = AssistantToolInvoker.init(tool_definitions, working_dir=Path(__file__).parent) for tool_name, assistant_tool in invoker._assistant_tools.items(): assert tool_name in ("code_interpreter", "retrieval", "sample_tool") assert assistant_tool.name == tool_name assert isinstance(assistant_tool.openai_definition, dict) if tool_name in ("code_interpreter", "retrieval"): assert assistant_tool.func is None else: assert isinstance(assistant_tool.func, Callable) # Test to_openai_tools descriptions = invoker.to_openai_tools() assert len(descriptions) == 3 properties = { "input_int": {"description": "This is a sample input int.", "type": "number"}, "input_str": {"description": "This is a sample input str.", "type": "string"} } required = ["input_int", "input_str"] self._remove_predefined_inputs(properties, predefined_inputs.keys()) self._remove_predefined_inputs(required, predefined_inputs.keys()) for description in descriptions: if description["type"] in ("code_interpreter", "retrieval"): assert description == {"type": description["type"]} else: assert description == { "type": "function", "function": { "name": "sample_tool", "description": "This is a sample tool.", "parameters": { "type": "object", "properties": properties, "required": required } } } # Test invoke tool kwargs = {"input_int": input_int, "input_str": input_str} self._remove_predefined_inputs(kwargs, predefined_inputs.keys()) result = invoker.invoke_tool(func_name="sample_tool", kwargs=kwargs) assert result == (input_int, input_str) def test_load_tools_with_invalid_case(self): tool_definitions = [{"type": "invalid_type"}] with pytest.raises(UnsupportedAssistantToolType) as exc_info: AssistantToolInvoker.init(tool_definitions) assert "Unsupported assistant tool type" in exc_info.value.message def _remove_predefined_inputs(self, value: any, predefined_inputs: list): for input in predefined_inputs: if input in value: if isinstance(value, dict): value.pop(input) elif isinstance(value, list): value.remove(input) @tool def sample_tool(input_int: int, input_str: str): """This is a sample tool. :param input_int: This is a sample input int. :type input_int: int :param input_str: This is a sample input str. :type input_str: str """ return input_int, input_str
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_validator.py
import pytest from promptflow.contracts.flow import Flow, FlowInputDefinition from promptflow.contracts.tool import ValueType from promptflow.executor._errors import InputParseError, InputTypeError, InvalidAggregationInput, InvalidFlowRequest from promptflow.executor.flow_validator import FlowValidator from ...utils import WRONG_FLOW_ROOT, get_flow_from_folder @pytest.mark.unittest class TestFlowValidator: @pytest.mark.parametrize( "flow_folder, expected_node_order", [ ("unordered_nodes", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_skip", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_activate", ["first_node", "second_node", "third_node"]), ], ) def test_ensure_nodes_order(self, flow_folder, expected_node_order): flow = get_flow_from_folder(flow_folder) flow = FlowValidator._ensure_nodes_order(flow) node_order = [node.name for node in flow.nodes] assert node_order == expected_node_order @pytest.mark.parametrize( "flow_folder, error_message", [ ( "nodes_cycle", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships for the nodes " "['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "nodes_cycle_with_activate", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships " "for the nodes ['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "wrong_node_reference", ( "Invalid node definitions found in the flow graph. Node 'second_node' references a non-existent " "node 'third_node' in your flow. Please review your flow to ensure that the node " "name is accurately specified." ), ), ( "non_aggregation_reference_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregate node 'test_node' " "cannot reference aggregate nodes {'calculate_accuracy'}. Please review and rectify " "the node reference." ), ), ( "aggregation_activate_reference_non_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregation node 'grade' cannot be " "referenced in the activate config of the aggregation node 'calculate_accuracy'. Please " "review and rectify the node reference." ), ), ], ) def test_ensure_nodes_order_with_exception(self, flow_folder, error_message): flow = get_flow_from_folder(flow_folder, root=WRONG_FLOW_ROOT) with pytest.raises(InvalidFlowRequest) as e: FlowValidator._ensure_nodes_order(flow) assert str(e.value) == error_message, "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize( "aggregated_flow_inputs, aggregation_inputs, error_message", [ ( {}, { "input1": "value1", }, "The input for aggregation is incorrect. " "The value for aggregated reference input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( { "input1": "value1", }, {}, "The input for aggregation is incorrect. " "The value for aggregated flow input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( {"input1": ["value1_1", "value1_2"]}, {"input_2": ["value2_1"]}, "The input for aggregation is incorrect. The length of all aggregated inputs should be the same. " "Current input lengths are: {'input1': 2, 'input_2': 1}. " "Please adjust the input value in your input data.", ), ( { "input1": "value1", }, { "input1": "value1", }, "The input for aggregation is incorrect. " "The input 'input1' appears in both aggregated flow input and aggregated reference input. " "Please remove one of them and try the operation again.", ), ], ) def test_validate_aggregation_inputs_error(self, aggregated_flow_inputs, aggregation_inputs, error_message): with pytest.raises(InvalidAggregationInput) as e: FlowValidator._validate_aggregation_inputs(aggregated_flow_inputs, aggregation_inputs) assert str(e.value) == error_message @pytest.mark.parametrize( "flow_folder", ["simple_flow_with_python_tool_and_aggregate"], ) def test_ensure_outputs_valid_with_aggregation(self, flow_folder): flow = get_flow_from_folder(flow_folder) assert flow.outputs["content"] is not None assert flow.outputs["aggregate_content"] is not None flow.outputs = FlowValidator._ensure_outputs_valid(flow) print(flow.outputs) assert flow.outputs["content"] is not None assert flow.outputs.get("aggregate_content") is None @pytest.mark.parametrize( "flow_folder, inputs, index, error_type, error_message", [ ( "flow_with_list_input", {"key": "['hello']"}, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ( "flow_with_list_input", {"key": "['hello']"}, 0, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' in line 0 of input data was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_resolve_flow_inputs_type_json_error_for_list_type( self, flow_folder, inputs, index, error_type, error_message ): flow = get_flow_from_folder(flow_folder) with pytest.raises(error_type) as exe_info: FlowValidator.resolve_flow_inputs_type(flow, inputs, idx=index) assert error_message == exe_info.value.message @pytest.mark.parametrize( "inputs, expected_result", [({"test_input": ["1", "2"]}, {"test_input": [1, 2]})], ) def test_resolve_aggregated_flow_inputs_type(self, inputs, expected_result): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) result = FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert result == expected_result @pytest.mark.parametrize( "inputs, expected_message", [ ( {"test_input": ["1", "str"]}, ( "The input for flow is incorrect. The value for flow input 'test_input' in line 1 of input data " "does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ) ], ) def test_resolve_aggregated_flow_inputs_type_error(self, inputs, expected_message): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) with pytest.raises(InputTypeError) as ex: FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert expected_message == str(ex.value) @pytest.mark.parametrize( "input, type, expected_result", [ ("1", ValueType.INT, 1), ('["1", "2"]', ValueType.LIST, ["1", "2"]), ], ) def test_parse_input_value(self, input, type, expected_result): input_key = "test_input" result = FlowValidator._parse_input_value(input_key, input, type) assert result == expected_result @pytest.mark.parametrize( "input, type, index, error_type, expected_message", [ ( "str", ValueType.INT, None, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' does not match the expected " "type 'int'. Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' was interpreted as JSON " "string since its type is 'list'. However, the value '['1', '2']' is invalid for JSON parsing. " "Error details: (JSONDecodeError) Expecting value: line 1 column 2 (char 1). " "Please make sure your inputs are properly formatted." ), ), ( "str", ValueType.INT, 10, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' in line 10 of " "input data does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, 10, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' in line 10 of input data " "was interpreted as JSON string since its type is 'list'. However, the value '['1', '2']' is " "invalid for JSON parsing. Error details: (JSONDecodeError) Expecting value: " "line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_parse_input_value_error(self, input, type, index, error_type, expected_message): input_key = "my_input" with pytest.raises(error_type) as ex: FlowValidator._parse_input_value(input_key, input, type, index) assert expected_message == str(ex.value)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_tool_resolver.py
import re import sys from pathlib import Path from typing import List from unittest.mock import mock_open import pytest from jinja2 import TemplateSyntaxError from promptflow._core._errors import InvalidSource from promptflow._core.tools_manager import ToolLoader from promptflow._internal import tool from promptflow._sdk.entities import CustomConnection, CustomStrongTypeConnection from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import AssistantDefinition, InputDefinition, Secret, Tool, ToolType, ValueType from promptflow.contracts.types import PromptTemplate from promptflow.exceptions import UserErrorException from promptflow.executor._errors import ( ConnectionNotFound, InvalidConnectionType, NodeInputValidationError, ResolveToolError, ValueTypeUnresolved, ) from promptflow.executor._tool_resolver import ResolvedTool, ToolResolver from ...utils import DATA_ROOT, FLOW_ROOT TEST_ROOT = Path(__file__).parent.parent.parent REQUESTS_PATH = TEST_ROOT / "test_configs/executor_api_requests" WRONG_REQUESTS_PATH = TEST_ROOT / "test_configs/executor_wrong_requests" class MyFirstCSTConnection(CustomStrongTypeConnection): api_key: Secret api_base: str @tool(streaming_option_parameter="stream_enabled") def mock_package_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt @pytest.mark.unittest class TestToolResolver: @pytest.fixture def resolver(self): return ToolResolver(working_dir=None, connections={}) def test_resolve_tool_by_node_with_diff_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) mocker.patch.object( resolver, "_resolve_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_script_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_prompt_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_llm_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_integrate_prompt_in_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Package) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) resolver.resolve_tool_by_node(node) resolver._resolve_script_node.assert_called_once() node.type = ToolType.PROMPT resolver.resolve_tool_by_node(node) resolver._resolve_prompt_node.assert_called_once() node.type = ToolType.LLM resolver.resolve_tool_by_node(node) resolver._resolve_llm_node.assert_called_once() resolver._resolve_package_node.reset_mock() node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=ToolSourceType.PackageWithPrompt) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() resolver._integrate_prompt_in_package_node.assert_called_once() def test_resolve_tool_by_node_with_invalid_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool type" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_source_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message def test_resolve_tool_by_node_with_no_source(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = None with pytest.raises(ResolveToolError) as ex: resolver.resolve_tool_by_node(node) assert isinstance(ex.value.inner_exception, UserErrorException) def test_resolve_tool_by_node_with_no_source_path(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT node.source = mocker.Mock(type=ToolSourceType.Package, path=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, InvalidSource) assert "Node source path" in exec_info.value.message def test_resolve_tool_by_node_with_duplicated_inputs(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{template}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NodeInputValidationError) assert "These inputs are duplicated" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_template(self, resolver, mocker): node = mocker.Mock(tool=None, inputs={}) node.name = "node" node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{current context}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, TemplateSyntaxError) expected_message = ( "Tool load failed in 'node': Jinja parsing failed at line 1: " "(TemplateSyntaxError) expected token 'end of print statement', got 'context'" ) assert expected_message in exec_info.value.message def test_convert_node_literal_input_types_with_invalid_case(self): # Case 1: conn_name not in connections, should raise conn_name not found error tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 2: conn_name in connections, but type not matched connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._convert_node_literal_input_types(node, tool) message = "'AzureOpenAIConnection' is not supported, valid types ['CustomConnection']" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 3: Literal value, type mismatch tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=[ValueType.INT])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "value 'invalid' is not type int" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 4: Unresolved value, like newly added type not in old version ValueType enum tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=["A_good_type"])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ValueTypeUnresolved): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 5: Literal value, invalid image in list tool = Tool(name="mock", type="python", inputs={"list_input": InputDefinition(type=[ValueType.LIST])}) invalid_image = {"data:image/jpg;base64": "invalid_image"} node = Node( name="mock", tool=tool, inputs={"list_input": InputAssignment(value=[invalid_image], value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "Invalid base64 image" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 6: Literal value, invalid assistant definition path tool = Tool( name="mock", type="python", inputs={"assistant_definition": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])}, ) node = Node( name="mock", tool=tool, inputs={"assistant_definition": InputAssignment(value="invalid_path", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) assert ( "Failed to load assistant definition" in exe_info.value.message and "is not a valid path" in exe_info.value.message ), "Expected: {}, Actual: {}".format(message, exe_info.value.message) def test_resolve_llm_connection_to_inputs(self): # Case 1: node.connection is not specified tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 2: node.connection is not found from connection manager tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name1", ) connections = {} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 3: Tool definition with bad input type list tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["int"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Connection type can not be resolved for tool" in exe_info.value.message # Case 4: Tool type not match the connection manager return tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Invalid connection" in exe_info.value.message # Case 5: Normal case tool = Tool( name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection", "AzureOpenAIConnection"])}, ) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) key, conn = tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert key == "conn" assert isinstance(conn, AzureOpenAIConnection) def test_resolve_llm_node(self, mocker): def mock_llm_api_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.LLM, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_llm_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_llm_api_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader mocker.patch.object(tool_resolver, "_load_source_content", return_value="{{text}}![image]({{image}})") node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), "image": InputAssignment(value=str(DATA_ROOT / "logo.jpg"), value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_llm_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} pattern = re.compile(r"^Hello World!!\[image\]\(Image\([a-z0-9]{8}\)\)$") prompt = resolved_tool.callable(**kwargs) assert re.match(pattern, prompt) def test_resolve_script_node(self, mocker): def mock_python_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_resolve_script_node_with_assistant_definition(self, mocker): def mock_python_func(input: AssistantDefinition): if input.model == "model" and input.instructions == "instructions" and input.tools == []: return True return False tool_loader = ToolLoader(working_dir=None) tool = Tool( name="mock", type=ToolType.PYTHON, inputs={"input": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])} ) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {}), ) tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._tool_loader = tool_loader mocker.patch("builtins.open", mock_open()) mocker.patch( "ruamel.yaml.YAML.load", return_value={"model": "model", "instructions": "instructions", "tools": []} ) node = Node( name="mock", tool=None, inputs={"input": InputAssignment(value="test_tool_resolver.py", value_type=InputValueType.LITERAL)}, ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 1 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) def test_resolve_package_node(self, mocker): tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_package_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_package_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_package_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_integrate_prompt_in_package_node(self, mocker): tool_resolver = ToolResolver(working_dir=None, connections={}) mocker.patch.object( tool_resolver, "_load_source_content", return_value="{{text}}", ) tool = Tool(name="mock", type=ToolType.CUSTOM_LLM, inputs={"prompt": InputDefinition(type=["PromptTemplate"])}) node = Node( name="mock", tool=None, inputs={"text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL)}, connection="conn_name", provider="mock", ) resolved_tool = ResolvedTool(node=node, callable=mock_package_func, definition=tool, init_args=None) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" resolved_tool = tool_resolver._integrate_prompt_in_package_node(resolved_tool) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" @pytest.mark.parametrize( "conn_types, expected_type", [ (["MyFirstCSTConnection"], MyFirstCSTConnection), (["CustomConnection", "MyFirstCSTConnection"], CustomConnection), (["CustomConnection", "MyFirstCSTConnection", "MySecondCSTConnection"], CustomConnection), (["MyFirstCSTConnection", "MySecondCSTConnection"], MyFirstCSTConnection), ], ) def test_convert_to_custom_strong_type_connection_value(self, conn_types: List[str], expected_type, mocker): connections = {"conn_name": {"type": "CustomConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) tool = Tool(name="tool", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) m = sys.modules[__name__] v = InputAssignment(value="conn_name", value_type=InputValueType.LITERAL) actual = tool_resolver._convert_to_custom_strong_type_connection_value( "conn_name", v, node, tool, conn_types, m ) assert isinstance(actual, expected_type) assert actual.api_base == "mock" def test_load_source(self): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=ToolSource()) node.source.path = "./script_with_special_character/script_with_special_character.py" resolver = ToolResolver(FLOW_ROOT) result = resolver._load_source_content(node) assert "https://www.bing.com/\ue000\ue001/" in result @pytest.mark.parametrize( "source", [ None, ToolSource(path=None), # Then will try to read one directory. ToolSource(path=""), # Then will try to read one directory. ToolSource(path="NotExistPath.py"), ], ) def test_load_source_error(self, source): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=source) resolver = ToolResolver(FLOW_ROOT) with pytest.raises(InvalidSource) as _: resolver._load_source_content(node)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_nodes_scheduler.py
from concurrent.futures import Future from typing import Callable from unittest.mock import MagicMock import pytest from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow.contracts.flow import Node from promptflow.executor._dag_manager import DAGManager from promptflow.executor._flow_nodes_scheduler import ( DEFAULT_CONCURRENCY_BULK, DEFAULT_CONCURRENCY_FLOW, FlowNodesScheduler, NoNodeExecutedError, ) @pytest.mark.unittest class TestFlowNodesScheduler: def setup_method(self): # Define mock objects and methods self.tools_manager = MagicMock() self.context = MagicMock(spec=FlowExecutionContext) self.context.invoke_tool.side_effect = lambda _, func, kwargs: func(**kwargs) self.scheduler = FlowNodesScheduler(self.tools_manager, {}, [], DEFAULT_CONCURRENCY_BULK, self.context) def test_maximun_concurrency(self): scheduler = FlowNodesScheduler(self.tools_manager, {}, [], 1000, self.context) assert scheduler._node_concurrency == DEFAULT_CONCURRENCY_FLOW def test_collect_outputs(self): future1 = Future() future1.set_result("output1") future2 = Future() future2.set_result("output2") node1 = MagicMock(spec=Node) node1.name = "node1" node2 = MagicMock(spec=Node) node2.name = "node2" self.scheduler._future_to_node = {future1: node1, future2: node2} completed_nodes_outputs = self.scheduler._collect_outputs([future1, future2]) assert completed_nodes_outputs == {"node1": future1.result(), "node2": future2.result()} def test_bypass_nodes(self): executor = MagicMock() dag_manager = MagicMock(spec=DAGManager) node1 = MagicMock(spec=Node) node1.name = "node1" # The return value will be a list with one item for the first time. # Will be a list without item for the second time. dag_manager.pop_bypassable_nodes.side_effect = ([node1], []) self.scheduler._dag_manager = dag_manager self.scheduler._execute_nodes(executor) self.scheduler._context.bypass_node.assert_called_once_with(node1) def test_submit_nodes(self): executor = MagicMock() dag_manager = MagicMock(spec=DAGManager) node1 = MagicMock(spec=Node) node1.name = "node1" dag_manager.pop_bypassable_nodes.return_value = [] # The return value will be a list with one item for the first time. # Will be a list without item for the second time. dag_manager.pop_ready_nodes.return_value = [node1] self.scheduler._dag_manager = dag_manager self.scheduler._execute_nodes(executor) self.scheduler._context.bypass_node.assert_not_called() assert node1 in self.scheduler._future_to_node.values() def test_future_cancelled_for_exception(self): dag_manager = MagicMock(spec=DAGManager) self.scheduler._dag_manager = dag_manager dag_manager.completed.return_value = False dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] failed_future = Future() failed_future.set_exception(Exception("test")) from concurrent.futures._base import CANCELLED, FINISHED failed_future._state = FINISHED cancelled_future = Future() node1 = MagicMock(spec=Node) node1.name = "node1" node2 = MagicMock(spec=Node) node2.name = "node2" self.scheduler._future_to_node = {failed_future: node1, cancelled_future: node2} try: self.scheduler.execute() except Exception: pass # Assert another future is cancelled. assert CANCELLED in cancelled_future._state def test_success_result(self): dag_manager = MagicMock(spec=DAGManager) finished_future = Future() finished_future.set_result("output1") finished_node = MagicMock(spec=Node) finished_node.name = "node1" self.scheduler._dag_manager = dag_manager self.scheduler._future_to_node = {finished_future: finished_node} # No more nodes need to run. dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] dag_manager.completed.side_effect = (False, True) bypassed_node_result = {"bypassed_node": "output2"} dag_manager.bypassed_nodes = bypassed_node_result completed_node_result = {"completed_node": "output1"} dag_manager.completed_nodes_outputs = completed_node_result result = self.scheduler.execute() dag_manager.complete_nodes.assert_called_once_with({"node1": "output1"}) assert result == (completed_node_result, bypassed_node_result) def test_no_nodes_to_run(self): dag_manager = MagicMock(spec=DAGManager) dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] dag_manager.completed.return_value = False self.scheduler._dag_manager = dag_manager with pytest.raises(NoNodeExecutedError) as _: self.scheduler.execute() def test_execute_single_node(self): node_to_run = MagicMock(spec=Node) node_to_run.name = "node1" mock_callable = MagicMock(spec=Callable) mock_callable.return_value = "output1" self.scheduler._tools_manager.get_tool.return_value = mock_callable dag_manager = MagicMock(spec=DAGManager) dag_manager.get_node_valid_inputs.return_value = {"input": 1} result = self.scheduler._exec_single_node_in_thread((node_to_run, dag_manager)) mock_callable.assert_called_once_with(**{"input": 1}) assert result == "output1"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_errors.py
import pytest from promptflow._core.tool_meta_generator import PythonLoadError from promptflow.exceptions import ErrorTarget from promptflow.executor._errors import ResolveToolError def code_with_bug(): 1 / 0 def raise_resolve_tool_error(func, target=None, module=None): try: func() except Exception as e: if target: raise ResolveToolError(node_name="MyTool", target=target, module=module) from e raise ResolveToolError(node_name="MyTool") from e def raise_python_load_error(): try: code_with_bug() except Exception as e: raise PythonLoadError(message="Test PythonLoadError.") from e def test_resolve_tool_error(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(raise_python_load_error, ErrorTarget.TOOL, "__pf_main__") exception = e.value inner_exception = exception.inner_exception assert isinstance(inner_exception, PythonLoadError) assert exception.message == "Tool load failed in 'MyTool': (PythonLoadError) Test PythonLoadError." assert exception.additional_info == inner_exception.additional_info assert exception.error_codes == ["UserError", "ToolValidationError", "PythonParsingError", "PythonLoadError"] assert exception.reference_code == "Tool/__pf_main__" def test_resolve_tool_error_with_none_inner(): with pytest.raises(ResolveToolError) as e: raise ResolveToolError(node_name="MyTool") exception = e.value assert exception.inner_exception is None assert exception.message == "Tool load failed in 'MyTool'." assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ResolveToolError"] assert exception.reference_code == "Executor" def test_resolve_tool_error_with_no_PromptflowException_inner(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(code_with_bug) exception = e.value assert isinstance(exception.inner_exception, ZeroDivisionError) assert exception.message == "Tool load failed in 'MyTool': (ZeroDivisionError) division by zero" assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ZeroDivisionError"] assert exception.reference_code == "Executor"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_dag_manager.py
import pytest from promptflow.contracts.flow import ActivateCondition, InputAssignment, Node from promptflow.executor._dag_manager import DAGManager def create_test_node(name, input, activate=None): input = InputAssignment.deserialize(input) activate = ActivateCondition.deserialize(activate, name) if activate else None return Node( name=name, tool="test_tool", connection="azure_open_ai_connection", inputs={"test_input": input, "test_input2": InputAssignment("hello world")}, provider="test_provider", api="test_api", activate=activate, ) def pop_ready_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_ready_nodes()} def pop_bypassed_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_bypassable_nodes()} @pytest.mark.unittest class TestDAGManager: def test_pop_ready_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), create_test_node("node3", input="${node1.output}"), ] dag_manager = DAGManager(nodes, flow_inputs={}) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": None}) assert pop_ready_node_names(dag_manager) == {"node2", "node3"} dag_manager.complete_nodes({"node2": None, "node3": None}) def test_pop_bypassed_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "world"}), create_test_node("node3", input="${node1.output}"), create_test_node("node4", input="${node2.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) expected_bypassed_nodes = {"node2", "node4"} assert pop_bypassed_node_names(dag_manager) == expected_bypassed_nodes assert dag_manager.bypassed_nodes.keys() == expected_bypassed_nodes def test_complete_nodes(self): nodes = [create_test_node("node1", input="value1")] dag_manager = DAGManager(nodes, flow_inputs={}) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert len(dag_manager.completed_nodes_outputs) == 1 assert dag_manager.completed_nodes_outputs["node1"] == {"output1": "value1"} def test_completed(self): nodes = [ create_test_node("node1", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "hello"}), create_test_node("node2", input="${node1.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert pop_ready_node_names(dag_manager) == {"node2"} dag_manager.complete_nodes({"node2": {"output1": "value1"}}) assert dag_manager.completed_nodes_outputs.keys() == {"node1", "node2"} assert dag_manager.completed() def test_get_node_valid_inputs(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), ] def f(input): return input flow_inputs = {} dag_manager = DAGManager(nodes, flow_inputs) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) valid_inputs = dag_manager.get_node_valid_inputs(nodes[1], f) assert valid_inputs == {"test_input": {"output1": "value1"}, "test_input2": "hello world"}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_executor.py
from unittest.mock import Mock import pytest from promptflow import tool from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType from promptflow.executor.flow_executor import ( FlowExecutor, _ensure_node_result_is_serializable, _inject_stream_options, enable_streaming_for_llm_tool, ) from promptflow.tools.aoai import chat, completion from promptflow.tools.embedding import embedding @pytest.mark.unittest class TestFlowExecutor: @pytest.mark.parametrize( "flow_inputs, aggregated_flow_inputs, aggregation_inputs, expected_inputs", [ ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {}, {"input_from_default": ["default_value"]}, ), ( { "input_no_default": FlowInputDefinition(type=ValueType.STRING), }, {}, {}, {}, # No default value for input. ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"input_from_default": "input_value", "another_key": "input_value"}, {}, {"input_from_default": "input_value", "another_key": "input_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"another_key": ["input_value", "input_value"]}, {}, { "input_from_default": ["default_value", "default_value"], "another_key": ["input_value", "input_value"], }, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.BOOL, default=False), }, {"another_key": ["input_value", "input_value"]}, {}, { "input_from_default": [False, False], "another_key": ["input_value", "input_value"], }, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {"another_key_in_aggregation_inputs": ["input_value", "input_value"]}, { "input_from_default": ["default_value", "default_value"], }, ), ], ) def test_apply_default_value_for_aggregation_input( self, flow_inputs, aggregated_flow_inputs, aggregation_inputs, expected_inputs ): result = FlowExecutor._apply_default_value_for_aggregation_input( flow_inputs, aggregated_flow_inputs, aggregation_inputs ) assert result == expected_inputs def func_with_stream_parameter(a: int, b: int, stream=False): return a + b, stream def func_without_stream_parameter(a: int, b: int): return a + b class TestEnableStreamForLLMTool: @pytest.mark.parametrize( "tool, should_be_wrapped", [ (completion, True), (chat, True), (embedding, False), ], ) def test_enable_stream_for_llm_tool(self, tool, should_be_wrapped): func = enable_streaming_for_llm_tool(tool) is_wrapped = func != tool assert is_wrapped == should_be_wrapped def test_func_with_stream_parameter_should_be_wrapped(self): func = enable_streaming_for_llm_tool(func_with_stream_parameter) assert func != func_with_stream_parameter result = func(a=1, b=2) assert result == (3, True) result = func_with_stream_parameter(a=1, b=2) assert result == (3, False) def test_func_without_stream_parameter_should_not_be_wrapped(self): func = enable_streaming_for_llm_tool(func_without_stream_parameter) assert func == func_without_stream_parameter result = func(a=1, b=2) assert result == 3 def test_inject_stream_options_no_stream_param(self): # Test that the function does not wrap the decorated function if it has no stream parameter func = _inject_stream_options(lambda: True)(func_without_stream_parameter) assert func == func_without_stream_parameter result = func(a=1, b=2) assert result == 3 def test_inject_stream_options_with_stream_param(self): # Test that the function wraps the decorated function and injects the stream option func = _inject_stream_options(lambda: True)(func_with_stream_parameter) assert func != func_with_stream_parameter result = func(a=1, b=2) assert result == (3, True) result = func_with_stream_parameter(a=1, b=2) assert result == (3, False) def test_inject_stream_options_with_mocked_should_stream(self): # Test that the function uses the should_stream callable to determine the stream option should_stream = Mock(return_value=True) func = _inject_stream_options(should_stream)(func_with_stream_parameter) result = func(a=1, b=2) assert result == (3, True) should_stream.return_value = False result = func(a=1, b=2) assert result == (3, False) @tool def streaming_tool(): for i in range(10): yield i @tool def non_streaming_tool(): return 1 class TestEnsureNodeResultIsSerializable: def test_streaming_tool_should_be_consumed_and_merged(self): func = _ensure_node_result_is_serializable(streaming_tool) assert func() == "0123456789" def test_non_streaming_tool_should_not_be_affected(self): func = _ensure_node_result_is_serializable(non_streaming_tool) assert func() == 1
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_input_assignment_parser.py
from typing import Any import pytest from promptflow._core._errors import NotSupported from promptflow.contracts.flow import InputAssignment from promptflow.executor._errors import ( InputNotFound, InputNotFoundFromAncestorNodeOutput, InvalidReferenceProperty, UnsupportedReference, ) from promptflow.executor._input_assignment_parser import parse_node_property, parse_value FLOW_INPUTS = {"text": "hello promptflow"} NODE_OUTPUTS = {"node1": "hello promptflow"} class WrongInputAssignment: value: Any value_type: str = "wrong_type" section: str = "" property: str = "" class DummyObject: value: str = "dummy" @pytest.mark.unittest class TestInputAssignmentParser: @pytest.mark.parametrize( "input, expected_value", [ ("hello promptflow", "hello promptflow"), ("${inputs.text}", "hello promptflow"), ("${node1.output}", "hello promptflow"), ], ) def test_parse_value(self, input, expected_value): input_assignment = InputAssignment.deserialize(input) actual_value = parse_value(input_assignment, NODE_OUTPUTS, FLOW_INPUTS) assert actual_value == expected_value @pytest.mark.parametrize( "input, expected_error_class, expected_error_message", [ ( "${inputs.word}", InputNotFound, ( "The input 'word' is not found from flow inputs 'text'. " "Please check the input name and try again." ), ), ( "${node2.output}", InputNotFoundFromAncestorNodeOutput, ( "The input 'node2' is not found from ancestor node outputs ['node1']. " "Please check the node name and try again." ), ), ( "${node1.word}", UnsupportedReference, ( "The section 'word' of reference is currently unsupported. " "Please specify the output part of the node 'node1'." ), ), ( WrongInputAssignment(), NotSupported, ( "The type 'wrong_type' is currently unsupported. " "Please choose from available types: ['Literal', 'FlowInput', 'NodeReference'] and try again." ), ), ], ) def test_parse_value_with_exception(self, input, expected_error_class, expected_error_message): input_assignment = InputAssignment.deserialize(input) if isinstance(input, str) else input with pytest.raises(expected_error_class) as e: parse_value(input_assignment, NODE_OUTPUTS, FLOW_INPUTS) assert e.value.message == f"Flow execution failed. {expected_error_message}" @pytest.mark.parametrize( "node_val, property, expected_value", [ ( {"output": "hello promptflow"}, "output", "hello promptflow", ), ( {"output": "hello promptflow"}, "['output']", "hello promptflow", ), ( {"output": "hello promptflow"}, '["output"]', "hello promptflow", ), ( {"output": {"text": "hello promptflow"}}, '["output"]["text"]', "hello promptflow", ), ( ["output1", "output2"], "[1]", "output2", ), ( DummyObject(), "value", "dummy", ), ], ) def test_parse_node_property(self, node_val, property, expected_value): actual_value = parse_node_property("node1", node_val, property) assert actual_value == expected_value @pytest.mark.parametrize( "node_val, property, expected_error_message", [ ( {"output_str": ["output1", "output2"]}, "output_str[2]", ( "Invalid property 'output_str[2]' when accessing the node 'node1'. " "Please check the property and try again." ), ), ( {"word": "hello promptflow"}, "text", ( "Invalid property 'text' when accessing the node 'node1'. " "Please check the property and try again." ), ), ( DummyObject(), "value_type", ( "Invalid property 'value_type' when accessing the node 'node1'. " "Please check the property and try again." ), ), ], ) def test_parse_node_property_with_exception(self, node_val, property, expected_error_message): with pytest.raises(InvalidReferenceProperty) as e: parse_node_property("node1", node_val, property) assert e.value.message == f"Flow execution failed. {expected_error_message}"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_exceptions.py
import pytest from promptflow.exceptions import PromptflowException @pytest.mark.unittest class TestExceptions: def test_exception_message(self): ex = PromptflowException( message_format="Test exception message with parameters: {param}, {param1}.", param="test_param", ) assert ex.message == "Test exception message with parameters: test_param, <param1>." assert None not in ex.message_parameters
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error.py
from promptflow import ToolProvider, tool class TestLoadErrorTool(ToolProvider): def __init__(self): raise Exception("Tool load error.") @tool def tool(self, name: str): return name
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool.py
from jinja2 import Template from promptflow import ToolProvider, tool from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.types import PromptTemplate class TestCustomLLMTool(ToolProvider): def __init__(self, connection: AzureOpenAIConnection): super().__init__() self.connection = connection @tool def call(self, connection_2: AzureOpenAIConnection, api: str, template: PromptTemplate, **kwargs): prompt = Template(template, trim_blocks=True, keep_trailing_newline=True).render(**kwargs) assert isinstance(self.connection, AzureOpenAIConnection) assert isinstance(connection_2, AzureOpenAIConnection) assert api in ["completion", "chat"] return prompt
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection.py
from dataclasses import dataclass from promptflow import tool from promptflow._core.tools_manager import register_connections from promptflow.contracts.types import Secret @dataclass class TestConnection: name: str secret: Secret register_connections(TestConnection) @tool def tool_with_test_conn(conn: TestConnection): assert isinstance(conn, TestConnection) return conn.name + conn.secret
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/package_tool_definition.json
{ "tool_with_init_error": { "class_name": "TestLoadErrorTool", "function": "tool", "inputs": { "name": {"type": ["string"]} }, "module": "tool_with_init_error", "name": "Tool with init error", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/flow.dag.yaml
inputs: {} outputs: {} nodes: - name: tool_with_init_error type: python source: type: package tool: tool_with_init_error inputs: name: test_name
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/prompt_with_duplicated_inputs.jinja2
{{api}}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/package_tool_definition.json
{ "custom_llm_tool.TestCustomLLMTool.call": { "class_name": "TestCustomLLMTool", "function": "call", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}, "template": {"type": ["PromptTemplate"]} }, "module": "custom_llm_tool", "name": "Test Custom LLM Tool", "description": "Test Custom LLM Tool", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${custom_llm_tool_with_duplicated_inputs.output} nodes: - name: custom_llm_tool_with_duplicated_inputs type: custom_llm source: type: package_with_prompt tool: custom_llm_tool.TestCustomLLMTool.call path: ./prompt_with_duplicated_inputs.jinja2 inputs: connection: azure_open_ai_connection api: completion text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/package_tool_definition.json
{ "tool_with_connection": { "function": "tool_with_test_conn", "inputs": { "conn": {"type": ["TestConnection"]} }, "module": "tool_with_connection", "name": "Test Tool with Connection", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/flow.dag.yaml
inputs: {} outputs: {} nodes: - name: tool_with_conn type: python source: type: package tool: tool_with_connection inputs: conn: test_conn
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/inputs.json
{}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/my_prompt.jinja2
{# Please replace the template with your own prompt. #} Write a simple program that displays the greeting message: "{{text}}" when executed.
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/samples.json
[ { "text": "Hello" }, { "text": "Hello World!" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/package_tool_definition.json
{ "custom_llm_tool.TestCustomLLMTool.call": { "class_name": "TestCustomLLMTool", "function": "call", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "connection_2": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}, "template": {"type": ["PromptTemplate"]} }, "module": "custom_llm_tool", "name": "Test Custom LLM Tool", "description": "Test Custom LLM Tool", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${my_custom_llm_tool.output} nodes: - name: my_custom_llm_tool type: custom_llm source: type: package_with_prompt tool: custom_llm_tool.TestCustomLLMTool.call path: ./my_prompt.jinja2 inputs: connection: azure_open_ai_connection connection_2: azure_open_ai_connection api: completion text: ${inputs.text}
0