text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
# system: Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous. # user: {{prev_question}} # assistant: {{prev_answer}} # function: ## name: {{name}} ## content: {{result}} # user: {{question}}
promptflow/src/promptflow-tools/tests/test_configs/prompt_templates/prompt_with_function.jinja2/0
{ "file_path": "promptflow/src/promptflow-tools/tests/test_configs/prompt_templates/prompt_with_function.jinja2", "repo_id": "promptflow", "token_count": 82 }
34
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow._sdk._configuration import Configuration # This logic is copied from: https://github.com/microsoft/knack/blob/dev/knack/help.py # Will print privacy message and welcome when user run `pf` command. PRIVACY_STATEMENT = """ Welcome to prompt flow! --------------------- Use `pf -h` to see available commands or go to https://aka.ms/pf-cli. Telemetry --------- The prompt flow CLI collects usage data in order to improve your experience. The data is anonymous and does not include commandline argument values. The data is collected by Microsoft. You can change your telemetry settings with `pf config`. """ WELCOME_MESSAGE = r""" ____ _ __ _ | _ \ _ __ ___ _ __ ___ _ __ | |_ / _| | _____ __ | |_) | '__/ _ \| '_ ` _ \| '_ \| __| | |_| |/ _ \ \ /\ / / | __/| | | (_) | | | | | | |_) | |_ | _| | (_) \ V V / |_| |_| \___/|_| |_| |_| .__/ \__| |_| |_|\___/ \_/\_/ |_| Welcome to the cool prompt flow CLI! Use `pf --version` to display the current version. Here are the base commands: """ def show_privacy_statement(): config = Configuration.get_instance() ran_before = config.get_config("first_run") if not ran_before: print(PRIVACY_STATEMENT) config.set_config("first_run", True) def show_welcome_message(): print(WELCOME_MESSAGE)
promptflow/src/promptflow/promptflow/_cli/_pf/help.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/help.py", "repo_id": "promptflow", "token_count": 563 }
35
{ "package": {}, "code": { {% for key, prompt_obj in prompt_params.items() %} "{{ key }}": { "type": "prompt", "inputs": { {% for input_name, value in prompt_obj.get("inputs", {}).items() %} "{{ input_name }}": { "type": [ {% for typ in value["type"] %} "{{ typ.value }}" {% endfor %} ] }{{ "," if not loop.last else "" }} {% endfor %} }, "source": "{{ prompt_obj.source }}" }, {% endfor %} "{{ tool_file }}": { "type": "python", "inputs": { {% for arg, typ in tool_meta_args.items() %} "{{ arg }}": { "type": [ "{{ typ }}" ] }, {% endfor %} "connection": { "type": [ "CustomConnection" ] } }, "function": "{{ tool_function }}", "source": "{{ tool_file }}" } } }
promptflow/src/promptflow/promptflow/_cli/data/entry_flow/flow.tools.json.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/entry_flow/flow.tools.json.jinja2", "repo_id": "promptflow", "token_count": 779 }
36
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string outputs: output_prompt: type: string reference: ${echo_my_prompt.output} nodes: - name: hello_prompt type: prompt source: type: code path: hello.jinja2 inputs: text: ${inputs.text} - name: echo_my_prompt type: python source: type: code path: hello.py inputs: input1: ${hello_prompt.output} environment: python_requirements_txt: requirements.txt
promptflow/src/promptflow/promptflow/_cli/data/standard_flow/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/standard_flow/flow.dag.yaml", "repo_id": "promptflow", "token_count": 205 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from contextvars import ContextVar from typing import Type, TypeVar T = TypeVar("T") class ThreadLocalSingleton: # Use context variable to enable thread local singleton # See reference: https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar CONTEXT_VAR_NAME = "ThreadLocalSingleton" context_var = ContextVar(CONTEXT_VAR_NAME, default=None) @classmethod def active_instance(cls: Type[T]) -> T: return cls.context_var.get() @classmethod def active(cls) -> bool: return cls.active_instance() is not None def _activate_in_context(self, force=False): instance = self.active_instance() if instance is not None and instance is not self and not force: raise NotImplementedError(f"Cannot set active since there is another active instance: {instance}") self.context_var.set(self) def _deactivate_in_context(self): self.context_var.set(None)
promptflow/src/promptflow/promptflow/_core/thread_local_singleton.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/thread_local_singleton.py", "repo_id": "promptflow", "token_count": 370 }
38
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import time from functools import partial, wraps from typing import Tuple, Union from sqlalchemy.exc import OperationalError def retry(exception_to_check: Union[Exception, Tuple[Exception]], tries=4, delay=3, backoff=2, logger=None): """ From https://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/ Retry calling the decorated function using an exponential backoff. http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/ original from: http://wiki.python.org/moin/PythonDecoratorLibrary#Retry :param exception_to_check: the exception to check. may be a tuple of exceptions to check :type exception_to_check: Exception or tuple :param tries: number of times to try (not retry) before giving up :type tries: int :param delay: initial delay between retries in seconds :type delay: int :param backoff: backoff multiplier e.g. value of 2 will double the delay each retry :type backoff: int :param logger: log the retry action if specified :type logger: logging.Logger """ def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): retry_times, delay_seconds = tries, delay while retry_times > 1: try: if logger: logger.info("Running %s, %d more tries to go.", str(f), retry_times) return f(*args, **kwargs) except exception_to_check: time.sleep(delay_seconds) retry_times -= 1 delay_seconds *= backoff if logger: logger.warning("%s, Retrying in %d seconds...", str(exception_to_check), delay_seconds) return f(*args, **kwargs) return f_retry # true decorator return deco_retry sqlite_retry = partial(retry, exception_to_check=OperationalError, tries=3, delay=0.5, backoff=1)()
promptflow/src/promptflow/promptflow/_sdk/_orm/retry.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_orm/retry.py", "repo_id": "promptflow", "token_count": 868 }
39
{ "swagger": "2.0", "basePath": "/v1.0", "paths": { "/Connections/": { "get": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." }, "200": { "description": "Success", "schema": { "type": "array", "items": { "$ref": "#/definitions/Connection" } } } }, "description": "List all connection", "operationId": "get_connection_list", "parameters": [ { "name": "working_directory", "in": "query", "type": "string" } ], "tags": [ "Connections" ] } }, "/Connections/specs": { "get": { "responses": { "200": { "description": "List connection spec", "schema": { "$ref": "#/definitions/ConnectionSpec" } } }, "description": "List connection spec", "operationId": "get_connection_specs", "tags": [ "Connections" ] } }, "/Connections/{name}": { "parameters": [ { "in": "path", "description": "The connection name.", "name": "name", "required": true, "type": "string" } ], "put": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." }, "200": { "description": "Connection details", "schema": { "$ref": "#/definitions/ConnectionDict" } } }, "description": "Update connection", "operationId": "put_connection", "parameters": [ { "name": "payload", "required": true, "in": "body", "schema": { "$ref": "#/definitions/ConnectionDict" } } ], "tags": [ "Connections" ] }, "get": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." }, "200": { "description": "Connection details", "schema": { "$ref": "#/definitions/ConnectionDict" } } }, "description": "Get connection", "operationId": "get_connection", "parameters": [ { "name": "working_directory", "in": "query", "type": "string" } ], "tags": [ "Connections" ] }, "delete": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." } }, "description": "Delete connection", "operationId": "delete_connection", "tags": [ "Connections" ] }, "post": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." }, "200": { "description": "Connection details", "schema": { "$ref": "#/definitions/ConnectionDict" } } }, "description": "Create connection", "operationId": "post_connection", "parameters": [ { "name": "payload", "required": true, "in": "body", "schema": { "$ref": "#/definitions/ConnectionDict" } } ], "tags": [ "Connections" ] } }, "/Connections/{name}/listsecrets": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "403": { "description": "This service is available for local user only, please specify X-Remote-User in headers." }, "200": { "description": "Connection details with secret", "schema": { "$ref": "#/definitions/ConnectionDict" } } }, "description": "Get connection with secret", "operationId": "get_connection_with_secret", "parameters": [ { "name": "working_directory", "in": "query", "type": "string" } ], "tags": [ "Connections" ] } }, "/Runs/": { "get": { "responses": { "200": { "description": "Runs", "schema": { "$ref": "#/definitions/RunList" } } }, "description": "List all runs", "operationId": "get_run_list", "tags": [ "Runs" ] } }, "/Runs/submit": { "post": { "responses": { "200": { "description": "Submit run info", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Submit run", "operationId": "post_run_submit", "parameters": [ { "name": "payload", "required": true, "in": "body", "schema": { "$ref": "#/definitions/RunDict" } } ], "tags": [ "Runs" ] } }, "/Runs/{name}": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "put": { "responses": { "200": { "description": "Update run info", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Update run", "operationId": "put_run", "parameters": [ { "name": "display_name", "in": "formData", "type": "string" }, { "name": "description", "in": "formData", "type": "string" }, { "name": "tags", "in": "formData", "type": "string" } ], "consumes": [ "application/x-www-form-urlencoded", "multipart/form-data" ], "tags": [ "Runs" ] }, "get": { "responses": { "200": { "description": "Get run info", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Get run", "operationId": "get_run", "tags": [ "Runs" ] } }, "/Runs/{name}/archive": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Archived run", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Archive run", "operationId": "get_archive_run", "tags": [ "Runs" ] } }, "/Runs/{name}/childRuns": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Child runs", "schema": { "$ref": "#/definitions/RunList" } } }, "description": "Get child runs", "operationId": "get_flow_child_runs", "tags": [ "Runs" ] } }, "/Runs/{name}/logContent": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Log content", "schema": { "type": "string" } } }, "description": "Get run log content", "operationId": "get_log_content", "tags": [ "Runs" ] } }, "/Runs/{name}/metaData": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Run metadata", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Get metadata of run", "operationId": "get_meta_data", "tags": [ "Runs" ] } }, "/Runs/{name}/metrics": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Run metrics", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Get run metrics", "operationId": "get_metrics", "tags": [ "Runs" ] } }, "/Runs/{name}/nodeRuns/{node_name}": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" }, { "name": "node_name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Node runs", "schema": { "$ref": "#/definitions/RunList" } } }, "description": "Get node runs info", "operationId": "get_flow_node_runs", "tags": [ "Runs" ] } }, "/Runs/{name}/restore": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Restored run", "schema": { "$ref": "#/definitions/RunDict" } } }, "description": "Restore run", "operationId": "get_restore_run", "tags": [ "Runs" ] } }, "/Runs/{name}/visualize": { "parameters": [ { "name": "name", "in": "path", "required": true, "type": "string" } ], "get": { "responses": { "200": { "description": "Visualize run", "schema": { "type": "string" } } }, "description": "Visualize run", "operationId": "get_visualize_run", "produces": [ "text/html" ], "tags": [ "Runs" ] } }, "/Telemetries/": { "post": { "responses": { "403": { "description": "Telemetry is disabled or X-Remote-User is not set.", "headers": { "x-ms-promptflow-request-id": { "type": "string" } } }, "400": { "description": "Input payload validation failed", "headers": { "x-ms-promptflow-request-id": { "type": "string" } } }, "200": { "description": "Create telemetry record", "headers": { "x-ms-promptflow-request-id": { "type": "string" } } } }, "description": "Create telemetry record", "operationId": "post_telemetry", "parameters": [ { "name": "payload", "required": true, "in": "body", "schema": { "$ref": "#/definitions/Telemetry" } } ], "tags": [ "Telemetries" ] } } }, "info": { "title": "Prompt Flow Service", "version": "1.0" }, "produces": [ "application/json" ], "consumes": [ "application/json" ], "tags": [ { "name": "Connections", "description": "Connections Management" }, { "name": "Runs", "description": "Runs Management" }, { "name": "Telemetries", "description": "Telemetry Management" } ], "definitions": { "Connection": { "properties": { "name": { "type": "string" }, "type": { "type": "string" }, "module": { "type": "string" }, "expiry_time": { "type": "string" }, "created_date": { "type": "string" }, "last_modified_date": { "type": "string" } }, "type": "object" }, "ConnectionDict": { "additionalProperties": true, "type": "object" }, "ConnectionSpec": { "properties": { "connection_type": { "type": "string" }, "config_spec": { "type": "array", "items": { "$ref": "#/definitions/ConnectionConfigSpec" } } }, "type": "object" }, "ConnectionConfigSpec": { "properties": { "name": { "type": "string" }, "optional": { "type": "boolean" }, "default": { "type": "string" } }, "type": "object" }, "RunList": { "type": "array", "items": { "$ref": "#/definitions/RunDict" } }, "RunDict": { "additionalProperties": true, "type": "object" }, "Telemetry": { "required": [ "eventType", "timestamp" ], "properties": { "eventType": { "type": "string", "description": "The event type of the telemetry.", "example": "Start", "enum": [ "Start", "End" ] }, "timestamp": { "type": "string", "format": "date-time", "description": "The timestamp of the telemetry." }, "firstCall": { "type": "boolean", "description": "Whether current activity is the first activity in the call chain.", "default": true }, "metadata": { "$ref": "#/definitions/Metadata" } }, "type": "object" }, "Metadata": { "required": [ "activityName", "activityType" ], "properties": { "activityName": { "type": "string", "description": "The name of the activity.", "example": "pf.flow.test", "enum": [ "pf.flow.test", "pf.flow.node_test", "pf.flow._generate_tools_meta" ] }, "activityType": { "type": "string", "description": "The type of the activity." }, "completionStatus": { "type": "string", "description": "The completion status of the activity.", "example": "Success", "enum": [ "Success", "Failure" ] }, "durationMs": { "type": "integer", "description": "The duration of the activity in milliseconds." }, "errorCategory": { "type": "string", "description": "The error category of the activity." }, "errorType": { "type": "string", "description": "The error type of the activity." }, "errorTarget": { "type": "string", "description": "The error target of the activity." }, "errorMessage": { "type": "string", "description": "The error message of the activity." }, "errorDetails": { "type": "string", "description": "The error details of the activity." } }, "type": "object" } }, "responses": { "ParseError": { "description": "When a mask can't be parsed" }, "MaskError": { "description": "When any error occurs on mask" }, "Exception": { "description": "When any error occurs on the server, return a formatted error message" } } }
promptflow/src/promptflow/promptflow/_sdk/_service/swagger.json/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/swagger.json", "repo_id": "promptflow", "token_count": 16309 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- class FlowDataCollector: """FlowDataCollector is used to collect flow data via MDC for monitoring.""" def __init__(self, logger): self.logger = logger self._init_success = self._init_data_collector() logger.info(f"Mdc init status: {self._init_success}") def _init_data_collector(self) -> bool: """init data collector.""" self.logger.info("Init mdc...") try: from azureml.ai.monitoring import Collector self.inputs_collector = Collector(name="model_inputs") self.outputs_collector = Collector(name="model_outputs") return True except ImportError as e: self.logger.warn(f"Load mdc related module failed: {e}") return False except Exception as e: self.logger.warn(f"Init mdc failed: {e}") return False def collect_flow_data(self, input: dict, output: dict, req_id: str = None, client_req_id: str = None): """collect flow data via MDC for monitoring.""" if not self._init_success: return try: import pandas as pd from azureml.ai.monitoring.context import BasicCorrelationContext # build context ctx = BasicCorrelationContext(id=req_id) # collect inputs coll_input = {k: [v] for k, v in input.items()} input_df = pd.DataFrame(coll_input) self.inputs_collector.collect(input_df, ctx) # collect outputs coll_output = {k: [v] for k, v in output.items()} output_df = pd.DataFrame(coll_output) # collect outputs data, pass in correlation_context so inputs and outputs data can be correlated later self.outputs_collector.collect(output_df, ctx) except ImportError as e: self.logger.warn(f"Load mdc related module failed: {e}") except Exception as e: self.logger.warn(f"Collect flow data failed: {e}")
promptflow/src/promptflow/promptflow/_sdk/_serving/monitor/data_collector.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/monitor/data_collector.py", "repo_id": "promptflow", "token_count": 912 }
41
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import logging import os import platform import sys from opencensus.ext.azure.log_exporter import AzureEventHandler from promptflow._sdk._configuration import Configuration # promptflow-sdk in east us INSTRUMENTATION_KEY = "8b52b368-4c91-4226-b7f7-be52822f0509" # cspell:ignore overriden def get_appinsights_log_handler(): """ Enable the OpenCensus logging handler for specified logger and instrumentation key to send info to AppInsights. """ from promptflow._sdk._telemetry.telemetry import is_telemetry_enabled try: config = Configuration.get_instance() instrumentation_key = INSTRUMENTATION_KEY custom_properties = { "python_version": platform.python_version(), "installation_id": config.get_or_set_installation_id(), } handler = PromptFlowSDKLogHandler( connection_string=f"InstrumentationKey={instrumentation_key}", custom_properties=custom_properties, enable_telemetry=is_telemetry_enabled(), ) return handler except Exception: # pylint: disable=broad-except # ignore any exceptions, telemetry collection errors shouldn't block an operation return logging.NullHandler() def get_scrubbed_cloud_role(): """Create cloud role for telemetry, will scrub user script name and only leave extension.""" default = "Unknown Application" known_scripts = [ "pfs", "pfutil.py", "pf", "pfazure", "pf.exe", "pfazure.exe", "app.py", "python -m unittest", "pytest", "gunicorn", "ipykernel_launcher.py", "jupyter-notebook", "jupyter-lab", "python", "_jb_pytest_runner.py", default, ] try: cloud_role = os.path.basename(sys.argv[0]) or default if cloud_role not in known_scripts: ext = os.path.splitext(cloud_role)[1] cloud_role = "***" + ext except Exception: # fallback to default cloud role if failed to scrub cloud_role = default return cloud_role # cspell:ignore AzureMLSDKLogHandler class PromptFlowSDKLogHandler(AzureEventHandler): """Customized AzureLogHandler for PromptFlow SDK""" def __init__(self, custom_properties, enable_telemetry, **kwargs): super().__init__(**kwargs) # disable AzureEventHandler's logging to avoid warning affect user experience self.disable_telemetry_logger() self._is_telemetry_enabled = enable_telemetry self._custom_dimensions = custom_properties def _check_stats_collection(self): # skip checking stats collection since it's time-consuming # according to doc: https://learn.microsoft.com/en-us/azure/azure-monitor/app/statsbeat # it doesn't affect customers' overall monitoring volume return False def emit(self, record): # skip logging if telemetry is disabled if not self._is_telemetry_enabled: return try: self._queue.put(record, block=False) # log the record immediately if it is an error if record.exc_info and not all(item is None for item in record.exc_info): self._queue.flush() except Exception: # pylint: disable=broad-except # ignore any exceptions, telemetry collection errors shouldn't block an operation return def log_record_to_envelope(self, record): from promptflow._utils.utils import is_in_ci_pipeline # skip logging if telemetry is disabled if not self._is_telemetry_enabled: return custom_dimensions = { "level": record.levelname, # add to distinguish if the log is from ci pipeline "from_ci": is_in_ci_pipeline(), } custom_dimensions.update(self._custom_dimensions) if hasattr(record, "custom_dimensions") and isinstance(record.custom_dimensions, dict): record.custom_dimensions.update(custom_dimensions) else: record.custom_dimensions = custom_dimensions envelope = super().log_record_to_envelope(record=record) # scrub data before sending to appinsights role = get_scrubbed_cloud_role() envelope.tags["ai.cloud.role"] = role envelope.tags.pop("ai.cloud.roleInstance", None) envelope.tags.pop("ai.device.id", None) return envelope @classmethod def disable_telemetry_logger(cls): """Disable AzureEventHandler's logging to avoid warning affect user experience""" from opencensus.ext.azure.common.processor import logger as processor_logger from opencensus.ext.azure.common.storage import logger as storage_logger from opencensus.ext.azure.common.transport import logger as transport_logger processor_logger.setLevel(logging.CRITICAL) transport_logger.setLevel(logging.CRITICAL) storage_logger.setLevel(logging.CRITICAL)
promptflow/src/promptflow/promptflow/_sdk/_telemetry/logging_handler.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_telemetry/logging_handler.py", "repo_id": "promptflow", "token_count": 2042 }
42
#!/bin/bash echo "$(date -uIns) - promptflow-serve/finish $@" echo "$(date -uIns) - Stopped all Gunicorn processes"
promptflow/src/promptflow/promptflow/_sdk/data/docker_csharp/runit/promptflow-serve/finish.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/docker_csharp/runit/promptflow-serve/finish.jinja2", "repo_id": "promptflow", "token_count": 45 }
43
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import abc import json from os import PathLike from pathlib import Path from typing import Dict, Optional, Tuple, Union from marshmallow import Schema from promptflow._constants import LANGUAGE_KEY, FlowLanguage from promptflow._sdk._constants import ( BASE_PATH_CONTEXT_KEY, DAG_FILE_NAME, DEFAULT_ENCODING, FLOW_TOOLS_JSON, PROMPT_FLOW_DIR_NAME, ) from promptflow._sdk.entities._connection import _Connection from promptflow._sdk.entities._validation import SchemaValidatableMixin from promptflow._utils.flow_utils import resolve_flow_path from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow._utils.yaml_utils import load_yaml, load_yaml_string from promptflow.exceptions import ErrorTarget, UserErrorException logger = get_cli_sdk_logger() class FlowContext: """Flow context entity. the settings on this context will be applied to the flow when executing. :param connections: Connections for the flow. :type connections: Optional[Dict[str, Dict]] :param variant: Variant of the flow. :type variant: Optional[str] :param variant: Overrides of the flow. :type variant: Optional[Dict[str, Dict]] :param streaming: Whether the flow's output need to be return in streaming mode. :type streaming: Optional[bool] """ def __init__( self, *, connections=None, variant=None, overrides=None, streaming=None, ): self.connections, self._connection_objs = connections or {}, {} self.variant = variant self.overrides = overrides or {} self.streaming = streaming # TODO: introduce connection provider support def _resolve_connections(self): # resolve connections and create placeholder for connection objects for _, v in self.connections.items(): if isinstance(v, dict): for k, conn in v.items(): if isinstance(conn, _Connection): name = self._get_connection_obj_name(conn) v[k] = name self._connection_objs[name] = conn @classmethod def _get_connection_obj_name(cls, connection: _Connection): # create a unique connection name for connection obj # will generate same name if connection has same content connection_dict = connection._to_dict() connection_name = f"connection_{hash(json.dumps(connection_dict, sort_keys=True))}" return connection_name def _to_dict(self): return { "connections": self.connections, "variant": self.variant, "overrides": self.overrides, "streaming": self.streaming, } def __eq__(self, other): if isinstance(other, FlowContext): return self._to_dict() == other._to_dict() return False def __hash__(self): self._resolve_connections() return hash(json.dumps(self._to_dict(), sort_keys=True)) class FlowBase(abc.ABC): def __init__(self, **kwargs): self._context = FlowContext() self._content_hash = kwargs.pop("content_hash", None) super().__init__(**kwargs) @property def context(self) -> FlowContext: return self._context @context.setter def context(self, val): if not isinstance(val, FlowContext): raise UserErrorException("context must be a FlowContext object, got {type(val)} instead.") self._context = val @property @abc.abstractmethod def language(self) -> str: """Language of the flow.""" @classmethod # pylint: disable=unused-argument def _resolve_cls_and_type(cls, data, params_override): """Resolve the class to use for deserializing the data. Return current class if no override is provided. :param data: Data to deserialize. :type data: dict :param params_override: Parameters to override, defaults to None :type params_override: typing.Optional[list] :return: Class to use for deserializing the data & its "type". Type will be None if no override is provided. :rtype: tuple[class, typing.Optional[str]] """ return cls, "flow" class Flow(FlowBase): """This class is used to represent a flow.""" def __init__( self, code: Union[str, PathLike], dag: dict, **kwargs, ): self._code = Path(code) path = kwargs.pop("path", None) self._path = Path(path) if path else None self.variant = kwargs.pop("variant", None) or {} self.dag = dag super().__init__(**kwargs) @property def code(self) -> Path: return self._code @code.setter def code(self, value: Union[str, PathLike, Path]): self._code = value @property def path(self) -> Path: flow_file = self._path or self.code / DAG_FILE_NAME if not flow_file.is_file(): raise UserErrorException( "The directory does not contain a valid flow.", target=ErrorTarget.CONTROL_PLANE_SDK, ) return flow_file @property def language(self) -> str: return self.dag.get(LANGUAGE_KEY, FlowLanguage.Python) @classmethod def _is_eager_flow(cls, data: dict): """Check if the flow is an eager flow. Use field 'entry' to determine.""" # If entry specified, it's an eager flow. return data.get("entry") @classmethod def load( cls, source: Union[str, PathLike], entry: str = None, **kwargs, ): from promptflow._sdk.entities._eager_flow import EagerFlow source_path = Path(source) if not source_path.exists(): raise UserErrorException(f"Source {source_path.absolute().as_posix()} does not exist") flow_path = resolve_flow_path(source_path) if not flow_path.exists(): raise UserErrorException(f"Flow file {flow_path.absolute().as_posix()} does not exist") if flow_path.suffix in [".yaml", ".yml"]: # read flow file to get hash with open(flow_path, "r", encoding=DEFAULT_ENCODING) as f: flow_content = f.read() data = load_yaml_string(flow_content) kwargs["content_hash"] = hash(flow_content) is_eager_flow = cls._is_eager_flow(data) if is_eager_flow: return EagerFlow._load(path=flow_path, entry=entry, data=data, **kwargs) else: # TODO: schema validation and warning on unknown fields return ProtectedFlow._load(path=flow_path, dag=data, **kwargs) # if non-YAML file is provided, treat is as eager flow return EagerFlow._load(path=flow_path, entry=entry, **kwargs) def _init_executable(self, tuning_node=None, variant=None): from promptflow._sdk._submitter import variant_overwrite_context # TODO: check if there is potential bug here # this is a little wired: # 1. the executable is created from a temp folder when there is additional includes # 2. after the executable is returned, the temp folder is deleted with variant_overwrite_context(self.code, tuning_node, variant) as flow: from promptflow.contracts.flow import Flow as ExecutableFlow return ExecutableFlow.from_yaml(flow_file=flow.path, working_dir=flow.code) def __eq__(self, other): if isinstance(other, Flow): return self._content_hash == other._content_hash and self.context == other.context return False def __hash__(self): return hash(self.context) ^ self._content_hash class ProtectedFlow(Flow, SchemaValidatableMixin): """This class is used to hide internal interfaces from user. User interface should be carefully designed to avoid breaking changes, while developers may need to change internal interfaces to improve the code quality. On the other hand, making all internal interfaces private will make it strange to use them everywhere inside this package. Ideally, developers should always initialize ProtectedFlow object instead of Flow object. """ def __init__( self, code: str, params_override: Optional[Dict] = None, **kwargs, ): super().__init__(code=code, **kwargs) self._flow_dir, self._dag_file_name = self._get_flow_definition(self.code) self._executable = None self._params_override = params_override @classmethod def _load(cls, path: Path, dag: dict, **kwargs): return cls(code=path.parent.absolute().as_posix(), dag=dag, **kwargs) @property def flow_dag_path(self) -> Path: return self._flow_dir / self._dag_file_name @property def name(self) -> str: return self._flow_dir.name @property def display_name(self) -> str: return self.dag.get("display_name", self.name) @property def tools_meta_path(self) -> Path: target_path = self._flow_dir / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON target_path.parent.mkdir(parents=True, exist_ok=True) return target_path @classmethod def _get_flow_definition(cls, flow, base_path=None) -> Tuple[Path, str]: if base_path: flow_path = Path(base_path) / flow else: flow_path = Path(flow) if flow_path.is_dir() and (flow_path / DAG_FILE_NAME).is_file(): return flow_path, DAG_FILE_NAME elif flow_path.is_file(): return flow_path.parent, flow_path.name raise ValueError(f"Can't find flow with path {flow_path.as_posix()}.") # region SchemaValidatableMixin @classmethod def _create_schema_for_validation(cls, context) -> Schema: # import here to avoid circular import from ..schemas._flow import FlowSchema return FlowSchema(context=context) def _default_context(self) -> dict: return {BASE_PATH_CONTEXT_KEY: self._flow_dir} def _create_validation_error(self, message, no_personal_data_message=None): return UserErrorException( message=message, target=ErrorTarget.CONTROL_PLANE_SDK, no_personal_data_message=no_personal_data_message, ) def _dump_for_validation(self) -> Dict: # Flow is read-only in control plane, so we always dump the flow from file data = load_yaml(self.flow_dag_path) if isinstance(self._params_override, dict): data.update(self._params_override) return data # endregion # region MLFlow model requirements @property def inputs(self): # This is used for build mlflow model signature. if not self._executable: self._executable = self._init_executable() return {k: v.type.value for k, v in self._executable.inputs.items()} @property def outputs(self): # This is used for build mlflow model signature. if not self._executable: self._executable = self._init_executable() return {k: v.type.value for k, v in self._executable.outputs.items()} # endregion def __call__(self, *args, **kwargs): """Calling flow as a function, the inputs should be provided with key word arguments. Returns the output of the flow. The function call throws UserErrorException: if the flow is not valid or the inputs are not valid. SystemErrorException: if the flow execution failed due to unexpected executor error. :param args: positional arguments are not supported. :param kwargs: flow inputs with key word arguments. :return: """ if args: raise UserErrorException("Flow can only be called with keyword arguments.") result = self.invoke(inputs=kwargs) return result.output def invoke(self, inputs: dict) -> "LineResult": """Invoke a flow and get a LineResult object.""" from promptflow._sdk._submitter.test_submitter import TestSubmitterViaProxy from promptflow._sdk.operations._flow_context_resolver import FlowContextResolver if self.dag.get(LANGUAGE_KEY, FlowLanguage.Python) == FlowLanguage.CSharp: with TestSubmitterViaProxy(flow=self, flow_context=self.context).init() as submitter: result = submitter.exec_with_inputs( inputs=inputs, ) return result else: invoker = FlowContextResolver.resolve(flow=self) result = invoker._invoke( data=inputs, ) return result
promptflow/src/promptflow/promptflow/_sdk/entities/_flow.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_flow.py", "repo_id": "promptflow", "token_count": 5217 }
44
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore
promptflow/src/promptflow/promptflow/_sdk/schemas/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/schemas/__init__.py", "repo_id": "promptflow", "token_count": 54 }
45
from dataclasses import dataclass from enum import Enum from typing import Optional class FeatureState(Enum): """The enum of feature state. READY: The feature is ready to use. E2ETEST: The feature is not ready to be shipped to customer and is in e2e testing. """ READY = "Ready" E2ETEST = "E2ETest" @dataclass class Feature: """The dataclass of feature.""" name: str description: str state: FeatureState component: Optional[str] = "executor" def get_feature_list(): feature_list = [ Feature( name="ActivateConfig", description="Bypass node execution when the node does not meet activate condition.", state=FeatureState.READY, ), Feature( name="Image", description="Support image input and output.", state=FeatureState.READY, ), Feature( name="EnvironmentVariablesInYaml", description="Support environment variables in flow.dag.yaml.", state=FeatureState.READY, ), ] return feature_list
promptflow/src/promptflow/promptflow/_utils/feature_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/feature_utils.py", "repo_id": "promptflow", "token_count": 447 }
46
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path RESOURCE_FOLDER = Path(__file__).parent.parent / "resources" COMMAND_COMPONENT_SPEC_TEMPLATE = RESOURCE_FOLDER / "component_spec_template.yaml" DEFAULT_PYTHON_VERSION = "3.9"
promptflow/src/promptflow/promptflow/azure/_constants/_component.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_constants/_component.py", "repo_id": "promptflow", "token_count": 102 }
47
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, Optional from azure.core import AsyncPipelineClient from azure.core.rest import AsyncHttpResponse, HttpRequest from msrest import Deserializer, Serializer from .. import models from ._configuration import AzureMachineLearningDesignerServiceClientConfiguration from .operations import BulkRunsOperations, ConnectionOperations, ConnectionsOperations, FlowRunsAdminOperations, FlowRuntimesOperations, FlowRuntimesWorkspaceIndependentOperations, FlowSessionsOperations, FlowsOperations, FlowsProviderOperations, ToolsOperations class AzureMachineLearningDesignerServiceClient: """AzureMachineLearningDesignerServiceClient. :ivar bulk_runs: BulkRunsOperations operations :vartype bulk_runs: flow.aio.operations.BulkRunsOperations :ivar connection: ConnectionOperations operations :vartype connection: flow.aio.operations.ConnectionOperations :ivar connections: ConnectionsOperations operations :vartype connections: flow.aio.operations.ConnectionsOperations :ivar flow_runs_admin: FlowRunsAdminOperations operations :vartype flow_runs_admin: flow.aio.operations.FlowRunsAdminOperations :ivar flow_runtimes: FlowRuntimesOperations operations :vartype flow_runtimes: flow.aio.operations.FlowRuntimesOperations :ivar flow_runtimes_workspace_independent: FlowRuntimesWorkspaceIndependentOperations operations :vartype flow_runtimes_workspace_independent: flow.aio.operations.FlowRuntimesWorkspaceIndependentOperations :ivar flows: FlowsOperations operations :vartype flows: flow.aio.operations.FlowsOperations :ivar flow_sessions: FlowSessionsOperations operations :vartype flow_sessions: flow.aio.operations.FlowSessionsOperations :ivar flows_provider: FlowsProviderOperations operations :vartype flows_provider: flow.aio.operations.FlowsProviderOperations :ivar tools: ToolsOperations operations :vartype tools: flow.aio.operations.ToolsOperations :param base_url: Service URL. Default value is ''. :type base_url: str :param api_version: Api Version. The default value is "1.0.0". :type api_version: str """ def __init__( self, base_url: str = "", api_version: Optional[str] = "1.0.0", **kwargs: Any ) -> None: self._config = AzureMachineLearningDesignerServiceClientConfiguration(api_version=api_version, **kwargs) self._client = AsyncPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.bulk_runs = BulkRunsOperations(self._client, self._config, self._serialize, self._deserialize) self.connection = ConnectionOperations(self._client, self._config, self._serialize, self._deserialize) self.connections = ConnectionsOperations(self._client, self._config, self._serialize, self._deserialize) self.flow_runs_admin = FlowRunsAdminOperations(self._client, self._config, self._serialize, self._deserialize) self.flow_runtimes = FlowRuntimesOperations(self._client, self._config, self._serialize, self._deserialize) self.flow_runtimes_workspace_independent = FlowRuntimesWorkspaceIndependentOperations(self._client, self._config, self._serialize, self._deserialize) self.flows = FlowsOperations(self._client, self._config, self._serialize, self._deserialize) self.flow_sessions = FlowSessionsOperations(self._client, self._config, self._serialize, self._deserialize) self.flows_provider = FlowsProviderOperations(self._client, self._config, self._serialize, self._deserialize) self.tools = ToolsOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request( self, request: HttpRequest, **kwargs: Any ) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "AzureMachineLearningDesignerServiceClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/_azure_machine_learning_designer_service_client.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/_azure_machine_learning_designer_service_client.py", "repo_id": "promptflow", "token_count": 1947 }
48
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum from six import with_metaclass from azure.core import CaseInsensitiveEnumMeta class ActionType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SEND_VALIDATION_REQUEST = "SendValidationRequest" GET_VALIDATION_STATUS = "GetValidationStatus" SUBMIT_BULK_RUN = "SubmitBulkRun" LOG_RUN_RESULT = "LogRunResult" LOG_RUN_TERMINATED_EVENT = "LogRunTerminatedEvent" class AetherArgumentValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LITERAL = "Literal" PARAMETER = "Parameter" INPUT = "Input" OUTPUT = "Output" NESTED_LIST = "NestedList" STRING_INTERPOLATION_LIST = "StringInterpolationList" class AetherAssetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): URI_FILE = "UriFile" URI_FOLDER = "UriFolder" ML_TABLE = "MLTable" CUSTOM_MODEL = "CustomModel" ML_FLOW_MODEL = "MLFlowModel" TRITON_MODEL = "TritonModel" OPEN_AI_MODEL = "OpenAIModel" class AetherBuildSourceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CLOUD_BUILD = "CloudBuild" VSO = "Vso" VSO_GIT = "VsoGit" class AetherComputeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): BATCH_AI = "BatchAi" MLC = "MLC" HDI_CLUSTER = "HdiCluster" REMOTE_DOCKER = "RemoteDocker" DATABRICKS = "Databricks" AISC = "Aisc" class AetherControlFlowType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" DO_WHILE = "DoWhile" PARALLEL_FOR = "ParallelFor" class AetherControlInputValue(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" FALSE = "False" TRUE = "True" SKIPPED = "Skipped" class AetherDataCopyMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MERGE_WITH_OVERWRITE = "MergeWithOverwrite" FAIL_IF_CONFLICT = "FailIfConflict" class AetherDataLocationStorageType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): COSMOS = "Cosmos" AZURE_BLOB = "AzureBlob" ARTIFACT = "Artifact" SNAPSHOT = "Snapshot" SAVED_AML_DATASET = "SavedAmlDataset" ASSET = "Asset" class AetherDataReferenceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" AZURE_BLOB = "AzureBlob" AZURE_DATA_LAKE = "AzureDataLake" AZURE_FILES = "AzureFiles" COSMOS = "Cosmos" PHILLY_HDFS = "PhillyHdfs" AZURE_SQL_DATABASE = "AzureSqlDatabase" AZURE_POSTGRES_DATABASE = "AzurePostgresDatabase" AZURE_DATA_LAKE_GEN2 = "AzureDataLakeGen2" DBFS = "DBFS" AZURE_MY_SQL_DATABASE = "AzureMySqlDatabase" CUSTOM = "Custom" HDFS = "Hdfs" class AetherDatasetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): FILE = "File" TABULAR = "Tabular" class AetherDataStoreMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" MOUNT = "Mount" DOWNLOAD = "Download" UPLOAD = "Upload" DIRECT = "Direct" HDFS = "Hdfs" LINK = "Link" class AetherDataTransferStorageType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DATA_BASE = "DataBase" FILE_SYSTEM = "FileSystem" class AetherDataTransferTaskType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): IMPORT_DATA = "ImportData" EXPORT_DATA = "ExportData" COPY_DATA = "CopyData" class AetherEarlyTerminationPolicyType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): BANDIT = "Bandit" MEDIAN_STOPPING = "MedianStopping" TRUNCATION_SELECTION = "TruncationSelection" class AetherEntityStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ACTIVE = "Active" DEPRECATED = "Deprecated" DISABLED = "Disabled" class AetherExecutionEnvironment(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): EXE_WORKER_MACHINE = "ExeWorkerMachine" DOCKER_CONTAINER_WITHOUT_NETWORK = "DockerContainerWithoutNetwork" DOCKER_CONTAINER_WITH_NETWORK = "DockerContainerWithNetwork" HYPER_V_WITHOUT_NETWORK = "HyperVWithoutNetwork" HYPER_V_WITH_NETWORK = "HyperVWithNetwork" class AetherExecutionPhase(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): EXECUTION = "Execution" INITIALIZATION = "Initialization" FINALIZATION = "Finalization" class AetherFeaturizationMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" OFF = "Off" class AetherFileBasedPathType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNKNOWN = "Unknown" FILE = "File" FOLDER = "Folder" class AetherForecastHorizonMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class AetherIdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): USER_IDENTITY = "UserIdentity" MANAGED = "Managed" AML_TOKEN = "AMLToken" class AetherLogVerbosity(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_SET = "NotSet" DEBUG = "Debug" INFO = "Info" WARNING = "Warning" ERROR = "Error" CRITICAL = "Critical" class AetherModuleDeploymentSource(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CLIENT = "Client" AUTO_DEPLOYMENT = "AutoDeployment" VSTS = "Vsts" class AetherModuleHashVersion(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): IDENTIFIER_HASH = "IdentifierHash" IDENTIFIER_HASH_V2 = "IdentifierHashV2" class AetherModuleType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" BATCH_INFERENCING = "BatchInferencing" class AetherNCrossValidationMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class AetherParameterType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INT = "Int" DOUBLE = "Double" BOOL = "Bool" STRING = "String" UNDEFINED = "Undefined" class AetherParameterValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LITERAL = "Literal" GRAPH_PARAMETER_NAME = "GraphParameterName" CONCATENATE = "Concatenate" INPUT = "Input" DATA_PATH = "DataPath" DATA_SET_DEFINITION = "DataSetDefinition" class AetherPrimaryMetrics(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUC_WEIGHTED = "AUCWeighted" ACCURACY = "Accuracy" NORM_MACRO_RECALL = "NormMacroRecall" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" SPEARMAN_CORRELATION = "SpearmanCorrelation" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" R2_SCORE = "R2Score" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" NORMALIZED_ROOT_MEAN_SQUARED_LOG_ERROR = "NormalizedRootMeanSquaredLogError" MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" IOU = "Iou" class AetherRepositoryType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" OTHER = "Other" GIT = "Git" SOURCE_DEPOT = "SourceDepot" COSMOS = "Cosmos" class AetherResourceOperator(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): EQUAL = "Equal" CONTAIN = "Contain" GREATER_OR_EQUAL = "GreaterOrEqual" class AetherResourceValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): STRING = "String" DOUBLE = "Double" class AetherSamplingAlgorithmType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): RANDOM = "Random" GRID = "Grid" BAYESIAN = "Bayesian" class AetherSeasonalityMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class AetherShortSeriesHandlingConfiguration(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" PAD = "Pad" DROP = "Drop" class AetherStackMetaLearnerType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" LOGISTIC_REGRESSION = "LogisticRegression" LOGISTIC_REGRESSION_CV = "LogisticRegressionCV" LIGHT_GBM_CLASSIFIER = "LightGBMClassifier" ELASTIC_NET = "ElasticNet" ELASTIC_NET_CV = "ElasticNetCV" LIGHT_GBM_REGRESSOR = "LightGBMRegressor" LINEAR_REGRESSION = "LinearRegression" class AetherStoredProcedureParameterType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): STRING = "String" INT = "Int" DECIMAL = "Decimal" GUID = "Guid" BOOLEAN = "Boolean" DATE = "Date" class AetherTabularTrainingMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DISTRIBUTED = "Distributed" NON_DISTRIBUTED = "NonDistributed" AUTO = "Auto" class AetherTargetAggregationFunction(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SUM = "Sum" MAX = "Max" MIN = "Min" MEAN = "Mean" class AetherTargetLagsMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class AetherTargetRollingWindowSizeMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class AetherTaskType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CLASSIFICATION = "Classification" REGRESSION = "Regression" FORECASTING = "Forecasting" IMAGE_CLASSIFICATION = "ImageClassification" IMAGE_CLASSIFICATION_MULTILABEL = "ImageClassificationMultilabel" IMAGE_OBJECT_DETECTION = "ImageObjectDetection" IMAGE_INSTANCE_SEGMENTATION = "ImageInstanceSegmentation" TEXT_CLASSIFICATION = "TextClassification" TEXT_MULTI_LABELING = "TextMultiLabeling" TEXT_NER = "TextNER" TEXT_CLASSIFICATION_MULTILABEL = "TextClassificationMultilabel" class AetherTrainingOutputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): METRICS = "Metrics" MODEL = "Model" class AetherUIScriptLanguageEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" PYTHON = "Python" R = "R" JSON = "Json" SQL = "Sql" class AetherUIWidgetTypeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "Default" MODE = "Mode" COLUMN_PICKER = "ColumnPicker" CREDENTIAL = "Credential" SCRIPT = "Script" COMPUTE_SELECTION = "ComputeSelection" JSON_EDITOR = "JsonEditor" SEARCH_SPACE_PARAMETER = "SearchSpaceParameter" SECTION_TOGGLE = "SectionToggle" YAML_EDITOR = "YamlEditor" ENABLE_RUNTIME_SWEEP = "EnableRuntimeSweep" DATA_STORE_SELECTION = "DataStoreSelection" INSTANCE_TYPE_SELECTION = "InstanceTypeSelection" CONNECTION_SELECTION = "ConnectionSelection" PROMPT_FLOW_CONNECTION_SELECTION = "PromptFlowConnectionSelection" AZURE_OPEN_AI_DEPLOYMENT_NAME_SELECTION = "AzureOpenAIDeploymentNameSelection" class AetherUploadState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UPLOADING = "Uploading" COMPLETED = "Completed" CANCELED = "Canceled" FAILED = "Failed" class AetherUseStl(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SEASON = "Season" SEASON_TREND = "SeasonTrend" class AEVAAssetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): URI_FILE = "UriFile" URI_FOLDER = "UriFolder" ML_TABLE = "MLTable" CUSTOM_MODEL = "CustomModel" ML_FLOW_MODEL = "MLFlowModel" TRITON_MODEL = "TritonModel" OPEN_AI_MODEL = "OpenAIModel" class AEVADataStoreMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" MOUNT = "Mount" DOWNLOAD = "Download" UPLOAD = "Upload" DIRECT = "Direct" HDFS = "Hdfs" LINK = "Link" class AEVAIdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): USER_IDENTITY = "UserIdentity" MANAGED = "Managed" AML_TOKEN = "AMLToken" class ApplicationEndpointType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): JUPYTER = "Jupyter" JUPYTER_LAB = "JupyterLab" SSH = "SSH" TENSOR_BOARD = "TensorBoard" VS_CODE = "VSCode" THEIA = "Theia" GRAFANA = "Grafana" CUSTOM = "Custom" RAY_DASHBOARD = "RayDashboard" class ArgumentValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LITERAL = "Literal" PARAMETER = "Parameter" INPUT = "Input" OUTPUT = "Output" NESTED_LIST = "NestedList" STRING_INTERPOLATION_LIST = "StringInterpolationList" class AssetScopeTypes(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): WORKSPACE = "Workspace" GLOBAL_ENUM = "Global" ALL = "All" FEED = "Feed" class AssetSourceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNKNOWN = "Unknown" LOCAL = "Local" GITHUB_FILE = "GithubFile" GITHUB_FOLDER = "GithubFolder" DEVOPS_ARTIFACTS_ZIP = "DevopsArtifactsZip" class AssetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): COMPONENT = "Component" MODEL = "Model" ENVIRONMENT = "Environment" DATASET = "Dataset" DATA_STORE = "DataStore" SAMPLE_GRAPH = "SampleGraph" FLOW_TOOL = "FlowTool" FLOW_TOOL_SETTING = "FlowToolSetting" FLOW_CONNECTION = "FlowConnection" FLOW_SAMPLE = "FlowSample" FLOW_RUNTIME_SPEC = "FlowRuntimeSpec" class AutoDeleteCondition(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CREATED_GREATER_THAN = "CreatedGreaterThan" LAST_ACCESSED_GREATER_THAN = "LastAccessedGreaterThan" class BuildContextLocationType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): GIT = "Git" STORAGE_ACCOUNT = "StorageAccount" class Communicator(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" PARAMETER_SERVER = "ParameterServer" GLOO = "Gloo" MPI = "Mpi" NCCL = "Nccl" PARALLEL_TASK = "ParallelTask" class ComponentRegistrationTypeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NORMAL = "Normal" ANONYMOUS_AML_MODULE = "AnonymousAmlModule" ANONYMOUS_AML_MODULE_VERSION = "AnonymousAmlModuleVersion" MODULE_ENTITY_ONLY = "ModuleEntityOnly" class ComponentType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNKNOWN = "Unknown" COMMAND_COMPONENT = "CommandComponent" COMMAND = "Command" class ComputeEnvironmentType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ACI = "ACI" AKS = "AKS" AMLCOMPUTE = "AMLCOMPUTE" IOT = "IOT" AKSENDPOINT = "AKSENDPOINT" MIRSINGLEMODEL = "MIRSINGLEMODEL" MIRAMLCOMPUTE = "MIRAMLCOMPUTE" MIRGA = "MIRGA" AMLARC = "AMLARC" BATCHAMLCOMPUTE = "BATCHAMLCOMPUTE" UNKNOWN = "UNKNOWN" class ComputeTargetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LOCAL = "Local" REMOTE = "Remote" HDI_CLUSTER = "HdiCluster" CONTAINER_INSTANCE = "ContainerInstance" AML_COMPUTE = "AmlCompute" COMPUTE_INSTANCE = "ComputeInstance" CMK8_S = "Cmk8s" SYNAPSE_SPARK = "SynapseSpark" KUBERNETES = "Kubernetes" AISC = "Aisc" GLOBAL_JOB_DISPATCHER = "GlobalJobDispatcher" DATABRICKS = "Databricks" MOCKED_COMPUTE = "MockedCompute" class ComputeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): BATCH_AI = "BatchAi" MLC = "MLC" HDI_CLUSTER = "HdiCluster" REMOTE_DOCKER = "RemoteDocker" DATABRICKS = "Databricks" AISC = "Aisc" class ConfigValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): STRING = "String" SECRET = "Secret" class ConnectionCategory(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PYTHON_FEED = "PythonFeed" ACR = "ACR" GIT = "Git" S3 = "S3" SNOWFLAKE = "Snowflake" AZURE_SQL_DB = "AzureSqlDb" AZURE_SYNAPSE_ANALYTICS = "AzureSynapseAnalytics" AZURE_MY_SQL_DB = "AzureMySqlDb" AZURE_POSTGRES_DB = "AzurePostgresDb" AZURE_DATA_LAKE_GEN2 = "AzureDataLakeGen2" REDIS = "Redis" API_KEY = "ApiKey" AZURE_OPEN_AI = "AzureOpenAI" COGNITIVE_SEARCH = "CognitiveSearch" COGNITIVE_SERVICE = "CognitiveService" CUSTOM_KEYS = "CustomKeys" AZURE_BLOB = "AzureBlob" AZURE_ONE_LAKE = "AzureOneLake" COSMOS_DB = "CosmosDb" COSMOS_DB_MONGO_DB_API = "CosmosDbMongoDbApi" AZURE_DATA_EXPLORER = "AzureDataExplorer" AZURE_MARIA_DB = "AzureMariaDb" AZURE_DATABRICKS_DELTA_LAKE = "AzureDatabricksDeltaLake" AZURE_SQL_MI = "AzureSqlMi" AZURE_TABLE_STORAGE = "AzureTableStorage" AMAZON_RDS_FOR_ORACLE = "AmazonRdsForOracle" AMAZON_RDS_FOR_SQL_SERVER = "AmazonRdsForSqlServer" AMAZON_REDSHIFT = "AmazonRedshift" DB2 = "Db2" DRILL = "Drill" GOOGLE_BIG_QUERY = "GoogleBigQuery" GREENPLUM = "Greenplum" HBASE = "Hbase" HIVE = "Hive" IMPALA = "Impala" INFORMIX = "Informix" MARIA_DB = "MariaDb" MICROSOFT_ACCESS = "MicrosoftAccess" MY_SQL = "MySql" NETEZZA = "Netezza" ORACLE = "Oracle" PHOENIX = "Phoenix" POSTGRE_SQL = "PostgreSql" PRESTO = "Presto" SAP_OPEN_HUB = "SapOpenHub" SAP_BW = "SapBw" SAP_HANA = "SapHana" SAP_TABLE = "SapTable" SPARK = "Spark" SQL_SERVER = "SqlServer" SYBASE = "Sybase" TERADATA = "Teradata" VERTICA = "Vertica" CASSANDRA = "Cassandra" COUCHBASE = "Couchbase" MONGO_DB_V2 = "MongoDbV2" MONGO_DB_ATLAS = "MongoDbAtlas" AMAZON_S3_COMPATIBLE = "AmazonS3Compatible" FILE_SERVER = "FileServer" FTP_SERVER = "FtpServer" GOOGLE_CLOUD_STORAGE = "GoogleCloudStorage" HDFS = "Hdfs" ORACLE_CLOUD_STORAGE = "OracleCloudStorage" SFTP = "Sftp" GENERIC_HTTP = "GenericHttp" O_DATA_REST = "ODataRest" ODBC = "Odbc" GENERIC_REST = "GenericRest" AMAZON_MWS = "AmazonMws" CONCUR = "Concur" DYNAMICS = "Dynamics" DYNAMICS_AX = "DynamicsAx" DYNAMICS_CRM = "DynamicsCrm" GOOGLE_AD_WORDS = "GoogleAdWords" HUBSPOT = "Hubspot" JIRA = "Jira" MAGENTO = "Magento" MARKETO = "Marketo" OFFICE365 = "Office365" ELOQUA = "Eloqua" RESPONSYS = "Responsys" ORACLE_SERVICE_CLOUD = "OracleServiceCloud" PAY_PAL = "PayPal" QUICK_BOOKS = "QuickBooks" SALESFORCE = "Salesforce" SALESFORCE_SERVICE_CLOUD = "SalesforceServiceCloud" SALESFORCE_MARKETING_CLOUD = "SalesforceMarketingCloud" SAP_CLOUD_FOR_CUSTOMER = "SapCloudForCustomer" SAP_ECC = "SapEcc" SERVICE_NOW = "ServiceNow" SHARE_POINT_ONLINE_LIST = "SharePointOnlineList" SHOPIFY = "Shopify" SQUARE = "Square" WEB_TABLE = "WebTable" XERO = "Xero" ZOHO = "Zoho" GENERIC_CONTAINER_REGISTRY = "GenericContainerRegistry" class ConnectionScope(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): USER = "User" WORKSPACE_SHARED = "WorkspaceShared" class ConnectionSourceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NODE = "Node" NODE_INPUT = "NodeInput" class ConnectionType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): OPEN_AI = "OpenAI" AZURE_OPEN_AI = "AzureOpenAI" SERP = "Serp" BING = "Bing" AZURE_CONTENT_MODERATOR = "AzureContentModerator" CUSTOM = "Custom" AZURE_CONTENT_SAFETY = "AzureContentSafety" COGNITIVE_SEARCH = "CognitiveSearch" SUBSTRATE_LLM = "SubstrateLLM" PINECONE = "Pinecone" QDRANT = "Qdrant" WEAVIATE = "Weaviate" FORM_RECOGNIZER = "FormRecognizer" class ConsumeMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): REFERENCE = "Reference" COPY = "Copy" COPY_AND_AUTO_UPGRADE = "CopyAndAutoUpgrade" class ControlFlowType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" DO_WHILE = "DoWhile" PARALLEL_FOR = "ParallelFor" class ControlInputValue(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" FALSE = "False" TRUE = "True" SKIPPED = "Skipped" class DataBindingMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MOUNT = "Mount" DOWNLOAD = "Download" UPLOAD = "Upload" READ_ONLY_MOUNT = "ReadOnlyMount" READ_WRITE_MOUNT = "ReadWriteMount" DIRECT = "Direct" EVAL_MOUNT = "EvalMount" EVAL_DOWNLOAD = "EvalDownload" class DataCategory(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ALL = "All" DATASET = "Dataset" MODEL = "Model" class DataCopyMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MERGE_WITH_OVERWRITE = "MergeWithOverwrite" FAIL_IF_CONFLICT = "FailIfConflict" class DataLocationStorageType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" AZURE_BLOB = "AzureBlob" ARTIFACT = "Artifact" SNAPSHOT = "Snapshot" SAVED_AML_DATASET = "SavedAmlDataset" ASSET = "Asset" class DataPortType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INPUT = "Input" OUTPUT = "Output" class DataReferenceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" AZURE_BLOB = "AzureBlob" AZURE_DATA_LAKE = "AzureDataLake" AZURE_FILES = "AzureFiles" AZURE_SQL_DATABASE = "AzureSqlDatabase" AZURE_POSTGRES_DATABASE = "AzurePostgresDatabase" AZURE_DATA_LAKE_GEN2 = "AzureDataLakeGen2" DBFS = "DBFS" AZURE_MY_SQL_DATABASE = "AzureMySqlDatabase" CUSTOM = "Custom" HDFS = "Hdfs" class DatasetAccessModes(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "Default" DATASET_IN_DPV2 = "DatasetInDpv2" ASSET_IN_DPV2 = "AssetInDpv2" DATASET_IN_DESIGNER_UI = "DatasetInDesignerUI" DATASET_IN_DPV2_WITH_DATASET_IN_DESIGNER_UI = "DatasetInDpv2WithDatasetInDesignerUI" DATASET = "Dataset" ASSET_IN_DPV2_WITH_DATASET_IN_DESIGNER_UI = "AssetInDpv2WithDatasetInDesignerUI" DATASET_AND_ASSET_IN_DPV2_WITH_DATASET_IN_DESIGNER_UI = "DatasetAndAssetInDpv2WithDatasetInDesignerUI" ASSET_IN_DESIGNER_UI = "AssetInDesignerUI" ASSET_IN_DPV2_WITH_ASSET_IN_DESIGNER_UI = "AssetInDpv2WithAssetInDesignerUI" ASSET = "Asset" class DatasetConsumptionType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): RUN_INPUT = "RunInput" REFERENCE = "Reference" class DatasetDeliveryMechanism(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DIRECT = "Direct" MOUNT = "Mount" DOWNLOAD = "Download" HDFS = "Hdfs" class DatasetOutputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): RUN_OUTPUT = "RunOutput" REFERENCE = "Reference" class DatasetType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): FILE = "File" TABULAR = "Tabular" class DataSourceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" PIPELINE_DATA_SOURCE = "PipelineDataSource" AML_DATASET = "AmlDataset" GLOBAL_DATASET = "GlobalDataset" FEED_MODEL = "FeedModel" FEED_DATASET = "FeedDataset" AML_DATA_VERSION = "AmlDataVersion" AML_MODEL_VERSION = "AMLModelVersion" class DataStoreMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MOUNT = "Mount" DOWNLOAD = "Download" UPLOAD = "Upload" class DataTransferStorageType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DATA_BASE = "DataBase" FILE_SYSTEM = "FileSystem" class DataTransferTaskType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): IMPORT_DATA = "ImportData" EXPORT_DATA = "ExportData" COPY_DATA = "CopyData" class DataTypeMechanism(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ERROR_WHEN_NOT_EXISTING = "ErrorWhenNotExisting" REGISTER_WHEN_NOT_EXISTING = "RegisterWhenNotExisting" REGISTER_BUILDIN_DATA_TYPE_ONLY = "RegisterBuildinDataTypeOnly" class DeliveryMechanism(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DIRECT = "Direct" MOUNT = "Mount" DOWNLOAD = "Download" HDFS = "Hdfs" class DistributionParameterEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): TEXT = "Text" NUMBER = "Number" class DistributionType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PY_TORCH = "PyTorch" TENSOR_FLOW = "TensorFlow" MPI = "Mpi" RAY = "Ray" class EarlyTerminationPolicyType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): BANDIT = "Bandit" MEDIAN_STOPPING = "MedianStopping" TRUNCATION_SELECTION = "TruncationSelection" class EmailNotificationEnableType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): JOB_COMPLETED = "JobCompleted" JOB_FAILED = "JobFailed" JOB_CANCELLED = "JobCancelled" class EndpointAuthMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AML_TOKEN = "AMLToken" KEY = "Key" AAD_TOKEN = "AADToken" class EntityKind(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INVALID = "Invalid" LINEAGE_ROOT = "LineageRoot" VERSIONED = "Versioned" UNVERSIONED = "Unversioned" class EntityStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ACTIVE = "Active" DEPRECATED = "Deprecated" DISABLED = "Disabled" class ErrorHandlingMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT_INTERPOLATION = "DefaultInterpolation" CUSTOMER_FACING_INTERPOLATION = "CustomerFacingInterpolation" class ExecutionPhase(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): EXECUTION = "Execution" INITIALIZATION = "Initialization" FINALIZATION = "Finalization" class FeaturizationMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" OFF = "Off" class FlowFeatureStateEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): READY = "Ready" E2_E_TEST = "E2ETest" class FlowLanguage(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PYTHON = "Python" C_SHARP = "CSharp" class FlowPatchOperationType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ARCHIVE_FLOW = "ArchiveFlow" RESTORE_FLOW = "RestoreFlow" EXPORT_FLOW_TO_FILE = "ExportFlowToFile" class FlowRunMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): FLOW = "Flow" SINGLE_NODE = "SingleNode" FROM_NODE = "FromNode" BULK_TEST = "BulkTest" EVAL = "Eval" PAIRWISE_EVAL = "PairwiseEval" class FlowRuntimeSubmissionApiVersion(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): VERSION1 = "Version1" VERSION2 = "Version2" class FlowRunTypeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): FLOW_RUN = "FlowRun" EVALUATION_RUN = "EvaluationRun" PAIRWISE_EVALUATION_RUN = "PairwiseEvaluationRun" SINGLE_NODE_RUN = "SingleNodeRun" FROM_NODE_RUN = "FromNodeRun" class FlowTestMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SYNC = "Sync" ASYNC_ENUM = "Async" class FlowType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "Default" EVALUATION = "Evaluation" CHAT = "Chat" RAG = "Rag" class ForecastHorizonMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class Framework(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PYTHON = "Python" PY_SPARK = "PySpark" CNTK = "Cntk" TENSOR_FLOW = "TensorFlow" PY_TORCH = "PyTorch" PY_SPARK_INTERACTIVE = "PySparkInteractive" R = "R" class Frequency(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MONTH = "Month" WEEK = "Week" DAY = "Day" HOUR = "Hour" MINUTE = "Minute" class GlobalJobDispatcherSupportedComputeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AML_COMPUTE = "AmlCompute" AML_K8_S = "AmlK8s" class GraphComponentsMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NORMAL = "Normal" ALL_DESIGNER_BUILDIN = "AllDesignerBuildin" CONTAINS_DESIGNER_BUILDIN = "ContainsDesignerBuildin" class GraphDatasetsLoadModes(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SKIP_DATASETS_LOAD = "SkipDatasetsLoad" V1_REGISTERED_DATASET = "V1RegisteredDataset" V1_SAVED_DATASET = "V1SavedDataset" PERSIST_DATASETS_INFO = "PersistDatasetsInfo" SUBMISSION_NEEDED_UPSTREAM_DATASET_ONLY = "SubmissionNeededUpstreamDatasetOnly" SUBMISSION_NEEDED_IN_COMPLETE_DATASET_ONLY = "SubmissionNeededInCompleteDatasetOnly" V2_ASSET = "V2Asset" SUBMISSION = "Submission" ALL_REGISTERED_DATA = "AllRegisteredData" ALL_DATA = "AllData" class GraphSdkCodeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PYTHON = "Python" JUPYTER_NOTEBOOK = "JupyterNotebook" UNKNOWN = "Unknown" class HttpStatusCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CONTINUE_ENUM = "Continue" SWITCHING_PROTOCOLS = "SwitchingProtocols" PROCESSING = "Processing" EARLY_HINTS = "EarlyHints" OK = "OK" CREATED = "Created" ACCEPTED = "Accepted" NON_AUTHORITATIVE_INFORMATION = "NonAuthoritativeInformation" NO_CONTENT = "NoContent" RESET_CONTENT = "ResetContent" PARTIAL_CONTENT = "PartialContent" MULTI_STATUS = "MultiStatus" ALREADY_REPORTED = "AlreadyReported" IM_USED = "IMUsed" MULTIPLE_CHOICES = "MultipleChoices" AMBIGUOUS = "Ambiguous" MOVED_PERMANENTLY = "MovedPermanently" MOVED = "Moved" FOUND = "Found" REDIRECT = "Redirect" SEE_OTHER = "SeeOther" REDIRECT_METHOD = "RedirectMethod" NOT_MODIFIED = "NotModified" USE_PROXY = "UseProxy" UNUSED = "Unused" TEMPORARY_REDIRECT = "TemporaryRedirect" REDIRECT_KEEP_VERB = "RedirectKeepVerb" PERMANENT_REDIRECT = "PermanentRedirect" BAD_REQUEST = "BadRequest" UNAUTHORIZED = "Unauthorized" PAYMENT_REQUIRED = "PaymentRequired" FORBIDDEN = "Forbidden" NOT_FOUND = "NotFound" METHOD_NOT_ALLOWED = "MethodNotAllowed" NOT_ACCEPTABLE = "NotAcceptable" PROXY_AUTHENTICATION_REQUIRED = "ProxyAuthenticationRequired" REQUEST_TIMEOUT = "RequestTimeout" CONFLICT = "Conflict" GONE = "Gone" LENGTH_REQUIRED = "LengthRequired" PRECONDITION_FAILED = "PreconditionFailed" REQUEST_ENTITY_TOO_LARGE = "RequestEntityTooLarge" REQUEST_URI_TOO_LONG = "RequestUriTooLong" UNSUPPORTED_MEDIA_TYPE = "UnsupportedMediaType" REQUESTED_RANGE_NOT_SATISFIABLE = "RequestedRangeNotSatisfiable" EXPECTATION_FAILED = "ExpectationFailed" MISDIRECTED_REQUEST = "MisdirectedRequest" UNPROCESSABLE_ENTITY = "UnprocessableEntity" LOCKED = "Locked" FAILED_DEPENDENCY = "FailedDependency" UPGRADE_REQUIRED = "UpgradeRequired" PRECONDITION_REQUIRED = "PreconditionRequired" TOO_MANY_REQUESTS = "TooManyRequests" REQUEST_HEADER_FIELDS_TOO_LARGE = "RequestHeaderFieldsTooLarge" UNAVAILABLE_FOR_LEGAL_REASONS = "UnavailableForLegalReasons" INTERNAL_SERVER_ERROR = "InternalServerError" NOT_IMPLEMENTED = "NotImplemented" BAD_GATEWAY = "BadGateway" SERVICE_UNAVAILABLE = "ServiceUnavailable" GATEWAY_TIMEOUT = "GatewayTimeout" HTTP_VERSION_NOT_SUPPORTED = "HttpVersionNotSupported" VARIANT_ALSO_NEGOTIATES = "VariantAlsoNegotiates" INSUFFICIENT_STORAGE = "InsufficientStorage" LOOP_DETECTED = "LoopDetected" NOT_EXTENDED = "NotExtended" NETWORK_AUTHENTICATION_REQUIRED = "NetworkAuthenticationRequired" class IdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MANAGED = "Managed" SERVICE_PRINCIPAL = "ServicePrincipal" AML_TOKEN = "AMLToken" class InputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "default" UIONLY_HIDDEN = "uionly_hidden" class IntellectualPropertyAccessMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): READ_ONLY = "ReadOnly" READ_WRITE = "ReadWrite" class JobInputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DATASET = "Dataset" URI = "Uri" LITERAL = "Literal" URI_FILE = "UriFile" URI_FOLDER = "UriFolder" ML_TABLE = "MLTable" CUSTOM_MODEL = "CustomModel" ML_FLOW_MODEL = "MLFlowModel" TRITON_MODEL = "TritonModel" class JobLimitsType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): COMMAND = "Command" SWEEP = "Sweep" class JobOutputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): URI = "Uri" DATASET = "Dataset" URI_FILE = "UriFile" URI_FOLDER = "UriFolder" ML_TABLE = "MLTable" CUSTOM_MODEL = "CustomModel" ML_FLOW_MODEL = "MLFlowModel" TRITON_MODEL = "TritonModel" class JobProvisioningState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SUCCEEDED = "Succeeded" FAILED = "Failed" CANCELED = "Canceled" IN_PROGRESS = "InProgress" class JobStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_STARTED = "NotStarted" STARTING = "Starting" PROVISIONING = "Provisioning" PREPARING = "Preparing" QUEUED = "Queued" RUNNING = "Running" FINALIZING = "Finalizing" CANCEL_REQUESTED = "CancelRequested" COMPLETED = "Completed" FAILED = "Failed" CANCELED = "Canceled" NOT_RESPONDING = "NotResponding" PAUSED = "Paused" UNKNOWN = "Unknown" SCHEDULED = "Scheduled" class JobType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): COMMAND = "Command" SWEEP = "Sweep" LABELING = "Labeling" PIPELINE = "Pipeline" DATA = "Data" AUTO_ML = "AutoML" SPARK = "Spark" BASE = "Base" class KeyType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PRIMARY = "Primary" SECONDARY = "Secondary" class ListViewType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ACTIVE_ONLY = "ActiveOnly" ARCHIVED_ONLY = "ArchivedOnly" ALL = "All" class LogLevel(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): TRACE = "Trace" DEBUG = "Debug" INFORMATION = "Information" WARNING = "Warning" ERROR = "Error" CRITICAL = "Critical" NONE = "None" class LogVerbosity(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_SET = "NotSet" DEBUG = "Debug" INFO = "Info" WARNING = "Warning" ERROR = "Error" CRITICAL = "Critical" class LongRunningUpdateType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ENABLE_MODULE = "EnableModule" DISABLE_MODULE = "DisableModule" UPDATE_DISPLAY_NAME = "UpdateDisplayName" UPDATE_DESCRIPTION = "UpdateDescription" UPDATE_TAGS = "UpdateTags" class ManagedServiceIdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SYSTEM_ASSIGNED = "SystemAssigned" USER_ASSIGNED = "UserAssigned" SYSTEM_ASSIGNED_USER_ASSIGNED = "SystemAssignedUserAssigned" NONE = "None" class MetricValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INT = "Int" DOUBLE = "Double" STRING = "String" BOOL = "Bool" ARTIFACT = "Artifact" HISTOGRAM = "Histogram" MALFORMED = "Malformed" class MfeInternalIdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MANAGED = "Managed" AML_TOKEN = "AMLToken" USER_IDENTITY = "UserIdentity" class MfeInternalMLFlowAutologgerState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ENABLED = "Enabled" DISABLED = "Disabled" class MfeInternalScheduleStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ENABLED = "Enabled" DISABLED = "Disabled" class MLFlowAutologgerState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ENABLED = "Enabled" DISABLED = "Disabled" class ModuleDtoFields(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFINITION = "Definition" YAML_STR = "YamlStr" REGISTRATION_CONTEXT = "RegistrationContext" RUN_SETTING_PARAMETERS = "RunSettingParameters" RUN_DEFINITION = "RunDefinition" ALL = "All" DEFAULT = "Default" BASIC = "Basic" MINIMAL = "Minimal" class ModuleInfoFromYamlStatusEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NEW_MODULE = "NewModule" NEW_VERSION = "NewVersion" CONFLICT = "Conflict" PARSE_ERROR = "ParseError" PROCESS_REQUEST_ERROR = "ProcessRequestError" class ModuleRunSettingTypes(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ALL = "All" RELEASED = "Released" DEFAULT = "Default" TESTING = "Testing" LEGACY = "Legacy" PREVIEW = "Preview" UX_FULL = "UxFull" INTEGRATION = "Integration" UX_INTEGRATION = "UxIntegration" FULL = "Full" class ModuleScope(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ALL = "All" GLOBAL_ENUM = "Global" WORKSPACE = "Workspace" ANONYMOUS = "Anonymous" STEP = "Step" DRAFT = "Draft" FEED = "Feed" REGISTRY = "Registry" SYSTEM_AUTO_CREATED = "SystemAutoCreated" class ModuleSourceType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNKNOWN = "Unknown" LOCAL = "Local" GITHUB_FILE = "GithubFile" GITHUB_FOLDER = "GithubFolder" DEVOPS_ARTIFACTS_ZIP = "DevopsArtifactsZip" SERIALIZED_MODULE_INFO = "SerializedModuleInfo" class ModuleType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" BATCH_INFERENCING = "BatchInferencing" class ModuleUpdateOperationType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SET_DEFAULT_VERSION = "SetDefaultVersion" ENABLE_MODULE = "EnableModule" DISABLE_MODULE = "DisableModule" UPDATE_DISPLAY_NAME = "UpdateDisplayName" UPDATE_DESCRIPTION = "UpdateDescription" UPDATE_TAGS = "UpdateTags" class ModuleWorkingMechanism(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NORMAL = "Normal" OUTPUT_TO_DATASET = "OutputToDataset" class NCrossValidationMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class NodeCompositionMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" ONLY_SEQUENTIAL = "OnlySequential" FULL = "Full" class NodesValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ALL = "All" CUSTOM = "Custom" class Orientation(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): HORIZONTAL = "Horizontal" VERTICAL = "Vertical" class OutputMechanism(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UPLOAD = "Upload" MOUNT = "Mount" HDFS = "Hdfs" LINK = "Link" DIRECT = "Direct" class ParameterType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INT = "Int" DOUBLE = "Double" BOOL = "Bool" STRING = "String" UNDEFINED = "Undefined" class ParameterValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LITERAL = "Literal" GRAPH_PARAMETER_NAME = "GraphParameterName" CONCATENATE = "Concatenate" INPUT = "Input" DATA_PATH = "DataPath" DATA_SET_DEFINITION = "DataSetDefinition" class PipelineDraftMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" NORMAL = "Normal" CUSTOM = "Custom" class PipelineRunStatusCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_STARTED = "NotStarted" RUNNING = "Running" FAILED = "Failed" FINISHED = "Finished" CANCELED = "Canceled" QUEUED = "Queued" CANCEL_REQUESTED = "CancelRequested" class PipelineStatusCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_STARTED = "NotStarted" IN_DRAFT = "InDraft" PREPARING = "Preparing" RUNNING = "Running" FAILED = "Failed" FINISHED = "Finished" CANCELED = "Canceled" THROTTLED = "Throttled" UNKNOWN = "Unknown" class PipelineType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): TRAINING_PIPELINE = "TrainingPipeline" REAL_TIME_INFERENCE_PIPELINE = "RealTimeInferencePipeline" BATCH_INFERENCE_PIPELINE = "BatchInferencePipeline" UNKNOWN = "Unknown" class PortAction(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PROMOTE = "Promote" VIEW_IN_DATA_STORE = "ViewInDataStore" VISUALIZE = "Visualize" GET_SCHEMA = "GetSchema" CREATE_INFERENCE_GRAPH = "CreateInferenceGraph" REGISTER_MODEL = "RegisterModel" PROMOTE_AS_TABULAR = "PromoteAsTabular" class PrimaryMetrics(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUC_WEIGHTED = "AUCWeighted" ACCURACY = "Accuracy" NORM_MACRO_RECALL = "NormMacroRecall" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" SPEARMAN_CORRELATION = "SpearmanCorrelation" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" R2_SCORE = "R2Score" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" NORMALIZED_ROOT_MEAN_SQUARED_LOG_ERROR = "NormalizedRootMeanSquaredLogError" MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" IOU = "Iou" class ProvisioningState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNKNOWN = "Unknown" UPDATING = "Updating" CREATING = "Creating" DELETING = "Deleting" ACCEPTED = "Accepted" SUCCEEDED = "Succeeded" FAILED = "Failed" CANCELED = "Canceled" class RealTimeEndpointInternalStepCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ABOUT_TO_DEPLOY = "AboutToDeploy" WAIT_AKS_COMPUTE_READY = "WaitAksComputeReady" REGISTER_MODELS = "RegisterModels" CREATE_SERVICE_FROM_MODELS = "CreateServiceFromModels" UPDATE_SERVICE_FROM_MODELS = "UpdateServiceFromModels" WAIT_SERVICE_CREATING = "WaitServiceCreating" FETCH_SERVICE_RELATED_INFO = "FetchServiceRelatedInfo" TEST_WITH_SAMPLE_DATA = "TestWithSampleData" ABOUT_TO_DELETE = "AboutToDelete" DELETE_DEPLOYMENT = "DeleteDeployment" DELETE_ASSET = "DeleteAsset" DELETE_IMAGE = "DeleteImage" DELETE_MODEL = "DeleteModel" DELETE_SERVICE_RECORD = "DeleteServiceRecord" class RealTimeEndpointOpCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CREATE = "Create" UPDATE = "Update" DELETE = "Delete" class RealTimeEndpointOpStatusCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ONGOING = "Ongoing" SUCCEEDED = "Succeeded" FAILED = "Failed" SUCCEEDED_WITH_WARNING = "SucceededWithWarning" class RecurrenceFrequency(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MINUTE = "Minute" HOUR = "Hour" DAY = "Day" WEEK = "Week" MONTH = "Month" class RunDisplayNameGenerationType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO_APPEND = "AutoAppend" USER_PROVIDED_MACRO = "UserProvidedMacro" class RunSettingParameterType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNDEFINED = "Undefined" INT = "Int" DOUBLE = "Double" BOOL = "Bool" STRING = "String" JSON_STRING = "JsonString" YAML_STRING = "YamlString" STRING_LIST = "StringList" class RunSettingUIWidgetTypeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "Default" COMPUTE_SELECTION = "ComputeSelection" JSON_EDITOR = "JsonEditor" MODE = "Mode" SEARCH_SPACE_PARAMETER = "SearchSpaceParameter" SECTION_TOGGLE = "SectionToggle" YAML_EDITOR = "YamlEditor" ENABLE_RUNTIME_SWEEP = "EnableRuntimeSweep" DATA_STORE_SELECTION = "DataStoreSelection" CHECKBOX = "Checkbox" MULTIPLE_SELECTION = "MultipleSelection" HYPERPARAMETER_CONFIGURATION = "HyperparameterConfiguration" JSON_TEXT_BOX = "JsonTextBox" CONNECTION = "Connection" STATIC = "Static" class RunStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_STARTED = "NotStarted" UNAPPROVED = "Unapproved" PAUSING = "Pausing" PAUSED = "Paused" STARTING = "Starting" PREPARING = "Preparing" QUEUED = "Queued" RUNNING = "Running" FINALIZING = "Finalizing" CANCEL_REQUESTED = "CancelRequested" COMPLETED = "Completed" FAILED = "Failed" CANCELED = "Canceled" class RuntimeStatusEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UNAVAILABLE = "Unavailable" FAILED = "Failed" NOT_EXIST = "NotExist" STARTING = "Starting" STOPPING = "Stopping" class RuntimeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MANAGED_ONLINE_ENDPOINT = "ManagedOnlineEndpoint" COMPUTE_INSTANCE = "ComputeInstance" TRAINING_SESSION = "TrainingSession" class RunType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): HTTP = "HTTP" SDK = "SDK" SCHEDULE = "Schedule" PORTAL = "Portal" class SamplingAlgorithmType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): RANDOM = "Random" GRID = "Grid" BAYESIAN = "Bayesian" class ScheduleProvisioningStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CREATING = "Creating" UPDATING = "Updating" DELETING = "Deleting" SUCCEEDED = "Succeeded" FAILED = "Failed" CANCELED = "Canceled" class ScheduleStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ENABLED = "Enabled" DISABLED = "Disabled" class ScheduleType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CRON = "Cron" RECURRENCE = "Recurrence" class ScopeType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): GLOBAL_ENUM = "Global" TENANT = "Tenant" SUBSCRIPTION = "Subscription" RESOURCE_GROUP = "ResourceGroup" WORKSPACE = "Workspace" class ScriptType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): PYTHON = "Python" NOTEBOOK = "Notebook" class SeasonalityMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class Section(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): GALLERY = "Gallery" TEMPLATE = "Template" class SessionSetupModeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CLIENT_WAIT = "ClientWait" SYSTEM_WAIT = "SystemWait" class SetupFlowSessionAction(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INSTALL = "Install" RESET = "Reset" UPDATE = "Update" DELETE = "Delete" class SeverityLevel(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CRITICAL = "Critical" ERROR = "Error" WARNING = "Warning" INFO = "Info" class ShortSeriesHandlingConfiguration(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" PAD = "Pad" DROP = "Drop" class StackMetaLearnerType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" LOGISTIC_REGRESSION = "LogisticRegression" LOGISTIC_REGRESSION_CV = "LogisticRegressionCV" LIGHT_GBM_CLASSIFIER = "LightGBMClassifier" ELASTIC_NET = "ElasticNet" ELASTIC_NET_CV = "ElasticNetCV" LIGHT_GBM_REGRESSOR = "LightGBMRegressor" LINEAR_REGRESSION = "LinearRegression" class StorageAuthType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MSI = "MSI" CONNECTION_STRING = "ConnectionString" SAS = "SAS" class StoredProcedureParameterType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): STRING = "String" INT = "Int" DECIMAL = "Decimal" GUID = "Guid" BOOLEAN = "Boolean" DATE = "Date" class SuccessfulCommandReturnCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): ZERO = "Zero" ZERO_OR_GREATER = "ZeroOrGreater" class TabularTrainingMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DISTRIBUTED = "Distributed" NON_DISTRIBUTED = "NonDistributed" AUTO = "Auto" class TargetAggregationFunction(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SUM = "Sum" MAX = "Max" MIN = "Min" MEAN = "Mean" class TargetLagsMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class TargetRollingWindowSizeMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): AUTO = "Auto" CUSTOM = "Custom" class TaskCreationOptions(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" PREFER_FAIRNESS = "PreferFairness" LONG_RUNNING = "LongRunning" ATTACHED_TO_PARENT = "AttachedToParent" DENY_CHILD_ATTACH = "DenyChildAttach" HIDE_SCHEDULER = "HideScheduler" RUN_CONTINUATIONS_ASYNCHRONOUSLY = "RunContinuationsAsynchronously" class TaskStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CREATED = "Created" WAITING_FOR_ACTIVATION = "WaitingForActivation" WAITING_TO_RUN = "WaitingToRun" RUNNING = "Running" WAITING_FOR_CHILDREN_TO_COMPLETE = "WaitingForChildrenToComplete" RAN_TO_COMPLETION = "RanToCompletion" CANCELED = "Canceled" FAULTED = "Faulted" class TaskStatusCode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NOT_STARTED = "NotStarted" QUEUED = "Queued" RUNNING = "Running" FAILED = "Failed" FINISHED = "Finished" CANCELED = "Canceled" PARTIALLY_EXECUTED = "PartiallyExecuted" BYPASSED = "Bypassed" class TaskType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CLASSIFICATION = "Classification" REGRESSION = "Regression" FORECASTING = "Forecasting" IMAGE_CLASSIFICATION = "ImageClassification" IMAGE_CLASSIFICATION_MULTILABEL = "ImageClassificationMultilabel" IMAGE_OBJECT_DETECTION = "ImageObjectDetection" IMAGE_INSTANCE_SEGMENTATION = "ImageInstanceSegmentation" TEXT_CLASSIFICATION = "TextClassification" TEXT_MULTI_LABELING = "TextMultiLabeling" TEXT_NER = "TextNER" TEXT_CLASSIFICATION_MULTILABEL = "TextClassificationMultilabel" class ToolFuncCallScenario(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): GENERATED_BY = "generated_by" REVERSE_GENERATED_BY = "reverse_generated_by" DYNAMIC_LIST = "dynamic_list" class ToolState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): STABLE = "Stable" PREVIEW = "Preview" DEPRECATED = "Deprecated" class ToolType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): LLM = "llm" PYTHON = "python" ACTION = "action" PROMPT = "prompt" CUSTOM_LLM = "custom_llm" CSHARP = "csharp" class TrainingOutputType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): METRICS = "Metrics" MODEL = "Model" class TriggerOperationType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): CREATE = "Create" UPDATE = "Update" DELETE = "Delete" CREATE_OR_UPDATE = "CreateOrUpdate" class TriggerType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): RECURRENCE = "Recurrence" CRON = "Cron" class UIInputDataDeliveryMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): READ_ONLY_MOUNT = "Read-only mount" READ_WRITE_MOUNT = "Read-write mount" DOWNLOAD = "Download" DIRECT = "Direct" EVALUATE_MOUNT = "Evaluate mount" EVALUATE_DOWNLOAD = "Evaluate download" HDFS = "Hdfs" class UIScriptLanguageEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" PYTHON = "Python" R = "R" JSON = "Json" SQL = "Sql" class UIWidgetTypeEnum(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEFAULT = "Default" MODE = "Mode" COLUMN_PICKER = "ColumnPicker" CREDENTIAL = "Credential" SCRIPT = "Script" COMPUTE_SELECTION = "ComputeSelection" JSON_EDITOR = "JsonEditor" SEARCH_SPACE_PARAMETER = "SearchSpaceParameter" SECTION_TOGGLE = "SectionToggle" YAML_EDITOR = "YamlEditor" ENABLE_RUNTIME_SWEEP = "EnableRuntimeSweep" DATA_STORE_SELECTION = "DataStoreSelection" INSTANCE_TYPE_SELECTION = "InstanceTypeSelection" CONNECTION_SELECTION = "ConnectionSelection" PROMPT_FLOW_CONNECTION_SELECTION = "PromptFlowConnectionSelection" AZURE_OPEN_AI_DEPLOYMENT_NAME_SELECTION = "AzureOpenAIDeploymentNameSelection" class UploadState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): UPLOADING = "Uploading" COMPLETED = "Completed" CANCELED = "Canceled" FAILED = "Failed" class UserType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): USER = "User" APPLICATION = "Application" MANAGED_IDENTITY = "ManagedIdentity" KEY = "Key" class UseStl(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SEASON = "Season" SEASON_TREND = "SeasonTrend" class ValidationStatus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): SUCCEEDED = "Succeeded" FAILED = "Failed" class ValueType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): INT = "int" DOUBLE = "double" BOOL = "bool" STRING = "string" SECRET = "secret" PROMPT_TEMPLATE = "prompt_template" OBJECT = "object" LIST = "list" BING_CONNECTION = "BingConnection" OPEN_AI_CONNECTION = "OpenAIConnection" AZURE_OPEN_AI_CONNECTION = "AzureOpenAIConnection" AZURE_CONTENT_MODERATOR_CONNECTION = "AzureContentModeratorConnection" CUSTOM_CONNECTION = "CustomConnection" AZURE_CONTENT_SAFETY_CONNECTION = "AzureContentSafetyConnection" SERP_CONNECTION = "SerpConnection" COGNITIVE_SEARCH_CONNECTION = "CognitiveSearchConnection" SUBSTRATE_LLM_CONNECTION = "SubstrateLLMConnection" PINECONE_CONNECTION = "PineconeConnection" QDRANT_CONNECTION = "QdrantConnection" WEAVIATE_CONNECTION = "WeaviateConnection" FUNCTION_LIST = "function_list" FUNCTION_STR = "function_str" FORM_RECOGNIZER_CONNECTION = "FormRecognizerConnection" FILE_PATH = "file_path" IMAGE = "image" class VmPriority(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): DEDICATED = "Dedicated" LOWPRIORITY = "Lowpriority" class WebServiceState(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): TRANSITIONING = "Transitioning" HEALTHY = "Healthy" UNHEALTHY = "Unhealthy" FAILED = "Failed" UNSCHEDULABLE = "Unschedulable" class Weekday(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MONDAY = "Monday" TUESDAY = "Tuesday" WEDNESDAY = "Wednesday" THURSDAY = "Thursday" FRIDAY = "Friday" SATURDAY = "Saturday" SUNDAY = "Sunday" class WeekDays(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): MONDAY = "Monday" TUESDAY = "Tuesday" WEDNESDAY = "Wednesday" THURSDAY = "Thursday" FRIDAY = "Friday" SATURDAY = "Saturday" SUNDAY = "Sunday" class YarnDeployMode(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): NONE = "None" CLIENT = "Client" CLUSTER = "Cluster"
promptflow/src/promptflow/promptflow/azure/_restclient/flow/models/_azure_machine_learning_designer_service_client_enums.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/models/_azure_machine_learning_designer_service_client_enums.py", "repo_id": "promptflow", "token_count": 22758 }
49
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """service_caller.py, module for interacting with the AzureML service.""" import json import os import sys import time import uuid from functools import wraps, cached_property import pydash from azure.core.exceptions import HttpResponseError, ResourceExistsError from azure.core.pipeline.policies import RetryPolicy from promptflow._sdk._telemetry import request_id_context from promptflow._sdk._telemetry import TelemetryMixin from promptflow._utils.logger_utils import LoggerFactory from promptflow.azure._constants._flow import AUTOMATIC_RUNTIME, SESSION_CREATION_TIMEOUT_ENV_VAR from promptflow.azure._restclient.flow import AzureMachineLearningDesignerServiceClient from promptflow.azure._utils.gerneral import get_authorization, get_arm_token, get_aml_token from promptflow.exceptions import UserErrorException, PromptflowException, SystemErrorException logger = LoggerFactory.get_logger(__name__) class FlowRequestException(SystemErrorException): """FlowRequestException.""" def __init__(self, message, **kwargs): super().__init__(message, **kwargs) class RequestTelemetryMixin(TelemetryMixin): def __init__(self): super().__init__() self._refresh_request_id_for_telemetry() self._from_cli = False def _get_telemetry_values(self, *args, **kwargs): return {"request_id": self._request_id, "from_cli": self._from_cli} def _set_from_cli_for_telemetry(self): self._from_cli = True def _refresh_request_id_for_telemetry(self): # refresh request id from current request id context self._request_id = request_id_context.get() or str(uuid.uuid4()) def _request_wrapper(): """Wrapper for request. Will refresh request id and pretty print exception.""" def exception_wrapper(func): @wraps(func) def wrapper(self, *args, **kwargs): if not isinstance(self, RequestTelemetryMixin): raise PromptflowException(f"Wrapped function is not RequestTelemetryMixin, got {type(self)}") # refresh request before each request self._refresh_request_id_for_telemetry() try: return func(self, *args, **kwargs) except HttpResponseError as e: raise FlowRequestException( f"Calling {func.__name__} failed with request id: {self._request_id} \n" f"Status code: {e.status_code} \n" f"Reason: {e.reason} \n" f"Error message: {e.message} \n" ) return wrapper return exception_wrapper class FlowServiceCaller(RequestTelemetryMixin): """FlowServiceCaller. :param workspace: workspace :type workspace: Workspace :param base_url: base url :type base_url: Service URL """ # The default namespace placeholder is used when namespace is None for get_module API. DEFAULT_COMPONENT_NAMESPACE_PLACEHOLDER = "-" DEFAULT_MODULE_WORKING_MECHANISM = "OutputToDataset" DEFAULT_DATATYPE_MECHANISM = "RegisterBuildinDataTypeOnly" FLOW_CLUSTER_ADDRESS = "FLOW_CLUSTER_ADDRESS" WORKSPACE_INDEPENDENT_ENDPOINT_ADDRESS = "WORKSPACE_INDEPENDENT_ENDPOINT_ADDRESS" DEFAULT_BASE_URL = "https://{}.api.azureml.ms" MASTER_BASE_API = "https://master.api.azureml-test.ms" DEFAULT_BASE_REGION = "westus2" AML_USE_ARM_TOKEN = "AML_USE_ARM_TOKEN" def __init__(self, workspace, credential, operation_scope, base_url=None, region=None, **kwargs): """Initializes DesignerServiceCaller.""" if "get_instance" != sys._getframe().f_back.f_code.co_name: raise UserErrorException( "Please use `_FlowServiceCallerFactory.get_instance()` to get service caller " "instead of creating a new one." ) super().__init__() # self._service_context = workspace.service_context if base_url is None: # handle vnet scenario, it's discovery url will have workspace id after discovery base_url = workspace.discovery_url.split("discovery")[0] # for dev test, change base url with environment variable base_url = os.environ.get(self.FLOW_CLUSTER_ADDRESS, default=base_url) self._workspace = workspace self._operation_scope = operation_scope self._service_endpoint = base_url self._credential = credential retry_policy = RetryPolicy() # stop retry 500 since it will cause 409 for run creation scenario retry_policy._retry_on_status_codes.remove(500) self.caller = AzureMachineLearningDesignerServiceClient(base_url=base_url, retry_policy=retry_policy, **kwargs) def _get_headers(self): custom_header = { "Authorization": get_authorization(credential=self._credential), "x-ms-client-request-id": self._request_id, } return custom_header def _set_headers_with_user_aml_token(self, headers): aml_token = get_aml_token(credential=self._credential) headers["aml-user-token"] = aml_token def _get_user_identity_info(self): import jwt token = get_arm_token(credential=self._credential) decoded_token = jwt.decode(token, options={"verify_signature": False}) user_object_id, user_tenant_id = decoded_token["oid"], decoded_token["tid"] return user_object_id, user_tenant_id @cached_property def _common_azure_url_pattern(self): operation_scope = self._operation_scope pattern = ( f"/subscriptions/{operation_scope.subscription_id}" f"/resourceGroups/{operation_scope.resource_group_name}" f"/providers/Microsoft.MachineLearningServices" f"/workspaces/{operation_scope.workspace_name}" ) return pattern @_request_wrapper() def create_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id=None, # type: Optional[str] body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs, # type: Any ): headers = self._get_headers() return self.caller.flows.create_flow( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, experiment_id=experiment_id, body=body, headers=headers, **kwargs, ) @_request_wrapper() def create_component_from_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.LoadFlowAsComponentRequest"] **kwargs, # type: Any ): headers = self._get_headers() try: return self.caller.flows.load_as_component( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, body=body, headers=headers, **kwargs, ) except ResourceExistsError: return ( f"/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}" f"/providers/Microsoft.MachineLearningServices/workspaces/{workspace_name}" f"/components/{body.component_name}/versions/{body.component_version}" ) @_request_wrapper() def list_flows( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id=None, # type: Optional[str] owned_only=None, # type: Optional[bool] flow_type=None, # type: Optional[Union[str, "_models.FlowType"]] list_view_type=None, # type: Optional[Union[str, "_models.ListViewType"]] **kwargs, # type: Any ): headers = self._get_headers() return self.caller.flows.list_flows( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, experiment_id=experiment_id, owned_only=owned_only, flow_type=flow_type, list_view_type=list_view_type, headers=headers, **kwargs, ) @_request_wrapper() def submit_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id, # type: str endpoint_name=None, # type: Optional[str] body=None, # type: Optional["_models.SubmitFlowRequest"] **kwargs, # type: Any ): headers = self._get_headers() return self.caller.flows.submit_flow( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, experiment_id=experiment_id, endpoint_name=endpoint_name, body=body, headers=headers, **kwargs, ) @_request_wrapper() def get_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str **kwargs, # type: Any ): headers = self._get_headers() return self.caller.flows.get_flow( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, experiment_id=experiment_id, flow_id=flow_id, headers=headers, **kwargs, ) @_request_wrapper() def get_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs, # type: Any ): """Get flow run.""" headers = self._get_headers() return self.caller.bulk_runs.get_flow_run_info( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, headers=headers, **kwargs, ) @_request_wrapper() def create_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str body=None, # type: Optional["_models.CreateOrUpdateConnectionRequest"] **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.create_connection( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, body=body, headers=headers, **kwargs, ) @_request_wrapper() def update_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str body=None, # type: Optional["_models.CreateOrUpdateConnectionRequestDto"] **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.update_connection( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, body=body, headers=headers, **kwargs, ) @_request_wrapper() def get_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.get_connection( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, headers=headers, **kwargs, ) @_request_wrapper() def delete_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.delete_connection( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, headers=headers, **kwargs, ) @_request_wrapper() def list_connections( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.list_connections( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, headers=headers, **kwargs, ) @_request_wrapper() def list_connection_specs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs, # type: Any ): headers = self._get_headers() return self.caller.connections.list_connection_specs( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, headers=headers, **kwargs, ) @_request_wrapper() def submit_bulk_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.SubmitBulkRunRequest"] **kwargs, # type: Any ): """submit_bulk_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.SubmitBulkRunRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ headers = self._get_headers() # pass user aml token to flow run submission self._set_headers_with_user_aml_token(headers) return self.caller.bulk_runs.submit_bulk_run( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, headers=headers, body=body, **kwargs, ) @_request_wrapper() def create_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str body, # type: Optional["_models.CreateFlowSessionRequest"] **kwargs, # type: Any ): from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from promptflow.azure._restclient.flow.operations._flow_sessions_operations import ( build_create_flow_session_request, _convert_request, _models, ) from promptflow.azure._constants._flow import SESSION_CREATION_TIMEOUT_SECONDS from promptflow.azure._restclient.flow.models import SetupFlowSessionAction headers = self._get_headers() # pass user aml token to session create so user don't need to do authentication again in CI self._set_headers_with_user_aml_token(headers) # did not call self.caller.flow_sessions.create_flow_session because it does not support return headers cls = kwargs.pop("cls", None) # type: ClsType[Any] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] _json = self.caller.flow_sessions._serialize.body(body, "CreateFlowSessionRequest") request = build_create_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, content_type=content_type, json=_json, template_url=self.caller.flow_sessions.create_flow_session.metadata["url"], headers=headers, ) request = _convert_request(request) request.url = self.caller.flow_sessions._client.format_url(request.url) pipeline_response = self.caller.flow_sessions._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self.caller.flow_sessions._deserialize.failsafe_deserialize( _models.ErrorResponse, pipeline_response ) raise HttpResponseError(response=response, model=error) if response.status_code == 200: return action = body.action or SetupFlowSessionAction.INSTALL.value if action == SetupFlowSessionAction.INSTALL.value: action = "creation" else: action = "reset" logger.info(f"Start polling until session {action} is completed...") # start polling status here. if "azure-asyncoperation" not in response.headers: raise FlowRequestException( "No polling url found in response headers. " f"Request id: {headers['x-ms-client-request-id']}. " f"Response headers: {response.headers}." ) polling_url = response.headers["azure-asyncoperation"] time_run = 0 sleep_period = 5 status = None timeout_seconds = SESSION_CREATION_TIMEOUT_SECONDS # polling timeout, if user set SESSION_CREATION_TIMEOUT_SECONDS in environment var, use it if os.environ.get(SESSION_CREATION_TIMEOUT_ENV_VAR): try: timeout_seconds = float(os.environ.get(SESSION_CREATION_TIMEOUT_ENV_VAR)) except ValueError: raise UserErrorException( "Environment variable {} with value {} set but failed to parse. " "Please reset the value to a number.".format( SESSION_CREATION_TIMEOUT_ENV_VAR, os.environ.get(SESSION_CREATION_TIMEOUT_ENV_VAR) ) ) # InProgress is only known non-terminal status for now. while status in [None, "InProgress"]: if time_run + sleep_period > timeout_seconds: message = ( f"Polling timeout for session {session_id} {action} " f"for {AUTOMATIC_RUNTIME} after {timeout_seconds} seconds.\n" f"To proceed the {action} for {AUTOMATIC_RUNTIME}, you can retry using the same flow, " "and we will continue polling status of previous session. \n" ) raise Exception(message) time_run += sleep_period time.sleep(sleep_period) response = self.poll_operation_status(url=polling_url, **kwargs) status = response["status"] logger.debug(f"Current polling status: {status}") if time_run % 30 == 0: # print the message every 30 seconds to avoid users feeling stuck during the operation print(f"Waiting for session {action}, current status: {status}") else: logger.debug(f"Waiting for session {action}, current status: {status}") if status == "Succeeded": error_msg = pydash.get(response, "error.message", None) if error_msg: logger.warning( f"Session {action} finished with status {status}. " f"But there are warnings when installing the packages: {error_msg}." ) else: logger.info(f"Session {action} finished with status {status}.") else: # refine response error message try: response["error"]["message"] = json.loads(response["error"]["message"]) except Exception: pass raise FlowRequestException( f"Session {action} failed for {session_id}. \n" f"Session {action} status: {status}. \n" f"Request id: {headers['x-ms-client-request-id']}. \n" f"{json.dumps(response, indent=2)}." ) @_request_wrapper() def poll_operation_status( self, url, **kwargs # type: Any ): from azure.core.rest import HttpRequest from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from promptflow.azure._restclient.flow.operations._flow_sessions_operations import _models headers = self._get_headers() request = HttpRequest(method="GET", url=url, headers=headers, **kwargs) pipeline_response = self.caller.flow_sessions._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self.caller.flow_sessions._deserialize.failsafe_deserialize( _models.ErrorResponse, pipeline_response ) raise HttpResponseError(response=response, model=error) deserialized = self.caller.flow_sessions._deserialize("object", pipeline_response) if "status" not in deserialized: raise FlowRequestException( f"Status not found in response. Request id: {headers['x-ms-client-request-id']}. " f"Response headers: {response.headers}." ) return deserialized @_request_wrapper() def get_child_runs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str index=None, # type: Optional[int] start_index=None, # type: Optional[int] end_index=None, # type: Optional[int] **kwargs, # type: Any ): """Get child runs of a flow run.""" headers = self._get_headers() return self.caller.bulk_runs.get_flow_child_runs( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, index=index, start_index=start_index, end_index=end_index, headers=headers, **kwargs, ) @_request_wrapper() def cancel_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs, # type: Any ): """Cancel a flow run.""" headers = self._get_headers() return self.caller.bulk_runs.cancel_flow_run( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, headers=headers, **kwargs, )
promptflow/src/promptflow/promptflow/azure/_restclient/flow_service_caller.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow_service_caller.py", "repo_id": "promptflow", "token_count": 11276 }
50
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json # will be changed to flow to support parallelism type: command outputs: output: # PRS team will always aggregate all the outputs into a single file under this folder for now type: uri_folder
promptflow/src/promptflow/promptflow/azure/resources/component_spec_template.yaml/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/resources/component_spec_template.yaml", "repo_id": "promptflow", "token_count": 85 }
51
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from enum import Enum class RunMode(str, Enum): """An enumeration of possible run modes.""" Test = "Test" SingleNode = "SingleNode" Batch = "Batch" @classmethod def parse(cls, value: str): """Parse a string to a RunMode enum value. :param value: The string to parse. :type value: str :return: The corresponding RunMode enum value. :rtype: ~promptflow.contracts.run_mode.RunMode :raises ValueError: If the value is not a valid string. """ if not isinstance(value, str): raise ValueError(f"Invalid value type to parse: {type(value)}") if value == "SingleNode": return RunMode.SingleNode elif value == "Batch": return RunMode.Batch else: return RunMode.Test
promptflow/src/promptflow/promptflow/contracts/run_mode.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/contracts/run_mode.py", "repo_id": "promptflow", "token_count": 374 }
52
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import dataclass from typing import Any, Dict, Mapping from promptflow.contracts.run_info import FlowRunInfo, RunInfo @dataclass class LineResult: """The result of a line process.""" output: Mapping[str, Any] # The output of the line. # The node output values to be used as aggregation inputs, if no aggregation node, it will be empty. aggregation_inputs: Mapping[str, Any] run_info: FlowRunInfo # The run info of the line. node_run_infos: Mapping[str, RunInfo] # The run info of the nodes in the line. @staticmethod def deserialize(data: dict) -> "LineResult": """Deserialize the LineResult from a dict.""" return LineResult( output=data.get("output"), aggregation_inputs=data.get("aggregation_inputs", {}), run_info=FlowRunInfo.deserialize(data.get("run_info")), node_run_infos={k: RunInfo.deserialize(v) for k, v in data.get("node_run_infos", {}).items()}, ) @dataclass class AggregationResult: """The result when running aggregation nodes in the flow.""" output: Mapping[str, Any] # The output of the aggregation nodes in the flow. metrics: Dict[str, Any] # The metrics generated by the aggregation. node_run_infos: Mapping[str, RunInfo] # The run info of the aggregation nodes. @staticmethod def deserialize(data: dict) -> "AggregationResult": """Deserialize the AggregationResult from a dict.""" return AggregationResult( output=data.get("output", None), metrics=data.get("metrics", None), node_run_infos={k: RunInfo.deserialize(v) for k, v in data.get("node_run_infos", {}).items()}, )
promptflow/src/promptflow/promptflow/executor/_result.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_result.py", "repo_id": "promptflow", "token_count": 669 }
53
from pathlib import Path PROMOTFLOW_ROOT = Path(__file__).parent.parent RUNTIME_TEST_CONFIGS_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/runtime") EXECUTOR_REQUESTS_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/executor_api_requests") MODEL_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/e2e_samples") CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() ENV_FILE = (PROMOTFLOW_ROOT / ".env").resolve().absolute().as_posix() # below constants are used for pfazure and global config tests DEFAULT_SUBSCRIPTION_ID = "96aede12-2f73-41cb-b983-6d11a904839b" DEFAULT_RESOURCE_GROUP_NAME = "promptflow" DEFAULT_WORKSPACE_NAME = "promptflow-eastus2euap" DEFAULT_RUNTIME_NAME = "test-runtime-ci" DEFAULT_REGISTRY_NAME = "promptflow-preview"
promptflow/src/promptflow/tests/_constants.py/0
{ "file_path": "promptflow/src/promptflow/tests/_constants.py", "repo_id": "promptflow", "token_count": 322 }
54
from pathlib import Path from tempfile import mkdtemp import pytest from promptflow.batch import BatchEngine from promptflow.batch._result import BatchResult from ..utils import get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestLangchain: @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ("flow_with_langchain_traces", {"question": "${data.question}"}), ("openai_chat_api_flow", {"question": "${data.question}", "chat_history": "${data.chat_history}"}), ("openai_completion_api_flow", {"prompt": "${data.prompt}"}), ], ) def test_batch_with_langchain(self, flow_folder, inputs_mapping, dev_connections): batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) input_dirs = {"data": get_flow_inputs_file(flow_folder)} output_dir = Path(mkdtemp()) batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert isinstance(batch_results, BatchResult) assert batch_results.total_lines == batch_results.completed_lines assert batch_results.system_metrics.total_tokens > 0
promptflow/src/promptflow/tests/executor/e2etests/test_langchain.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_langchain.py", "repo_id": "promptflow", "token_count": 530 }
55
inputs: {} outputs: {} nodes: - name: tool_with_conn type: python source: type: package tool: tool_with_connection inputs: conn: test_conn
promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/flow.dag.yaml", "repo_id": "promptflow", "token_count": 63 }
56
import inspect import pytest from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.tracer import Tracer, _create_trace_from_function_call, _traced, trace from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.trace import Trace, TraceType def generator(): for i in range(3): yield i @pytest.mark.unittest class TestTracer: def test_end_tracing(self): # Activate the tracer in the current context tracer = Tracer("test_run_id") tracer._activate_in_context() # Assert that there is an active tracer instance assert Tracer.active_instance() is tracer # End tracing and get the traces as a JSON string traces = Tracer.end_tracing() # Assert that the traces is a list assert isinstance(traces, list) # Assert that there is no active tracer instance after ending tracing assert Tracer.active_instance() is None # Test the raise_ex argument of the end_tracing method with pytest.raises(Exception): # Try to end tracing again with raise_ex=True Tracer.end_tracing(raise_ex=True) # Try to end tracing again with raise_ex=False traces = Tracer.end_tracing(raise_ex=False) # Assert that the traces are empty assert not traces def test_start_tracing(self): # Assert that there is no active tracer instance before starting tracing assert Tracer.active_instance() is None # Start tracing with a mock run_id Tracer.start_tracing("test_run_id") # Assert that there is an active tracer instance after starting tracing assert Tracer.active_instance() is not None # Assert that the active tracer instance has the correct run_id assert Tracer.active_instance()._run_id == "test_run_id" Tracer.end_tracing() def test_push_pop(self, caplog): # test the push method with a single trace Tracer.start_tracing("test_run_id") tracer = Tracer.active_instance() trace1 = Trace("test1", inputs=[1, 2, 3], type=TraceType.TOOL) trace2 = Trace("test2", inputs=[4, 5, 6], type=TraceType.TOOL) Tracer.push(trace1) assert tracer._traces == [trace1] assert tracer._id_to_trace == {trace1.id: trace1} # test the push method with a nested trace Tracer.push(trace2) assert tracer._traces == [trace1] # check if the tracer still has only the first trace in its _traces list # check if the tracer has both traces in its trace dict assert tracer._id_to_trace == {trace1.id: trace1, trace2.id: trace2} assert trace1.children == [trace2] # check if the first trace has the second trace as its child # test the pop method with generator output tool_output = generator() error1 = ValueError("something went wrong") assert tracer._get_current_trace() is trace2 output = Tracer.pop(output=tool_output, error=error1) # check output iterator for i in range(3): assert next(output) == i assert isinstance(trace2.output, GeneratorProxy) assert trace2.error == { "message": str(error1), "type": type(error1).__qualname__, } assert tracer._get_current_trace() is trace1 # test the pop method with no arguments output = Tracer.pop() assert tracer._get_current_trace() is None assert trace1.output is None assert output is None Tracer.end_tracing() # test the push method with no active tracer Tracer.push(trace1) # assert that the warning message is logged assert "Try to push trace but no active tracer in current context." in caplog.text def test_unserializable_obj_to_serializable(self): # assert that the function returns a str object for unserializable objects assert Tracer.to_serializable(generator) == str(generator) @pytest.mark.parametrize("obj", [({"name": "Alice", "age": 25}), ([1, 2, 3]), (GeneratorProxy(generator())), (42)]) def test_to_serializable(self, obj): assert Tracer.to_serializable(obj) == obj def func_with_no_parameters(): pass def func_with_args_and_kwargs(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) async def func_with_args_and_kwargs_async(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) def func_with_connection_parameter(a: int, conn: AzureOpenAIConnection): _ = (a, conn) class MyClass: def my_method(self, a: int): _ = a @pytest.mark.unittest class TestCreateTraceFromFunctionCall: """This class tests the `_create_trace_from_function_call` function.""" def test_basic_fields_are_filled_and_others_are_not(self): trace = _create_trace_from_function_call(func_with_no_parameters) # These fields should be filled in this method call. assert trace.name == "func_with_no_parameters" assert trace.type == TraceType.FUNCTION assert trace.inputs == {} # start_time should be a timestamp, which is a float value currently. assert isinstance(trace.start_time, float) # These should be left empty in this method call. # They will be filled by the tracer later. assert trace.output is None assert trace.end_time is None assert trace.children == [] assert trace.error is None def test_basic_fields_are_filled_for_async_functions(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs_async, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.name == "func_with_args_and_kwargs_async" assert trace.type == TraceType.FUNCTION assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_trace_name_should_contain_class_name_for_class_methods(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[obj, 1]) assert trace.name == "MyClass.my_method" def test_trace_type_can_be_set_correctly(self): trace = _create_trace_from_function_call(func_with_no_parameters, trace_type=TraceType.TOOL) assert trace.type == TraceType.TOOL def test_args_and_kwargs_are_filled_correctly(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_args_called_with_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1], kwargs={"arg2": 2, "kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg2": 4} def test_kwargs_called_without_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1, 2, 3], kwargs={"kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_empty_args_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1]) assert trace.inputs == {"arg1": 1} def test_empty_kwargs_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg1": 1}) assert trace.inputs == {"kwarg1": 1} trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg2": 2}) assert trace.inputs == {"kwarg2": 2} def test_args_and_kwargs_should_be_filled_in_called_order(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg2": 4, "kwarg1": 3} ) assert list(trace.inputs.keys()) == ["arg1", "arg2", "kwarg2", "kwarg1"] def test_connections_should_be_serialized(self): conn = AzureOpenAIConnection("test_name", "test_secret") trace = _create_trace_from_function_call(func_with_connection_parameter, args=[1, conn]) assert trace.inputs == {"a": 1, "conn": "AzureOpenAIConnection"} def test_self_arg_should_be_excluded_from_inputs(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[1]) assert trace.inputs == {"a": 1} def sync_func(a: int): return a async def async_func(a: int): return a def sync_error_func(a: int): a / 0 async def async_error_func(a: int): a / 0 @pytest.mark.unittest class TestTraced: """This class tests the `_traced` function.""" def test_traced_sync_func_should_be_a_sync_func(self): assert inspect.iscoroutinefunction(_traced(sync_func)) is False def test_traced_async_func_should_be_an_async_func(self): assert inspect.iscoroutinefunction(_traced(async_func)) is True @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_should_have_same_name(self, func): traced_func = _traced(func) assert traced_func.__name__ == func.__name__ @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_attributes_are_set(self, func): traced_func = _traced(func) assert getattr(traced_func, "__original_function") == func @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_not_generated_when_tracer_is_not_active(self, func): # Do not call Tracer.start_tracing() here traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 # Check the generated trace is not generated traces = Tracer.end_tracing() assert len(traces) == 0 @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_generated_when_tracer_is_active(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_error_func, async_error_func]) async def test_trace_is_generated_when_errors_occurred(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) with pytest.raises(ZeroDivisionError): if inspect.iscoroutinefunction(traced_func): await traced_func(1) else: traced_func(1) traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] is None assert trace["error"] == {"message": "division by zero", "type": "ZeroDivisionError"} assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_type_can_be_set_correctly(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func, trace_type=TraceType.TOOL) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.TOOL @trace def my_tool(a: int): return a @trace async def my_tool_async(a: int): return a @pytest.mark.unittest class TestTrace: """This class tests `trace` function.""" @pytest.mark.asyncio @pytest.mark.parametrize( "func", [ my_tool, my_tool_async, ], ) async def test_traces_are_created_correctly(self, func): Tracer.start_tracing("test_run_id") if inspect.iscoroutinefunction(func): result = await func(1) else: result = func(1) assert result == 1 traces = Tracer.end_tracing() assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float)
promptflow/src/promptflow/tests/executor/unittests/_core/test_tracer.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_tracer.py", "repo_id": "promptflow", "token_count": 5794 }
57
import json from pathlib import Path from tempfile import mkdtemp from typing import Optional from unittest.mock import AsyncMock, patch import httpx import pytest from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._base_executor_proxy import APIBasedExecutorProxy from promptflow.batch._errors import ExecutorServiceUnhealthy from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ...mock_execution_server import _get_aggr_result_dict, _get_line_result_dict @pytest.mark.unittest class TestAPIBasedExecutorProxy: @pytest.mark.asyncio @pytest.mark.parametrize( "has_error", [False, True], ) async def test_exec_line_async(self, has_error): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" index = 1 inputs = {"question": "test"} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: line_result_dict = _get_line_result_dict(run_id, index, inputs, has_error=has_error) status_code = 400 if has_error else 200 mock.return_value = httpx.Response(status_code, json=line_result_dict) line_result = await mock_executor_proxy.exec_line_async(inputs, index, run_id) assert line_result.output == {} if has_error else {"answer": "Hello world!"} assert line_result.run_info.run_id == run_id assert line_result.run_info.index == index assert line_result.run_info.status == Status.Failed if has_error else Status.Completed assert line_result.run_info.inputs == inputs assert (line_result.run_info.error is not None) == has_error @pytest.mark.asyncio async def test_exec_aggregation_async(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" batch_inputs = {"question": ["test", "error"]} aggregation_inputs = {"${get_answer.output}": ["Incorrect", "Correct"]} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: aggr_result_dict = _get_aggr_result_dict(run_id, aggregation_inputs) mock.return_value = httpx.Response(200, json=aggr_result_dict) aggr_result = await mock_executor_proxy.exec_aggregation_async(batch_inputs, aggregation_inputs, run_id) assert aggr_result.metrics == {"accuracy": 0.5} assert len(aggr_result.node_run_infos) == 1 assert aggr_result.node_run_infos["aggregation"].flow_run_id == run_id assert aggr_result.node_run_infos["aggregation"].inputs == aggregation_inputs assert aggr_result.node_run_infos["aggregation"].status == Status.Completed @pytest.mark.asyncio async def test_ensure_executor_startup_when_no_error(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: with patch.object(APIBasedExecutorProxy, "_check_startup_error_from_file") as mock_check_startup_error: await mock_executor_proxy.ensure_executor_startup("") mock_check_startup_error.assert_not_called() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_not_healthy(self): # empty error file error_file = Path(mkdtemp()) / "error.json" error_file.touch() mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ExecutorServiceUnhealthy) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == "executor unhealthy" mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_existing_validation_error(self): # prepare the error file error_file = Path(mkdtemp()) / "error.json" error_message = "Connection 'aoai_conn' not found" error_dict = ExceptionPresenter.create(ConnectionNotFound(message=error_message)).to_dict() with open(error_file, "w") as file: json.dump(error_dict, file, indent=4) mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ValidationException) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == error_message assert ex.value.target == ErrorTarget.BATCH @pytest.mark.asyncio async def test_ensure_executor_health_when_healthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=True) as mock: await mock_executor_proxy.ensure_executor_health() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_health_when_unhealthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() assert mock.call_count == 20 @pytest.mark.asyncio async def test_ensure_executor_health_when_not_active(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with patch.object(APIBasedExecutorProxy, "_is_executor_active", return_value=False): with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() mock.assert_not_called() @pytest.mark.asyncio @pytest.mark.parametrize( "mock_value, expected_result", [ (httpx.Response(200), True), (httpx.Response(500), False), (Exception("error"), False), ], ) async def test_check_health(self, mock_value, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch("httpx.AsyncClient.get", new_callable=AsyncMock) as mock: mock.return_value = mock_value assert await mock_executor_proxy._check_health() is expected_result @pytest.mark.asyncio @pytest.mark.parametrize( "response, expected_result", [ ( httpx.Response(200, json={"result": "test"}), {"result": "test"}, ), ( httpx.Response(500, json={"error": "test error"}), "test error", ), ( httpx.Response(400, json={"detail": "test"}), { "message": 'Unexpected error when executing a line, status code: 400, error: {"detail": "test"}', "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "400", "error": '{"detail": "test"}', }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ( httpx.Response(502, text="test"), { "message": "Unexpected error when executing a line, status code: 502, error: test", "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "502", "error": "test", }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ], ) async def test_process_http_response(self, response, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") assert mock_executor_proxy._process_http_response(response) == expected_result class MockAPIBasedExecutorProxy(APIBasedExecutorProxy): @property def api_endpoint(self) -> str: return "http://localhost:8080" @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockAPIBasedExecutorProxy": return MockAPIBasedExecutorProxy()
promptflow/src/promptflow/tests/executor/unittests/batch/test_base_executor_proxy.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/batch/test_base_executor_proxy.py", "repo_id": "promptflow", "token_count": 4370 }
58
import pytest from promptflow._core.tool_meta_generator import PythonLoadError from promptflow.exceptions import ErrorTarget from promptflow.executor._errors import ResolveToolError def code_with_bug(): 1 / 0 def raise_resolve_tool_error(func, target=None, module=None): try: func() except Exception as e: if target: raise ResolveToolError(node_name="MyTool", target=target, module=module) from e raise ResolveToolError(node_name="MyTool") from e def raise_python_load_error(): try: code_with_bug() except Exception as e: raise PythonLoadError(message="Test PythonLoadError.") from e def test_resolve_tool_error(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(raise_python_load_error, ErrorTarget.TOOL, "__pf_main__") exception = e.value inner_exception = exception.inner_exception assert isinstance(inner_exception, PythonLoadError) assert exception.message == "Tool load failed in 'MyTool': (PythonLoadError) Test PythonLoadError." assert exception.additional_info == inner_exception.additional_info assert exception.error_codes == ["UserError", "ToolValidationError", "PythonParsingError", "PythonLoadError"] assert exception.reference_code == "Tool/__pf_main__" def test_resolve_tool_error_with_none_inner(): with pytest.raises(ResolveToolError) as e: raise ResolveToolError(node_name="MyTool") exception = e.value assert exception.inner_exception is None assert exception.message == "Tool load failed in 'MyTool'." assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ResolveToolError"] assert exception.reference_code == "Executor" def test_resolve_tool_error_with_no_PromptflowException_inner(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(code_with_bug) exception = e.value assert isinstance(exception.inner_exception, ZeroDivisionError) assert exception.message == "Tool load failed in 'MyTool': (ZeroDivisionError) division by zero" assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ZeroDivisionError"] assert exception.reference_code == "Executor"
promptflow/src/promptflow/tests/executor/unittests/executor/test_errors.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/executor/test_errors.py", "repo_id": "promptflow", "token_count": 773 }
59
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import logging import os import uuid from concurrent.futures import ThreadPoolExecutor from pathlib import Path from typing import Callable, Optional from unittest.mock import patch import jwt import pytest from azure.core.exceptions import ResourceNotFoundError from mock import mock from pytest_mock import MockerFixture from promptflow._sdk._constants import FlowType, RunStatus from promptflow._sdk._utils import ClientUserAgentUtil from promptflow._sdk.entities import Run from promptflow.azure import PFClient from promptflow.azure._entities._flow import Flow from ._azure_utils import get_cred from .recording_utilities import ( PFAzureIntegrationTestRecording, SanitizedValues, VariableRecorder, get_created_flow_name_from_flow_path, get_pf_client_for_replay, is_live, is_record, is_replay, ) FLOWS_DIR = "./tests/test_configs/flows" EAGER_FLOWS_DIR = "./tests/test_configs/eager_flows" DATAS_DIR = "./tests/test_configs/datas" AZUREML_RESOURCE_PROVIDER = "Microsoft.MachineLearningServices" RESOURCE_ID_FORMAT = "/subscriptions/{}/resourceGroups/{}/providers/{}/workspaces/{}" def package_scope_in_live_mode() -> str: """Determine the scope of some expected sharing fixtures. We have many tests against flows and runs, and it's very time consuming to create a new flow/run for each test. So we expect to leverage pytest fixture concept to share flows/runs across tests. However, we also have replay tests, which require function scope fixture as it will locate the recording YAML based on the test function info. Use this function to determine the scope of the fixtures dynamically. For those fixtures that will request dynamic scope fixture(s), they also need to be dynamic scope. """ # package-scope should be enough for Azure tests return "package" if is_live() else "function" @pytest.fixture(scope=package_scope_in_live_mode()) def user_object_id() -> str: if is_replay(): return SanitizedValues.USER_OBJECT_ID credential = get_cred() access_token = credential.get_token("https://management.azure.com/.default") decoded_token = jwt.decode(access_token.token, options={"verify_signature": False}) return decoded_token["oid"] @pytest.fixture(scope=package_scope_in_live_mode()) def tenant_id() -> str: if is_replay(): return SanitizedValues.TENANT_ID credential = get_cred() access_token = credential.get_token("https://management.azure.com/.default") decoded_token = jwt.decode(access_token.token, options={"verify_signature": False}) return decoded_token["tid"] @pytest.fixture(scope=package_scope_in_live_mode()) def ml_client( subscription_id: str, resource_group_name: str, workspace_name: str, ): """return a machine learning client using default e2e testing workspace""" from azure.ai.ml import MLClient return MLClient( credential=get_cred(), subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, cloud="AzureCloud", ) @pytest.fixture(scope=package_scope_in_live_mode()) def remote_client(subscription_id: str, resource_group_name: str, workspace_name: str): from promptflow.azure import PFClient if is_replay(): client = get_pf_client_for_replay() else: client = PFClient( credential=get_cred(), subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, ) assert "promptflow-sdk" in ClientUserAgentUtil.get_user_agent() assert "promptflow/" not in ClientUserAgentUtil.get_user_agent() yield client @pytest.fixture def remote_workspace_resource_id(subscription_id: str, resource_group_name: str, workspace_name: str) -> str: return "azureml:" + RESOURCE_ID_FORMAT.format( subscription_id, resource_group_name, AZUREML_RESOURCE_PROVIDER, workspace_name ) @pytest.fixture(scope=package_scope_in_live_mode()) def pf(remote_client): # do not add annotation here, because PFClient will trigger promptflow.azure imports and break the isolation # between azure and non-azure tests yield remote_client @pytest.fixture def remote_web_classification_data(remote_client): from azure.ai.ml.entities import Data data_name, data_version = "webClassification1", "1" try: return remote_client.ml_client.data.get(name=data_name, version=data_version) except ResourceNotFoundError: return remote_client.ml_client.data.create_or_update( Data(name=data_name, version=data_version, path=f"{DATAS_DIR}/webClassification1.jsonl", type="uri_file") ) @pytest.fixture(scope="session") def runtime(runtime_name: str) -> str: return runtime_name PROMPTFLOW_ROOT = Path(__file__) / "../../.." MODEL_ROOT = Path(PROMPTFLOW_ROOT / "tests/test_configs/flows") @pytest.fixture def flow_serving_client_remote_connection(mocker: MockerFixture, remote_workspace_resource_id): from promptflow._sdk._serving.app import create_app as create_serving_app model_path = (Path(MODEL_ROOT) / "basic-with-connection").resolve().absolute().as_posix() mocker.patch.dict(os.environ, {"PROMPTFLOW_PROJECT_PATH": model_path}) mocker.patch.dict(os.environ, {"USER_AGENT": "test-user-agent"}) app = create_serving_app( config={"connection.provider": remote_workspace_resource_id}, environment_variables={"API_TYPE": "${azure_open_ai_connection.api_type}"}, ) app.config.update( { "TESTING": True, } ) return app.test_client() @pytest.fixture def flow_serving_client_with_prt_config_env( mocker: MockerFixture, subscription_id, resource_group_name, workspace_name ): # noqa: E501 connections = { "PRT_CONFIG_OVERRIDE": f"deployment.subscription_id={subscription_id}," f"deployment.resource_group={resource_group_name}," f"deployment.workspace_name={workspace_name}," "app.port=8088", } return create_serving_client_with_connections("basic-with-connection", mocker, connections) @pytest.fixture def flow_serving_client_with_connection_provider_env(mocker: MockerFixture, remote_workspace_resource_id): connections = {"PROMPTFLOW_CONNECTION_PROVIDER": remote_workspace_resource_id} return create_serving_client_with_connections("basic-with-connection", mocker, connections) @pytest.fixture def flow_serving_client_with_aml_resource_id_env(mocker: MockerFixture, remote_workspace_resource_id): aml_resource_id = "{}/onlineEndpoints/{}/deployments/{}".format(remote_workspace_resource_id, "myendpoint", "blue") connections = {"AML_DEPLOYMENT_RESOURCE_ID": aml_resource_id} return create_serving_client_with_connections("basic-with-connection", mocker, connections) @pytest.fixture def serving_client_with_connection_name_override(mocker: MockerFixture, remote_workspace_resource_id): connections = { "aoai_connection": "azure_open_ai_connection", "PROMPTFLOW_CONNECTION_PROVIDER": remote_workspace_resource_id, } return create_serving_client_with_connections("llm_connection_override", mocker, connections) @pytest.fixture def serving_client_with_connection_data_override(mocker: MockerFixture, remote_workspace_resource_id): model_name = "llm_connection_override" model_path = (Path(MODEL_ROOT) / model_name).resolve().absolute() # load arm connection template connection_arm_template = model_path.joinpath("connection_arm_template.json").read_text() connections = { "aoai_connection": connection_arm_template, "PROMPTFLOW_CONNECTION_PROVIDER": remote_workspace_resource_id, } return create_serving_client_with_connections(model_name, mocker, connections) def create_serving_client_with_connections(model_name, mocker: MockerFixture, connections: dict = {}): from promptflow._sdk._serving.app import create_app as create_serving_app model_path = (Path(MODEL_ROOT) / model_name).resolve().absolute().as_posix() mocker.patch.dict(os.environ, {"PROMPTFLOW_PROJECT_PATH": model_path}) mocker.patch.dict( os.environ, { **connections, }, ) # Set credential to None for azureml extension type # As we mock app in github workflow, which do not have managed identity credential func = "promptflow._sdk._serving.extension.azureml_extension._get_managed_identity_credential_with_retry" with mock.patch(func) as mock_cred_func: mock_cred_func.return_value = None app = create_serving_app( environment_variables={"API_TYPE": "${azure_open_ai_connection.api_type}"}, extension_type="azureml", ) app.config.update( { "TESTING": True, } ) return app.test_client() @pytest.fixture(scope=package_scope_in_live_mode()) def variable_recorder() -> VariableRecorder: yield VariableRecorder() @pytest.fixture(scope=package_scope_in_live_mode()) def randstr(variable_recorder: VariableRecorder) -> Callable[[str], str]: """Return a "random" UUID.""" def generate_random_string(variable_name: str) -> str: random_string = str(uuid.uuid4()) if is_live(): return random_string elif is_replay(): return variable_name else: return variable_recorder.get_or_record_variable(variable_name, random_string) return generate_random_string @pytest.fixture(scope=package_scope_in_live_mode()) def vcr_recording( request: pytest.FixtureRequest, user_object_id: str, tenant_id: str, variable_recorder: VariableRecorder ) -> Optional[PFAzureIntegrationTestRecording]: """Fixture to record or replay network traffic. If the test mode is "live", nothing will happen. If the test mode is "record" or "replay", this fixture will locate a YAML (recording) file based on the test file, class and function name, write to (record) or read from (replay) the file. """ if is_live(): yield None else: recording = PFAzureIntegrationTestRecording.from_test_case( test_class=request.cls, test_func_name=request.node.name, user_object_id=user_object_id, tenant_id=tenant_id, variable_recorder=variable_recorder, ) recording.enter_vcr() request.addfinalizer(recording.exit_vcr) yield recording # we expect this fixture only work when running live test without recording # when recording, we don't want to record any application insights secrets # when replaying, we also don't need this @pytest.fixture(autouse=not is_live()) def mock_appinsights_log_handler(mocker: MockerFixture) -> None: dummy_logger = logging.getLogger("dummy") mocker.patch("promptflow._sdk._telemetry.telemetry.get_telemetry_logger", return_value=dummy_logger) return @pytest.fixture def single_worker_thread_pool() -> None: """Mock to use one thread for thread pool executor. VCR.py cannot record network traffic in other threads, and we have multi-thread operations during resolving the flow. Mock it using one thread to make VCR.py work. """ def single_worker_thread_pool_executor(*args, **kwargs): return ThreadPoolExecutor(max_workers=1) if is_live(): yield else: with patch( "promptflow.azure.operations._run_operations.ThreadPoolExecutor", new=single_worker_thread_pool_executor, ): yield @pytest.fixture def mock_set_headers_with_user_aml_token(mocker: MockerFixture) -> None: """Mock set aml-user-token operation. There will be requests fetching cloud metadata during retrieving AML token, which will break during replay. As the logic comes from azure-ai-ml, changes in Prompt Flow can hardly affect it, mock it here. """ if not is_live(): mocker.patch( "promptflow.azure._restclient.flow_service_caller.FlowServiceCaller._set_headers_with_user_aml_token" ) yield @pytest.fixture def mock_get_azure_pf_client(mocker: MockerFixture, remote_client) -> None: """Mock PF Azure client to avoid network traffic during replay test.""" if not is_live(): mocker.patch( "promptflow._cli._pf_azure._run._get_azure_pf_client", return_value=remote_client, ) mocker.patch( "promptflow._cli._pf_azure._flow._get_azure_pf_client", return_value=remote_client, ) yield @pytest.fixture(scope=package_scope_in_live_mode()) def mock_get_user_identity_info(user_object_id: str, tenant_id: str) -> None: """Mock get user object id and tenant id, currently used in flow list operation.""" if not is_live(): with patch( "promptflow.azure._restclient.flow_service_caller.FlowServiceCaller._get_user_identity_info", return_value=(user_object_id, tenant_id), ): yield else: yield @pytest.fixture(scope=package_scope_in_live_mode()) def created_flow(pf: PFClient, randstr: Callable[[str], str], variable_recorder: VariableRecorder) -> Flow: """Create a flow for test.""" flow_display_name = randstr("flow_display_name") flow_source = FLOWS_DIR + "/simple_hello_world/" description = "test flow description" tags = {"owner": "sdk-test"} result = pf.flows.create_or_update( flow=flow_source, display_name=flow_display_name, type=FlowType.STANDARD, description=description, tags=tags ) remote_flow_dag_path = result.path # make sure the flow is created successfully assert pf.flows._storage_client._check_file_share_file_exist(remote_flow_dag_path) is True assert result.display_name == flow_display_name assert result.type == FlowType.STANDARD assert result.tags == tags assert result.path.endswith("flow.dag.yaml") # flow in Azure will have different file share name with timestamp # and this is a client-side behavior, so we need to sanitize this in recording # so extract this during record test if is_record(): flow_name_const = "flow_name" flow_name = get_created_flow_name_from_flow_path(result.path) variable_recorder.get_or_record_variable(flow_name_const, flow_name) yield result @pytest.fixture(scope=package_scope_in_live_mode()) def created_batch_run_without_llm(pf: PFClient, randstr: Callable[[str], str], runtime: str) -> Run: """Create a batch run that does not require LLM.""" name = randstr("batch_run_name") run = pf.run( # copy test_configs/flows/simple_hello_world to a separate folder # as pf.run will generate .promptflow/flow.tools.json # it will affect Azure file share upload logic and replay test flow=f"{FLOWS_DIR}/hello-world", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"name": "${data.url}"}, name=name, display_name="sdk-cli-test-fixture-batch-run-without-llm", ) run = pf.runs.stream(run=name) assert run.status == RunStatus.COMPLETED yield run @pytest.fixture(scope=package_scope_in_live_mode()) def simple_eager_run(pf: PFClient, randstr: Callable[[str], str]) -> Run: """Create a simple eager run.""" run = pf.run( flow=f"{EAGER_FLOWS_DIR}/simple_with_req", data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", name=randstr("name"), ) pf.runs.stream(run) run = pf.runs.get(run) assert run.status == RunStatus.COMPLETED yield run @pytest.fixture(scope=package_scope_in_live_mode()) def created_eval_run_without_llm( pf: PFClient, randstr: Callable[[str], str], runtime: str, created_batch_run_without_llm: Run ) -> Run: """Create a evaluation run against batch run without LLM dependency.""" name = randstr("eval_run_name") run = pf.run( flow=f"{FLOWS_DIR}/eval-classification-accuracy", data=f"{DATAS_DIR}/webClassification3.jsonl", run=created_batch_run_without_llm, column_mapping={"groundtruth": "${data.answer}", "prediction": "${run.outputs.result}"}, runtime=runtime, name=name, display_name="sdk-cli-test-fixture-eval-run-without-llm", ) run = pf.runs.stream(run=name) assert run.status == RunStatus.COMPLETED yield run @pytest.fixture(scope=package_scope_in_live_mode()) def created_failed_run(pf: PFClient, randstr: Callable[[str], str], runtime: str) -> Run: """Create a failed run.""" name = randstr("failed_run_name") run = pf.run( flow=f"{FLOWS_DIR}/partial_fail", data=f"{DATAS_DIR}/webClassification3.jsonl", runtime=runtime, name=name, display_name="sdk-cli-test-fixture-failed-run", ) # set raise_on_error to False to promise returning something run = pf.runs.stream(run=name, raise_on_error=False) assert run.status == RunStatus.FAILED yield run @pytest.fixture(autouse=not is_live()) def mock_vcrpy_for_httpx() -> None: # there is a known issue in vcrpy handling httpx response: https://github.com/kevin1024/vcrpy/pull/591 # the related code change has not been merged, so we need such a fixture for patch def _transform_headers(httpx_response): out = {} for key, var in httpx_response.headers.raw: decoded_key = key.decode("utf-8") decoded_var = var.decode("utf-8") if decoded_key.lower() == "content-encoding" and decoded_var in ("gzip", "deflate"): continue out.setdefault(decoded_key, []) out[decoded_key].append(decoded_var) return out with patch("vcr.stubs.httpx_stubs._transform_headers", new=_transform_headers): yield @pytest.fixture(autouse=not is_live()) def mock_to_thread() -> None: # https://docs.python.org/3/library/asyncio-task.html#asyncio.to_thread # to_thread actually uses a separate thread, which will break mocks # so we need to mock it to avoid using a separate thread # this is only for AsyncRunDownloader.to_thread async def to_thread(func, /, *args, **kwargs): func(*args, **kwargs) with patch( "promptflow.azure.operations._async_run_downloader.to_thread", new=to_thread, ): yield @pytest.fixture def mock_isinstance_for_mock_datastore() -> None: """Mock built-in function isinstance. We have an isinstance check during run download for datastore type for better error message; while our mock datastore in replay mode is not a valid type, so mock it with strict condition. """ if not is_replay(): yield else: from azure.ai.ml.entities._datastore.azure_storage import AzureBlobDatastore from .recording_utilities.utils import MockDatastore original_isinstance = isinstance def mock_isinstance(*args): if original_isinstance(args[0], MockDatastore) and args[1] == AzureBlobDatastore: return True return original_isinstance(*args) with patch("builtins.isinstance", new=mock_isinstance): yield @pytest.fixture(autouse=True) def mock_check_latest_version() -> None: """Mock check latest version. As CI uses docker, it will always trigger this check behavior, and we don't have recording for this; and this will hit many unknown issue with vcrpy. """ with patch("promptflow._utils.version_hint_utils.check_latest_version", new=lambda: None): yield
promptflow/src/promptflow/tests/sdk_cli_azure_test/conftest.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/conftest.py", "repo_id": "promptflow", "token_count": 7579 }
60
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import base64 import json from typing import Dict from vcr.request import Request from .constants import AzureMLResourceTypes, SanitizedValues from .utils import ( is_json_payload_request, is_json_payload_response, sanitize_azure_workspace_triad, sanitize_email, sanitize_experiment_id, sanitize_pfs_request_body, sanitize_pfs_response_body, sanitize_upload_hash, sanitize_username, ) class RecordingProcessor: def process_request(self, request: Request) -> Request: return request def process_response(self, response: Dict) -> Dict: return response class AzureWorkspaceTriadProcessor(RecordingProcessor): """Sanitize subscription id, resource group name and workspace name.""" def process_request(self, request: Request) -> Request: request.uri = sanitize_azure_workspace_triad(request.uri) return request def process_response(self, response: Dict) -> Dict: response["body"]["string"] = sanitize_azure_workspace_triad(response["body"]["string"]) return response class AzureMLExperimentIDProcessor(RecordingProcessor): """Sanitize Azure ML experiment id, currently we use workspace id as the value.""" def process_request(self, request: Request) -> Request: request.uri = sanitize_experiment_id(request.uri) return request def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): if "experimentId" in response["body"]["string"]: body = json.loads(response["body"]["string"]) if "experimentId" in body: body["experimentId"] = SanitizedValues.WORKSPACE_ID response["body"]["string"] = json.dumps(body) return response class AzureResourceProcessor(RecordingProcessor): """Sanitize sensitive data in Azure resource GET response.""" def __init__(self): # datastore related self.storage_account_names = set() self.storage_container_names = set() self.file_share_names = set() def _sanitize_request_url_for_storage(self, uri: str) -> str: # this instance will store storage account names and container names # so we can apply the sanitization here with simple string replace rather than regex for account_name in self.storage_account_names: uri = uri.replace(account_name, SanitizedValues.FAKE_ACCOUNT_NAME) for container_name in self.storage_container_names: uri = uri.replace(container_name, SanitizedValues.FAKE_CONTAINER_NAME) for file_share_name in self.file_share_names: uri = uri.replace(file_share_name, SanitizedValues.FAKE_FILE_SHARE_NAME) return uri def process_request(self, request: Request) -> Request: request.uri = self._sanitize_request_url_for_storage(request.uri) return request def _sanitize_response_body(self, body: Dict) -> Dict: resource_type = body.get("type") if resource_type == AzureMLResourceTypes.WORKSPACE: body = self._sanitize_response_for_workspace(body) elif resource_type == AzureMLResourceTypes.CONNECTION: body = self._sanitize_response_for_arm_connection(body) elif resource_type == AzureMLResourceTypes.DATASTORE: body = self._sanitize_response_for_datastore(body) return body def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): body = json.loads(response["body"]["string"]) if isinstance(body, dict): # response can be a list sometimes (e.g. get workspace datastores) # need to sanitize each with a for loop if "value" in body: resources = body["value"] for i in range(len(resources)): resources[i] = self._sanitize_response_body(resources[i]) body["value"] = resources else: body = self._sanitize_response_body(body) response["body"]["string"] = json.dumps(body) return response def _sanitize_response_for_workspace(self, body: Dict) -> Dict: filter_keys = ["identity", "properties", "systemData"] for k in filter_keys: if k in body: body.pop(k) # need during the constructor of FlowServiceCaller (for vNet case) body["properties"] = {"discoveryUrl": SanitizedValues.DISCOVERY_URL} name = body["name"] body["name"] = SanitizedValues.WORKSPACE_NAME body["id"] = body["id"].replace(name, SanitizedValues.WORKSPACE_NAME) return body def _sanitize_response_for_arm_connection(self, body: Dict) -> Dict: if body["properties"]["authType"] == "CustomKeys": # custom connection, sanitize "properties.credentials.keys" body["properties"]["credentials"]["keys"] = {} else: # others, sanitize "properties.credentials.key" body["properties"]["credentials"]["key"] = "_" body["properties"]["target"] = "_" return body def _sanitize_response_for_datastore(self, body: Dict) -> Dict: body["properties"]["subscriptionId"] = SanitizedValues.SUBSCRIPTION_ID body["properties"]["resourceGroup"] = SanitizedValues.RESOURCE_GROUP_NAME self.storage_account_names.add(body["properties"]["accountName"]) body["properties"]["accountName"] = SanitizedValues.FAKE_ACCOUNT_NAME # blob storage if "containerName" in body["properties"]: self.storage_container_names.add(body["properties"]["containerName"]) body["properties"]["containerName"] = SanitizedValues.FAKE_CONTAINER_NAME # file share elif "fileShareName" in body["properties"]: self.file_share_names.add(body["properties"]["fileShareName"]) body["properties"]["fileShareName"] = SanitizedValues.FAKE_FILE_SHARE_NAME return body class AzureOpenAIConnectionProcessor(RecordingProcessor): """Sanitize api_base in AOAI connection GET response.""" def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): body = json.loads(response["body"]["string"]) if isinstance(body, dict) and body.get("connectionType") == "AzureOpenAI": body["configs"]["api_base"] = SanitizedValues.FAKE_API_BASE response["body"]["string"] = json.dumps(body) return response class StorageProcessor(RecordingProcessor): """Sanitize sensitive data during storage operations when submit run.""" def process_request(self, request: Request) -> Request: request.uri = sanitize_upload_hash(request.uri) request.uri = sanitize_username(request.uri) if is_json_payload_request(request) and request.body is not None: body = request.body.decode("utf-8") body = sanitize_upload_hash(body) body = sanitize_username(body) request.body = body.encode("utf-8") return request def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): response["body"]["string"] = sanitize_username(response["body"]["string"]) body = json.loads(response["body"]["string"]) if isinstance(body, dict): self._sanitize_list_secrets_response(body) response["body"]["string"] = json.dumps(body) return response def _sanitize_list_secrets_response(self, body: Dict) -> Dict: if "key" in body: b64_key = base64.b64encode(SanitizedValues.FAKE_KEY.encode("ascii")) body["key"] = str(b64_key, "ascii") return body class DropProcessor(RecordingProcessor): """Ignore some requests that won't be used during playback.""" def process_request(self, request: Request) -> Request: if "/metadata/identity/oauth2/token" in request.path: return None return request class PFSProcessor(RecordingProcessor): """Sanitize request/response for PFS operations.""" def process_request(self, request: Request) -> Request: if is_json_payload_request(request) and request.body is not None: body = request.body.decode("utf-8") body = sanitize_pfs_request_body(body) request.body = body.encode("utf-8") return request def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): response["body"]["string"] = sanitize_pfs_response_body(response["body"]["string"]) return response class UserInfoProcessor(RecordingProcessor): """Sanitize user object id and tenant id in responses.""" def __init__(self, user_object_id: str, tenant_id: str): self.user_object_id = user_object_id self.tenant_id = tenant_id def process_request(self, request: Request) -> Request: if is_json_payload_request(request) and request.body is not None: body = request.body.decode("utf-8") body = str(body).replace(self.user_object_id, SanitizedValues.USER_OBJECT_ID) body = body.replace(self.tenant_id, SanitizedValues.TENANT_ID) request.body = body.encode("utf-8") return request def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): response["body"]["string"] = str(response["body"]["string"]).replace( self.user_object_id, SanitizedValues.USER_OBJECT_ID ) response["body"]["string"] = str(response["body"]["string"]).replace( self.tenant_id, SanitizedValues.TENANT_ID ) return response class IndexServiceProcessor(RecordingProcessor): """Sanitize index service responses.""" def process_response(self, response: Dict) -> Dict: if is_json_payload_response(response): if "continuationToken" in response["body"]["string"]: body = json.loads(response["body"]["string"]) body.pop("continuationToken", None) response["body"]["string"] = json.dumps(body) return response class EmailProcessor(RecordingProcessor): """Sanitize email address in responses.""" def process_response(self, response: Dict) -> Dict: response["body"]["string"] = sanitize_email(response["body"]["string"]) return response
promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/processors.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/processors.py", "repo_id": "promptflow", "token_count": 4397 }
61
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from promptflow import PFClient from promptflow._sdk._configuration import Configuration AZUREML_RESOURCE_PROVIDER = "Microsoft.MachineLearningServices" RESOURCE_ID_FORMAT = "/subscriptions/{}/resourceGroups/{}/providers/{}/workspaces/{}" @pytest.fixture def pf() -> PFClient: return PFClient() @pytest.fixture def global_config(subscription_id: str, resource_group_name: str, workspace_name: str) -> None: config = Configuration.get_instance() if Configuration.CONNECTION_PROVIDER in config._config: return config.set_config( Configuration.CONNECTION_PROVIDER, "azureml:" + RESOURCE_ID_FORMAT.format(subscription_id, resource_group_name, AZUREML_RESOURCE_PROVIDER, workspace_name), )
promptflow/src/promptflow/tests/sdk_cli_global_config_test/conftest.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_global_config_test/conftest.py", "repo_id": "promptflow", "token_count": 293 }
62
import json import os import re import pytest from promptflow._core.operation_context import OperationContext @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_swagger(flow_serving_client): swagger_dict = json.loads(flow_serving_client.get("/swagger.json").data.decode()) assert swagger_dict == { "components": {"securitySchemes": {"bearerAuth": {"scheme": "bearer", "type": "http"}}}, "info": { "title": "Promptflow[basic-with-connection] API", "version": "1.0.0", "x-flow-name": "basic-with-connection", }, "openapi": "3.0.0", "paths": { "/score": { "post": { "requestBody": { "content": { "application/json": { "example": {"text": "Hello World!"}, "schema": { "properties": {"text": {"type": "string"}}, "required": ["text"], "type": "object", }, } }, "description": "promptflow input data", "required": True, }, "responses": { "200": { "content": { "application/json": { "schema": {"properties": {"output_prompt": {"type": "string"}}, "type": "object"} } }, "description": "successful operation", }, "400": {"description": "Invalid input"}, "default": {"description": "unexpected error"}, }, "summary": "run promptflow: basic-with-connection with an given input", } } }, "security": [{"bearerAuth": []}], } @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_chat_swagger(serving_client_llm_chat): swagger_dict = json.loads(serving_client_llm_chat.get("/swagger.json").data.decode()) assert swagger_dict == { "components": {"securitySchemes": {"bearerAuth": {"scheme": "bearer", "type": "http"}}}, "info": { "title": "Promptflow[chat_flow_with_stream_output] API", "version": "1.0.0", "x-flow-name": "chat_flow_with_stream_output", "x-chat-history": "chat_history", "x-chat-input": "question", "x-flow-type": "chat", "x-chat-output": "answer", }, "openapi": "3.0.0", "paths": { "/score": { "post": { "requestBody": { "content": { "application/json": { "example": {}, "schema": { "properties": { "chat_history": { "type": "array", "items": {"type": "object", "additionalProperties": {}}, }, "question": {"type": "string", "default": "What is ChatGPT?"}, }, "required": ["chat_history", "question"], "type": "object", }, } }, "description": "promptflow input data", "required": True, }, "responses": { "200": { "content": { "application/json": { "schema": {"properties": {"answer": {"type": "string"}}, "type": "object"} } }, "description": "successful operation", }, "400": {"description": "Invalid input"}, "default": {"description": "unexpected error"}, }, "summary": "run promptflow: chat_flow_with_stream_output with an given input", } } }, "security": [{"bearerAuth": []}], } @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_user_agent(flow_serving_client): operation_context = OperationContext.get_instance() assert "test-user-agent" in operation_context.get_user_agent() assert "promptflow-local-serving" in operation_context.get_user_agent() @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_serving_api(flow_serving_client): response = flow_serving_client.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client.get("/") print(response.data) assert response.status_code == 200 response = flow_serving_client.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) # Assert environment variable resolved assert os.environ["API_TYPE"] == "azure" @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_evaluation_flow_serving_api(evaluation_flow_serving_client): response = evaluation_flow_serving_client.post("/score", data=json.dumps({"url": "https://www.microsoft.com/"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "category" in json.loads(response.data.decode()) @pytest.mark.e2etest def test_unknown_api(flow_serving_client): response = flow_serving_client.get("/unknown") assert b"not supported by current app" in response.data assert response.status_code == 404 response = flow_serving_client.post("/health") # health api should be GET assert b"not supported by current app" in response.data assert response.status_code == 404 @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 200, "text/event-stream; charset=utf-8"), ("text/html", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "text/event-stream; charset=utf-8"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_llm_chat( serving_client_llm_chat, accept, expected_status_code, expected_content_type, ): payload = { "question": "What is the capital of France?", "chat_history": [], } headers = { "Content-Type": "application/json", "Accept": accept, } response = serving_client_llm_chat.post("/score", json=payload, headers=headers) assert response.status_code == expected_status_code assert response.content_type == expected_content_type if response.status_code == 406: assert response.json["error"]["code"] == "UserError" assert ( f"Media type {accept} in Accept header is not acceptable. Supported media type(s) -" in response.json["error"]["message"] ) if "text/event-stream" in response.content_type: for line in response.data.decode().split("\n"): print(line) else: result = response.json print(result) @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 200, "text/event-stream; charset=utf-8"), ("text/html", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "text/event-stream; charset=utf-8"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_python_stream_tools( serving_client_python_stream_tools, accept, expected_status_code, expected_content_type, ): payload = { "text": "Hello World!", } headers = { "Content-Type": "application/json", "Accept": accept, } response = serving_client_python_stream_tools.post("/score", json=payload, headers=headers) assert response.status_code == expected_status_code assert response.content_type == expected_content_type # The predefined flow in this test case is echo flow, which will return the input text. # Check output as test logic validation. # Stream generator generating logic # - The output is split into words, and each word is sent as a separate event # - Event data is a dict { $flowoutput_field_name : $word} # - The event data is formatted as f"data: {json.dumps(data)}\n\n" # - Generator will yield the event data for each word if response.status_code == 200: expected_output = f"Echo: {payload.get('text')}" if "text/event-stream" in response.content_type: words = expected_output.split() lines = response.data.decode().split("\n\n") # The last line is empty lines = lines[:-1] assert all(f"data: {json.dumps({'output_echo' : f'{w} '})}" == l for w, l in zip(words, lines)) else: # For json response, iterator is joined into a string with "" as delimiter words = expected_output.split() merged_text = "".join(word + " " for word in words) expected_json = {"output_echo": merged_text} result = response.json assert expected_json == result elif response.status_code == 406: assert response.json["error"]["code"] == "UserError" assert ( f"Media type {accept} in Accept header is not acceptable. Supported media type(s) -" in response.json["error"]["message"] ) @pytest.mark.usefixtures("recording_injection") @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "application/json"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_python_nonstream_tools( flow_serving_client, accept, expected_status_code, expected_content_type, ): payload = { "text": "Hello World!", } headers = { "Content-Type": "application/json", "Accept": accept, } response = flow_serving_client.post("/score", json=payload, headers=headers) if "text/event-stream" in response.content_type: for line in response.data.decode().split("\n"): print(line) else: result = response.json print(result) assert response.status_code == expected_status_code assert response.content_type == expected_content_type @pytest.mark.usefixtures("serving_client_image_python_flow", "recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_image_flow(serving_client_image_python_flow, sample_image): response = serving_client_image_python_flow.post("/score", data=json.dumps({"image": sample_image})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() key_regex = re.compile(r"data:image/(.*);base64") assert re.match(key_regex, list(response["output"].keys())[0]) @pytest.mark.usefixtures("serving_client_composite_image_flow", "recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_list_image_flow(serving_client_composite_image_flow, sample_image): image_dict = {"data:image/jpg;base64": sample_image} response = serving_client_composite_image_flow.post( "/score", data=json.dumps({"image_list": [image_dict], "image_dict": {"my_image": image_dict}}) ) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() assert ( "data:image/jpg;base64" in response["output"][0] ), f"data:image/jpg;base64 not in output list {response['output']}" @pytest.mark.usefixtures("serving_client_with_environment_variables") @pytest.mark.e2etest def test_flow_with_environment_variables(serving_client_with_environment_variables): except_environment_variables = { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", } for key, value in except_environment_variables.items(): response = serving_client_with_environment_variables.post("/score", data=json.dumps({"key": key})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() assert response["output"] == value
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_serve.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_serve.py", "repo_id": "promptflow", "token_count": 6615 }
63
from pathlib import Path import pytest from sdk_cli_test.conftest import MODEL_ROOT from promptflow._cli._pf._flow import _resolve_python_flow_additional_includes @pytest.mark.unittest def test_flow_serve_resolve_additional_includes(): # Assert flow path not changed if no additional includes flow_path = (Path(MODEL_ROOT) / "web_classification").resolve().absolute().as_posix() resolved_flow_path = _resolve_python_flow_additional_includes(flow_path) assert flow_path == resolved_flow_path # Assert additional includes are resolved correctly flow_path = (Path(MODEL_ROOT) / "web_classification_with_additional_include").resolve().absolute().as_posix() resolved_flow_path = _resolve_python_flow_additional_includes(flow_path) assert (Path(resolved_flow_path) / "convert_to_dict.py").exists() assert (Path(resolved_flow_path) / "fetch_text_content_from_url.py").exists() assert (Path(resolved_flow_path) / "summarize_text_content.jinja2").exists()
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_serve.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_serve.py", "repo_id": "promptflow", "token_count": 346 }
64
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from ..utils import PFSOperations, check_activity_end_telemetry @pytest.mark.usefixtures("use_secrets_config_file") @pytest.mark.e2etest class TestTelemetryAPIs: def test_post_telemetry(self, pfs_op: PFSOperations) -> None: from promptflow._sdk._telemetry.activity import generate_request_id request_id = generate_request_id() user_agent = "prompt-flow-extension/1.8.0 (win32; x64) VS/0.0.1" _ = pfs_op.create_telemetry( body={ "eventType": "Start", "timestamp": "2021-01-01T00:00:00Z", "metadata": { "activityName": "pf.flow.test", "activityType": "InternalCall", }, }, status_code=200, headers={ "x-ms-promptflow-request-id": request_id, "User-Agent": user_agent, }, ).json with check_activity_end_telemetry( activity_name="pf.flow.test", activity_type="InternalCall", user_agent=f"{user_agent} local_pfs/0.0.1", request_id=request_id, ): response = pfs_op.create_telemetry( body={ "eventType": "End", "timestamp": "2021-01-01T00:00:00Z", "metadata": { "activityName": "pf.flow.test", "activityType": "InternalCall", "completionStatus": "Success", "durationMs": 1000, }, }, headers={ "x-ms-promptflow-request-id": request_id, "User-Agent": user_agent, }, status_code=200, ).json assert len(response) >= 1
promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_telemetry_apis.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_telemetry_apis.py", "repo_id": "promptflow", "token_count": 1088 }
65
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/SerpConnection.schema.json name: my_serp_connection type: serp api_key: "<to-be-replaced>"
promptflow/src/promptflow/tests/test_configs/connections/serp_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/serp_connection.yaml", "repo_id": "promptflow", "token_count": 61 }
66
{"name": "Red", "id_text": "1.0", "id_int": 1, "id_float": 1.0 } {"name": "Blue", "id_text": "3.0", "id_int": 3, "id_float": 3.0 } {"name": "Yellow", "id_text": "2.0", "id_int": 2, "id_float": 2.0 }
promptflow/src/promptflow/tests/test_configs/datas/load_data_cases/colors.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/datas/load_data_cases/colors.jsonl", "repo_id": "promptflow", "token_count": 98 }
67
import asyncio from promptflow import trace @trace async def wait(n: int): await asyncio.sleep(n) @trace async def dummy_llm(prompt: str, model: str, wait_seconds: int): await wait(wait_seconds) return prompt async def my_flow(text: str, models: list = []): tasks = [] for i, model in enumerate(models): tasks.append(asyncio.create_task(dummy_llm(text, model, i + 1))) await asyncio.wait(tasks) return "dummy_output"
promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_trace/entry.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_trace/entry.py", "repo_id": "promptflow", "token_count": 180 }
68
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow1(): """Simple flow without yaml.""" print("Hello world!") def my_flow2(): """Simple flow without yaml.""" print("Hello world!")
promptflow/src/promptflow/tests/test_configs/eager_flows/multiple_entries/entry1.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/multiple_entries/entry1.py", "repo_id": "promptflow", "token_count": 83 }
69
from promptflow import tool @tool def summary_result(input1: str="Node A not executed.", input2: str="Node B not executed.") -> str: return input1 + ' ' + input2
promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/summary_result.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/summary_result.py", "repo_id": "promptflow", "token_count": 50 }
70
{ "text": "hi" }
promptflow/src/promptflow/tests/test_configs/flows/all_depedencies_bypassed_with_activate_met/inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/all_depedencies_bypassed_with_activate_met/inputs.json", "repo_id": "promptflow", "token_count": 13 }
71
inputs: text: type: string default: dummy_input outputs: output_prompt: type: string reference: ${async_fail.output} nodes: - name: async_fail type: python source: type: code path: async_fail.py inputs: s: ${inputs.text}
promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/flow.dag.yaml", "repo_id": "promptflow", "token_count": 110 }
72
environment: python_requirements_txt: requirements.txt version: 2 inputs: chat_history: type: list is_chat_history: true default: [] question: type: string is_chat_input: true default: I am going to swim today for 30 min in Guangzhou city, how much calories will I burn? assistant_id: type: string default: "" thread_id: type: string default: "" outputs: answer: type: string reference: ${assistant.output} is_chat_output: true thread_id: type: string reference: ${get_or_create_thread.output} nodes: - name: get_or_create_thread type: python source: type: code path: get_or_create_thread.py inputs: conn: chw-manager-OpenAI thread_id: ${inputs.thread_id} - name: assistant type: python source: type: code path: add_message_and_run.py inputs: conn: chw-manager-OpenAI message: ${inputs.question} assistant_id: ${inputs.assistant_id} thread_id: ${get_or_create_thread.output} download_images: true assistant_definition: assistant_definition.yaml
promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/flow.dag.yaml", "repo_id": "promptflow", "token_count": 420 }
73
inputs: chat_history: type: list question: type: string is_chat_input: true default: What is ChatGPT? outputs: answer: type: string reference: ${show_answer.output} is_chat_output: true nodes: - inputs: deployment_name: gpt-35-turbo max_tokens: "256" temperature: "0.7" chat_history: ${inputs.chat_history} question: ${inputs.question} name: chat type: llm source: type: code path: chat.jinja2 api: chat provider: AzureOpenAI connection: azure_open_ai_connection - name: show_answer type: python source: type: code path: show_answer.py inputs: chat_answer: ${chat.output}
promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_exception/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_exception/flow.dag.yaml", "repo_id": "promptflow", "token_count": 272 }
74
from promptflow import tool @tool def extract_incident_id(incident_content: str, incident_id: int): if incident_id >= 0 and incident_id < 3: return { "has_incident_id": True, "incident_id": incident_id, "incident_content": incident_content } return { "has_incident_id": False, "incident_id": incident_id, "incident_content": incident_content }
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/incident_id_extractor.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/incident_id_extractor.py", "repo_id": "promptflow", "token_count": 196 }
75
from promptflow import tool @tool def square(input: int) -> int: return input*input
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/square.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/square.py", "repo_id": "promptflow", "token_count": 27 }
76
inputs: image_list: type: list default: - data:image/jpg;path: logo.jpg - data:image/png;path: logo_2.png image_dict: type: object default: image_1: data:image/jpg;path: logo.jpg image_2: data:image/png;path: logo_2.png outputs: output: type: list reference: ${python_node.output} nodes: - name: python_node type: python source: type: code path: passthrough_list.py inputs: image_list: ${inputs.image_list} image_dict: ${inputs.image_dict} - name: aggregate_1 type: python source: type: code path: merge_images.py inputs: image_list: ${python_node.output} image_dict: - image_1: data:image/jpg;path: logo.jpg image_2: data:image/png;path: logo_2.png aggregation: true - name: aggregate_2 type: python source: type: code path: merge_images.py inputs: image_list: ${python_node.output} image_dict: ${inputs.image_dict} aggregation: true
promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_composite_image/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_composite_image/flow.dag.yaml", "repo_id": "promptflow", "token_count": 439 }
77
*.ipynb .venv/ .data/ .env .vscode/ outputs/ connection.json .gitignore README.md eval_cli.md data/
promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/.amlignore/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/.amlignore", "repo_id": "promptflow", "token_count": 49 }
78
import os import openai from dotenv import load_dotenv from promptflow import tool # The inputs section will change based on the arguments of the tool function, after you save the code # Adding type to arguments and return value will help the system show the types properly # Please update the function name/signature per need def to_bool(value) -> bool: return str(value).lower() == "true" @tool def my_python_tool(input1: str) -> str: return 'hello '
promptflow/src/promptflow/tests/test_configs/flows/failed_flow/hello.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/failed_flow/hello.py", "repo_id": "promptflow", "token_count": 127 }
79
tensorflow
promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/requirements/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/requirements", "repo_id": "promptflow", "token_count": 3 }
80
import os from langchain.chat_models import AzureChatOpenAI from langchain_core.messages import HumanMessage from langchain.agents.agent_types import AgentType from langchain.agents.initialize import initialize_agent from langchain.agents.load_tools import load_tools from promptflow import tool from promptflow.connections import AzureOpenAIConnection from promptflow.integrations.langchain import PromptFlowCallbackHandler @tool def test_langchain_traces(question: str, conn: AzureOpenAIConnection): os.environ["AZURE_OPENAI_API_KEY"] = conn.api_key os.environ["OPENAI_API_VERSION"] = conn.api_version os.environ["AZURE_OPENAI_ENDPOINT"] = conn.api_base model = AzureChatOpenAI( temperature=0.7, azure_deployment="gpt-35-turbo", ) tools = load_tools(["llm-math"], llm=model) # Please keep use agent to enable customized CallBack handler agent = initialize_agent( tools, model, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False, callbacks=[PromptFlowCallbackHandler()] ) message = HumanMessage( content=question ) try: return agent.run(message) except Exception as e: return str(e)
promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/test_langchain_traces.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/test_langchain_traces.py", "repo_id": "promptflow", "token_count": 434 }
81
{"text": "Hello World!"}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_script_tool_with_custom_strong_type_connection/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_script_tool_with_custom_strong_type_connection/data.jsonl", "repo_id": "promptflow", "token_count": 9 }
82
from promptflow import tool from char_generator import character_generator @tool def echo(text): """Echo the input string.""" echo_text = "Echo - " + "".join(character_generator(text)) return echo_text
promptflow/src/promptflow/tests/test_configs/flows/generator_tools/echo.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/generator_tools/echo.py", "repo_id": "promptflow", "token_count": 71 }
83
from promptflow import tool from promptflow.connections import AzureOpenAIConnection @tool def conn_tool(conn: AzureOpenAIConnection): assert isinstance(conn, AzureOpenAIConnection) return conn.api_base
promptflow/src/promptflow/tests/test_configs/flows/llm_connection_override/conn_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/llm_connection_override/conn_tool.py", "repo_id": "promptflow", "token_count": 68 }
84
inputs: number: type: int outputs: output: type: int reference: ${mod_three.output.value} nodes: - name: mod_three type: python source: type: code path: mod_three.py inputs: number: ${inputs.number}
promptflow/src/promptflow/tests/test_configs/flows/mod-n/three/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/mod-n/three/flow.dag.yaml", "repo_id": "promptflow", "token_count": 99 }
85
{ "question": "What is the capital of the United States of America?", "chat_history": [] }
promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/samples.json", "repo_id": "promptflow", "token_count": 33 }
86
import os from promptflow import tool from promptflow.connections import CustomConnection @tool def print_secret(text: str, connection: CustomConnection): print(connection["key1"]) print(connection["key2"]) return text
promptflow/src/promptflow/tests/test_configs/flows/print_secret_flow/print_secret.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/print_secret_flow/print_secret.py", "repo_id": "promptflow", "token_count": 69 }
87
inputs: image_list: type: list default: - data:image/jpg;path: logo.jpg - data:image/png;path: logo_2.png image_dict: type: object default: image_1: data:image/jpg;path: logo.jpg image_2: data:image/png;path: logo_2.png outputs: output: type: list reference: ${python_node_3.output} nodes: - name: python_node type: python source: type: code path: passthrough_list.py inputs: image_list: ${inputs.image_list} image_dict: ${inputs.image_dict} - name: python_node_2 type: python source: type: code path: passthrough_dict.py inputs: image_list: - data:image/jpg;path: logo.jpg - data:image/png;path: logo_2.png image_dict: image_1: data:image/jpg;path: logo.jpg image_2: data:image/png;path: logo_2.png - name: python_node_3 type: python source: type: code path: passthrough_list.py inputs: image_list: ${python_node.output} image_dict: ${python_node_2.output}
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_composite_image/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_composite_image/flow.dag.yaml", "repo_id": "promptflow", "token_count": 468 }
88
system: Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous. {% for item in chat_history %} user: {{item.inputs.question}} {% if 'function_call' in item.outputs.llm_output %} assistant: Function generation requested, function = {{item.outputs.llm_output.function_call.name}}, args = {{item.outputs.llm_output.function_call.arguments}} function: name: {{item.outputs.llm_output.function_call.name}} content: {{item.outputs.answer}} {% else %} assistant: {{item.outputs.llm_output}}}} {% endif %}} {% endfor %} user: {{question}}
promptflow/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/use_functions_with_chat_models.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/use_functions_with_chat_models.jinja2", "repo_id": "promptflow", "token_count": 204 }
89
from promptflow import tool @tool def print_special_character(input1: str) -> str: # Add special character to test if file read is working. return "https://www.bing.com//"
promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.py", "repo_id": "promptflow", "token_count": 61 }
90
[ { "input": "atom", "index": 0 }, { "input": "atom", "index": 6 }, { "input": "atom", "index": 12 },{ "input": "atom", "index": 18 },{ "input": "atom", "index": 24 },{ "input": "atom", "index": 30 },{ "input": "atom", "index": 36 },{ "input": "atom", "index": 42 },{ "input": "atom", "index": 48 },{ "input": "atom", "index": 54 } ]
promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_ten_inputs/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_ten_inputs/samples.json", "repo_id": "promptflow", "token_count": 239 }
91
{"url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "answer": "Channel", "evidence": "Both"} {"url": "https://arxiv.org/abs/2307.04767", "answer": "Academic", "evidence": "Both"} {"url": "https://play.google.com/store/apps/details?id=com.twitter.android", "answer": "App", "evidence": "Both"}
promptflow/src/promptflow/tests/test_configs/flows/web_classification/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification/data.jsonl", "repo_id": "promptflow", "token_count": 112 }
92
#!/bin/bash # Install your packages here.
promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants/.promptflow/flow.env_files/setup.sh/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants/.promptflow/flow.env_files/setup.sh", "repo_id": "promptflow", "token_count": 13 }
93
Your task is to classify a given url into one of the following types: Movie, App, Academic, Channel, Profile, PDF or None based on the text content information. The classification will be based on the url, the webpage text content summary, or both. Here are a few examples: {% for ex in examples %} URL: {{ex.url}} Text content: {{ex.text_content}} OUTPUT: {"category": "{{ex.category}}", "evidence": "{{ex.evidence}}"} {% endfor %} For a given URL : {{url}}, and text content: {{text_content}}. Classify above url to complete the category and indicate evidence. OUTPUT:
promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/classify_with_llm.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/classify_with_llm.jinja2", "repo_id": "promptflow", "token_count": 165 }
94
Please summarize some keywords of this paragraph and have some details of each keywords. Do not add any information that is not in the text. Text: {{text}} Summary:
promptflow/src/promptflow/tests/test_configs/flows/web_classification_v1/summarize_text_content__variant_1.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_v1/summarize_text_content__variant_1.jinja2", "repo_id": "promptflow", "token_count": 39 }
95
from promptflow import tool @tool def convert_to_dict(input_str: str): raise Exception("mock exception")
promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_exception/convert_to_dict.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_exception/convert_to_dict.py", "repo_id": "promptflow", "token_count": 36 }
96
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.028' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.220' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.152' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.251' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:45:32 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '127' content-md5: - i/8q1x5YKzHv3Fd/R8lYUQ== content-type: - application/octet-stream last-modified: - Fri, 28 Jul 2023 12:34:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 28 Jul 2023 12:34:52 GMT x-ms-meta-name: - 13fa99dd-c98e-4f2a-a704-4295d4ed6f68 x-ms-meta-upload_status: - completed x-ms-meta-version: - 0367c5c6-9f53-4a75-8623-7e53699f0d0b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:45:33 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.072' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.149' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:45:37 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:45:38 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '873' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.296' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "b9ab955a-e7fa-4785-8ee2-77aeca5d8816", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.389' status: code: 200 message: OK - request: body: null headers: Accept: - text/plain, application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/cancel response: body: string: '' headers: connection: - keep-alive content-length: - '0' strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.465' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "b9ab955a-e7fa-4785-8ee2-77aeca5d8816", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.305' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049145, "rootRunId": "name", "createdUtc": "2024-01-12T08:45:45.0506879+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 4, "statusRevision": 2, "runUuid": "87e3f885-8ac4-41e5-88ac-2f4c18c6b260", "parentRunUuid": null, "rootRunUuid": "87e3f885-8ac4-41e5-88ac-2f4c18c6b260", "lastStartTimeUtc": "2024-01-12T08:45:57.6980015+00:00", "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": "2024-01-12T08:45:57.6980015+00:00", "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:45:49.5053048+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "CancelRequested", "startTimeUtc": "2024-01-12T08:45:57.6980015+00:00", "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "b9ab955a-e7fa-4785-8ee2-77aeca5d8816"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4110' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.058' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_cancel_run.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_cancel_run.yaml", "repo_id": "promptflow", "token_count": 26473 }
97
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.095' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.163' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:09 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:10 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:14 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '52' content-md5: - kHimciLnA7d3/I2LBUeLNA== content-type: - application/octet-stream last-modified: - Fri, 22 Sep 2023 09:37:31 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 22 Sep 2023 09:37:30 GMT x-ms-meta-name: - aa1844d8-4898-4daa-8100-6140558fc7c9 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:15 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/partial_fail/flow.dag.yaml", "runId": "failed_run_name", "runDisplayName": "sdk-cli-test-fixture-failed-run", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '782' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"failed_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.976' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.388' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.261' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.411' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.328' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.367' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.252' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.289' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.461' status: code: 200 message: OK - request: body: '{"runId": "failed_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046481, "rootRunId": "failed_run_name", "createdUtc": "2024-01-12T08:01:21.0459935+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageFormat": "The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageParameters": {"invalid_relations": "${data.key}"}, "referenceCode": "Executor", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ValidationError", "innerError": {"code": "InputMappingError", "innerError": null}}, "debugInfo": {"type": "InputMappingError", "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n", "innerException": null, "data": null, "errorResponse": null}, "additionalInfo": null}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:01:41.930978+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "ebad9732-07a7-434c-b7fb-637162729eb8", "parentRunUuid": null, "rootRunUuid": "ebad9732-07a7-434c-b7fb-637162729eb8", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:01.7835699", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:01:41.5560578+00:00", "duration": "00:00:01.7835699", "cancelationReason": null, "currentAttemptId": 1, "runId": "failed_run_name", "parentRunId": null, "experimentId": "1848033e-509f-4c52-92ee-f0a0121fe99e", "status": "Failed", "startTimeUtc": "2024-01-12T08:01:40.3861186+00:00", "endTimeUtc": "2024-01-12T08:01:42.1696885+00:00", "scheduleId": null, "displayName": "sdk-cli-test-fixture-failed-run", "name": null, "dataContainerId": "dcid.failed_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "31858a8dfc61a642bb0ab6df4fc3ac7b3807de4ffead00d1", "azureml.promptflow.flow_lineage_id": "de293df4f50622090c0225852d59cd663b6b629e38728f7444fa0f12255a0647", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/bc20fa079592a8072922533f187e3184/partial_fail/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "27175d15-f6d8-4792-9072-e2b684753205", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '7988' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.048' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name/logContent response: body: string: '"2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO [failed_run_name] Receiving v2 bulk run request 74219027-a510-47c5-b30f-f9a2e05d3f12: {\"flow_id\": \"failed_run_name\", \"flow_run_id\": \"failed_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"27175d15-f6d8-4792-9072-e2b684753205\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.failed_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A42%3A25Z&ske=2024-01-13T15%3A52%3A25Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A51%3A24Z&se=2024-01-12T16%3A01%3A24Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/failed_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A01%3A25Z&ske=2024-01-19T08%3A01%3A25Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A01%3A25Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Updating failed_run_name to Status.Preparing...\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Get snapshot sas url for 27175d15-f6d8-4792-9072-e2b684753205...\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Downloading snapshot 27175d15-f6d8-4792-9072-e2b684753205 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/27175d15-f6d8-4792-9072-e2b684753205.zip...\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/failed_run_name/27175d15-f6d8-4792-9072-e2b684753205.zip with size 701 for snapshot 27175d15-f6d8-4792-9072-e2b684753205.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Download snapshot 27175d15-f6d8-4792-9072-e2b684753205 completed.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Starting to check process 3429 status for run failed_run_name\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Start checking run status for run failed_run_name\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO [49--3429] Start processing flowV2......\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:01:37 +0000 3429 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:01:37 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime INFO Resolve data from url finished in 2.9352363562211394 seconds\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime INFO Starting the aml run ''failed_run_name''...\n2024-01-12 08:01:40 +0000 3429 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:40 +0000 3429 execution.bulk ERROR Error occurred while executing batch run. Exception: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime ERROR Run failed_run_name failed. Exception: {\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageFormat\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageParameters\": {\n \"invalid_relations\": \"${data.key}\"\n },\n \"referenceCode\": \"Executor\",\n \"code\": \"UserError\",\n \"innerError\": {\n \"code\": \"ValidationError\",\n \"innerError\": {\n \"code\": \"InputMappingError\",\n \"innerError\": null\n }\n },\n \"debugInfo\": {\n \"type\": \"InputMappingError\",\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"stackTrace\": \"Traceback (most recent call last):\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\\\", line 671, in execute_bulk_run_request\\n batch_engine.run(\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 147, in run\\n raise e\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 132, in run\\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 41, in process_batch_inputs\\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 91, in _validate_and_apply_inputs_mapping\\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in _apply_inputs_mapping_for_all_lines\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in <listcomp>\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 292, in apply_inputs_mapping\\n raise InputMappingError(\\n\",\n \"innerException\": null\n }\n}\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\npromptflow.batch._errors.InputMappingError: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:41 +0000 3429 execution.bulk INFO Upload status summary metrics for run failed_run_name finished in 0.7801888957619667 seconds\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''failed_run_name''\n2024-01-12 08:01:41 +0000 3429 execution.bulk INFO Upload RH properties for run failed_run_name finished in 0.08418271783739328 seconds\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Creating unregistered output Asset for Run failed_run_name...\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Patching failed_run_name...\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime WARNING [failed_run_name] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n\n2024-01-12 08:01:42 +0000 3429 promptflow-runtime INFO Ending the aml run ''failed_run_name'' with status ''Failed''...\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO Process 3429 finished\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO [failed_run_name] End processing bulk run\n2024-01-12 08:01:43 +0000 49 promptflow-runtime ERROR Submit flow request failed Code: 400 InnerException type: InputMappingError Exception type hierarchy: UserError/ValidationError/InputMappingError\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/failed_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '15117' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.766' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_stream_failed_run_logs.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_stream_failed_run_logs.yaml", "repo_id": "promptflow", "token_count": 70066 }
98
flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file connections: classify_with_llm: connection: new_ai_connection # model is also supported for openai connection model: test_model
promptflow/src/promptflow/tests/test_configs/runs/run_with_connections_model.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/run_with_connections_model.yaml", "repo_id": "promptflow", "token_count": 131 }
99
import bs4 import requests from promptflow import tool @tool def fetch_text_content_from_url(url: str): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") soup.prettify() return soup.get_text()[:2000] else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: " f"{response.text[:100]}" ) print(msg) return "No available content" except Exception as e: print("Get url failed with error: {}".format(e)) return "No available content"
promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/fetch_text_content_from_url.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/fetch_text_content_from_url.py", "repo_id": "promptflow", "token_count": 484 }
100
from pathlib import Path import importlib.util from promptflow import PFClient package_name = "tool_package" def list_package_tools(raise_error=False): """ List the meta of all tools in the package. The key of meta dict is the module name of tools and value is the meta data of the tool. """ # This function is auto generated by pf CLI, please do not modify manually. tools = {} pf_client = PFClient() tools = pf_client._tools._list_tools_in_package(package_name, raise_error=raise_error) return tools
promptflow/src/promptflow/tests/test_configs/tools/tool_package/tool_package/utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/tools/tool_package/tool_package/utils.py", "repo_id": "promptflow", "token_count": 172 }
101
inputs: num: type: int outputs: content: type: string reference: ${divide_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${inputs.num} activate: when: ${inputs.num} > 0
promptflow/src/promptflow/tests/test_configs/wrong_flows/invalid_activate_config/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/invalid_activate_config/flow.dag.yaml", "repo_id": "promptflow", "token_count": 115 }
102
inputs: num: type: int outputs: content: type: string reference: ${another_stringify_num.output} nodes: - name: stringify_num type: python source: type: code path: stringify_num.py inputs: num: ${inputs.num}
promptflow/src/promptflow/tests/test_configs/wrong_flows/outputs_reference_not_valid/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/outputs_reference_not_valid/flow.dag.yaml", "repo_id": "promptflow", "token_count": 103 }
103
inputs: text: type: string outputs: output: type: string reference: ${search_by_text.output.search_metadata} nodes: - name: search_by_text type: python source: type: package tool: promptflow.tools.serpapi.SerpAPI.search_11 inputs: connection: serp_connection query: ${inputs.text} num: 1
promptflow/src/promptflow/tests/test_configs/wrong_flows/wrong_tool_in_package_tools/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/wrong_tool_in_package_tools/flow.dag.yaml", "repo_id": "promptflow", "token_count": 132 }
104
# Manage flows :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../../how-to-guides/faq.md#stable-vs-experimental). ::: This documentation will walk you through how to manage your flow with CLI and SDK on [Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow?view=azureml-api-2). The flow examples in this guide come from [examples/flows/standard](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard). In general: - For `CLI`, you can run `pfazure flow --help` in the terminal to see help messages. - For `SDK`, you can refer to [Promptflow Python Library Reference](../../reference/python-library-reference/promptflow.md) and check `promptflow.azure.PFClient.flows` for more flow operations. :::{admonition} Prerequisites - Refer to the prerequisites in [Quick start](./quick-start.md#prerequisites). - Use the `az login` command in the command line to log in. This enables promptflow to access your credentials. ::: Let's take a look at the following topics: - [Manage flows](#manage-flows) - [Create a flow](#create-a-flow) - [List flows](#list-flows) ## Create a flow ::::{tab-set} :::{tab-item} CLI :sync: CLI To set the target workspace, you can either specify it in the CLI command or set default value in the Azure CLI. You can refer to [Quick start](./quick-start.md#submit-a-run-to-workspace) for more information. To create a flow to Azure from local flow directory, you can use ```bash # create the flow pfazure flow create --flow <path-to-flow-folder> # create the flow with metadata pfazure flow create --flow <path-to-flow-folder> --set display_name=<display-name> description=<description> tags.key1=value1 ``` After the flow is created successfully, you can see the flow summary in the command line. ![img](../../media/cloud/manage-flows/flow_create_0.png) ::: :::{tab-item} SDK :sync: SDK 1. Import the required libraries ```python from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential # azure version promptflow apis from promptflow.azure import PFClient ``` 2. Get credential ```python try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception as ex: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() ``` 3. Get a handle to the workspace ```python # Get a handle to workspace pf = PFClient( credential=credential, subscription_id="<SUBSCRIPTION_ID>", # this will look like xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx resource_group_name="<RESOURCE_GROUP>", workspace_name="<AML_WORKSPACE_NAME>", ) ``` 4. Create the flow ```python # specify flow path flow = "./web-classification" # create flow to Azure flow = pf.flows.create_or_update( flow=flow, # path to the flow folder display_name="my-web-classification", # it will be "web-classification-{timestamp}" if not specified type="standard", # it will be "standard" if not specified ) ``` ::: :::: On Azure portal, you can see the created flow in the flow list. ![img](../../media/cloud/manage-flows/flow_create_1.png) And the flow source folder on file share is `Users/<alias>/promptflow/<flow-display-name>`: ![img](../../media/cloud/manage-flows/flow_create_2.png) Note that if the flow display name is not specified, it will default to the flow folder name + timestamp. (e.g. `web-classification-11-13-2023-14-19-10`) ## List flows ::::{tab-set} :::{tab-item} CLI :sync: CLI List flows with default json format: ```bash pfazure flow list --max-results 1 ``` ![img](../../media/cloud/manage-flows/flow_list_0.png) ::: :::{tab-item} SDK :sync: SDK ```python # reuse the pf client created in "create a flow" section flows = pf.flows.list(max_results=1) ``` ::: ::::
promptflow/docs/cloud/azureai/manage-flows.md/0
{ "file_path": "promptflow/docs/cloud/azureai/manage-flows.md", "repo_id": "promptflow", "token_count": 1304 }
0
# Deploy a flow using Docker :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: There are two steps to deploy a flow using docker: 1. Build the flow as docker format. 2. Build and run the docker image. ## Build a flow as docker format ::::{tab-set} :::{tab-item} CLI :sync: CLI Use the command below to build a flow as docker format: ```bash pf flow build --source <path-to-your-flow-folder> --output <your-output-dir> --format docker ``` ::: :::{tab-item} VS Code Extension :sync: VSC In visual editor, choose: ![img](../../media/how-to-guides/vscode_export.png) Click the button below to build a flow as docker format: ![img](../../media/how-to-guides/vscode_export_as_docker.png) ::: :::: Note that all dependent connections must be created before exporting as docker. ### Docker format folder structure Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - Dockerfile: the dockerfile to build the image - start.sh: the script used in `CMD` of `Dockerfile` to start the service - runit: the folder contains all the runit scripts - ... - settings.json: a json file to store the settings of the docker image - README.md: Simple introduction of the files ## Deploy with Docker We are going to use the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) as an example to show how to deploy with docker. Please ensure you have [create the connection](../manage-connections.md#create-a-connection) required by flow, if not, you could refer to [Setup connection for web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification). ## Build a flow as docker format app Use the command below to build a flow as docker format app: ```bash pf flow build --source ../../flows/standard/web-classification --output dist --format docker ``` Note that all dependent connections must be created before exporting as docker. ### Build Docker image Like other Dockerfile, you need to build the image first. You can tag the image with any name you want. In this example, we use `promptflow-serve`. Run the command below to build image: ```bash docker build dist -t web-classification-serve ``` ### Run Docker image Run the docker image will start a service to serve the flow inside the container. #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in containers. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` You'll need to set up the environment variables in the container to make the connections work. ### Run with `docker run` You can run the docker image directly set via below commands: ```bash # The started service will listen on port 8080.You can map the port to any port on the host machine as you want. docker run -p 8080:8080 -e OPEN_AI_CONNECTION_API_KEY=<secret-value> web-classification-serve ``` ### Test the endpoint After start the service, you can use curl to test it: ```bash curl http://localhost:8080/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` ## Next steps - Try the example [here](https://github.com/microsoft/promptflow/blob/main/examples/tutorials/flow-deploy/docker). - See how to [deploy a flow using kubernetes](deploy-using-kubernetes.md).
promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-docker.md/0
{ "file_path": "promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-docker.md", "repo_id": "promptflow", "token_count": 1142 }
1
# Develop a tool We provide guides on how to develop a tool and use it. ```{toctree} :maxdepth: 1 :hidden: create-and-use-tool-package add-a-tool-icon add-category-and-tags-for-tool use-file-path-as-tool-input customize_an_llm_tool create-cascading-tool-inputs create-your-own-custom-strong-type-connection create-dynamic-list-tool-input ```
promptflow/docs/how-to-guides/develop-a-tool/index.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-tool/index.md", "repo_id": "promptflow", "token_count": 130 }
2
# Integrations The Integrations section contains documentation on custom extensions created by the community that expand prompt flow's capabilities. These include tools that enrich flows, as well as tutorials on innovative ways to use prompt flow. ```{toctree} :maxdepth: 1 tools/index llms/index ```
promptflow/docs/integrations/index.md/0
{ "file_path": "promptflow/docs/integrations/index.md", "repo_id": "promptflow", "token_count": 74 }
3
# Prompt ## Introduction The Prompt Tool in PromptFlow offers a collection of textual templates that serve as a starting point for creating prompts. These templates, based on the Jinja2 template engine, facilitate the definition of prompts. The tool proves useful when prompt tuning is required prior to feeding the prompts into the Language Model (LLM) model in PromptFlow. ## Inputs | Name | Type | Description | Required | |--------------------|--------|----------------------------------------------------------|----------| | prompt | string | The prompt template in Jinja | Yes | | Inputs | - | List of variables of prompt template and its assignments | - | ## Outputs The prompt text parsed from the prompt + Inputs ## How to write Prompt? 1. Prepare jinja template. Learn more about [Jinja](https://jinja.palletsprojects.com/en/3.1.x/) _In below example, the prompt incorporates Jinja templating syntax to dynamically generate the welcome message and personalize it based on the user's name. It also presents a menu of options for the user to choose from. Depending on whether the user_name variable is provided, it either addresses the user by name or uses a generic greeting._ ```jinja Welcome to {{ website_name }}! {% if user_name %} Hello, {{ user_name }}! {% else %} Hello there! {% endif %} Please select an option from the menu below: 1. View your account 2. Update personal information 3. Browse available products 4. Contact customer support ``` 2. Assign value for the variables. _In above example, two variables would be automatically detected and listed in '**Inputs**' section. Please assign values._ ### Sample 1 Inputs | Variable | Type | Sample Value | |---------------|--------|--------------| | website_name | string | "Microsoft" | | user_name | string | "Jane" | Outputs ``` Welcome to Microsoft! Hello, Jane! Please select an option from the menu below: 1. View your account 2. Update personal information 3. Browse available products 4. Contact customer support ``` ### Sample 2 Inputs | Variable | Type | Sample Value | |--------------|--------|----------------| | website_name | string | "Bing" | | user_name | string | " | Outputs ``` Welcome to Bing! Hello there! Please select an option from the menu below: 1. View your account 2. Update personal information 3. Browse available products 4. Contact customer support ```
promptflow/docs/reference/tools-reference/prompt-tool.md/0
{ "file_path": "promptflow/docs/reference/tools-reference/prompt-tool.md", "repo_id": "promptflow", "token_count": 783 }
4
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json environment: python_requirements_txt: requirements.txt inputs: chat_history: type: list is_chat_history: true default: [] question: type: string is_chat_input: true default: '1+1=?' outputs: answer: type: string reference: ${extract_result.output} is_chat_output: true nodes: - name: chat use_variants: true - name: extract_result type: python source: type: code path: extract_result.py inputs: input1: ${chat.output} node_variants: chat: default_variant_id: variant_0 variants: variant_0: node: type: llm source: type: code path: chat.jinja2 inputs: deployment_name: gpt-4 max_tokens: 256 temperature: 0 chat_history: ${inputs.chat_history} question: ${inputs.question} model: gpt-4 connection: open_ai_connection api: chat variant_1: node: type: llm source: type: code path: chat_variant_1.jinja2 inputs: deployment_name: gpt-4 max_tokens: 256 temperature: 0 chat_history: ${inputs.chat_history} question: ${inputs.question} model: gpt-4 connection: open_ai_connection api: chat variant_2: node: type: llm source: type: code path: chat_variant_2.jinja2 inputs: deployment_name: gpt-4 max_tokens: 256 temperature: 0 chat_history: ${inputs.chat_history} question: ${inputs.question} model: gpt-4 connection: open_ai_connection api: chat
promptflow/examples/flows/chat/chat-math-variant/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/chat/chat-math-variant/flow.dag.yaml", "repo_id": "promptflow", "token_count": 977 }
5
import PyPDF2 import faiss import os from pathlib import Path from utils.oai import OAIEmbedding from utils.index import FAISSIndex from utils.logging import log from utils.lock import acquire_lock from constants import INDEX_DIR def create_faiss_index(pdf_path: str) -> str: chunk_size = int(os.environ.get("CHUNK_SIZE")) chunk_overlap = int(os.environ.get("CHUNK_OVERLAP")) log(f"Chunk size: {chunk_size}, chunk overlap: {chunk_overlap}") file_name = Path(pdf_path).name + f".index_{chunk_size}_{chunk_overlap}" index_persistent_path = Path(INDEX_DIR) / file_name index_persistent_path = index_persistent_path.resolve().as_posix() lock_path = index_persistent_path + ".lock" log("Index path: " + os.path.abspath(index_persistent_path)) with acquire_lock(lock_path): if os.path.exists(os.path.join(index_persistent_path, "index.faiss")): log("Index already exists, bypassing index creation") return index_persistent_path else: if not os.path.exists(index_persistent_path): os.makedirs(index_persistent_path) log("Building index") pdf_reader = PyPDF2.PdfReader(pdf_path) text = "" for page in pdf_reader.pages: text += page.extract_text() # Chunk the words into segments of X words with Y-word overlap, X=CHUNK_SIZE, Y=OVERLAP_SIZE segments = split_text(text, chunk_size, chunk_overlap) log(f"Number of segments: {len(segments)}") index = FAISSIndex(index=faiss.IndexFlatL2(1536), embedding=OAIEmbedding()) index.insert_batch(segments) index.save(index_persistent_path) log("Index built: " + index_persistent_path) return index_persistent_path # Split the text into chunks with CHUNK_SIZE and CHUNK_OVERLAP as character count def split_text(text, chunk_size, chunk_overlap): # Calculate the number of chunks num_chunks = (len(text) - chunk_overlap) // (chunk_size - chunk_overlap) # Split the text into chunks chunks = [] for i in range(num_chunks): start = i * (chunk_size - chunk_overlap) end = start + chunk_size chunks.append(text[start:end]) # Add the last chunk chunks.append(text[num_chunks * (chunk_size - chunk_overlap):]) return chunks
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py", "repo_id": "promptflow", "token_count": 947 }
6
from promptflow import tool from chat_with_pdf.main import chat_with_pdf @tool def chat_with_pdf_tool(question: str, pdf_url: str, history: list, ready: str): history = convert_chat_history_to_chatml_messages(history) stream, context = chat_with_pdf(question, pdf_url, history) answer = "" for str in stream: answer = answer + str + "" return {"answer": answer, "context": context} def convert_chat_history_to_chatml_messages(history): messages = [] for item in history: messages.append({"role": "user", "content": item["inputs"]["question"]}) messages.append({"role": "assistant", "content": item["outputs"]["answer"]}) return messages def convert_chatml_messages_to_chat_history(messages): history = [] for i in range(0, len(messages), 2): history.append( { "inputs": {"question": messages[i]["content"]}, "outputs": {"answer": messages[i + 1]["content"]}, } ) return history
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf_tool.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf_tool.py", "repo_id": "promptflow", "token_count": 409 }
7
import unittest import promptflow.azure as azure from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential from base_test import BaseTest import os from promptflow._sdk._errors import InvalidRunStatusError class TestChatWithPDFAzure(BaseTest): def setUp(self): super().setUp() self.data_path = os.path.join( self.flow_path, "data/bert-paper-qna-3-line.jsonl" ) try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() self.pf = azure.PFClient.from_config(credential=credential) def tearDown(self) -> None: return super().tearDown() def test_bulk_run_chat_with_pdf(self): run = self.create_chat_run(display_name="chat_with_pdf_batch_run") self.pf.stream(run) # wait for completion self.assertEqual(run.status, "Completed") details = self.pf.get_details(run) self.assertEqual(details.shape[0], 3) def test_eval(self): run_2k, eval_groundedness_2k, eval_pi_2k = self.run_eval_with_config( self.config_2k_context, display_name="chat_with_pdf_2k_context", ) run_3k, eval_groundedness_3k, eval_pi_3k = self.run_eval_with_config( self.config_3k_context, display_name="chat_with_pdf_3k_context", ) self.check_run_basics(run_2k) self.check_run_basics(run_3k) self.check_run_basics(eval_groundedness_2k) self.check_run_basics(eval_pi_2k) self.check_run_basics(eval_groundedness_3k) self.check_run_basics(eval_pi_3k) def test_bulk_run_valid_mapping(self): data = os.path.join(self.flow_path, "data/bert-paper-qna-1-line.jsonl") run = self.create_chat_run( data=data, column_mapping={ "question": "${data.question}", "pdf_url": "${data.pdf_url}", "chat_history": "${data.chat_history}", "config": self.config_2k_context, }, ) self.pf.stream(run) # wait for completion self.assertEqual(run.status, "Completed") details = self.pf.get_details(run) self.assertEqual(details.shape[0], 1) def test_bulk_run_mapping_missing_one_column(self): run = self.create_chat_run( column_mapping={ "question": "${data.question}", "pdf_url": "${data.pdf_url}", }, ) self.pf.stream(run) # wait for completion # run won't be failed, only line runs inside it will be failed. self.assertEqual(run.status, "Completed") # TODO: get line run results when supported. def test_bulk_run_invalid_mapping(self): run = self.create_chat_run( column_mapping={ "question": "${data.question_not_exist}", "pdf_url": "${data.pdf_url}", "chat_history": "${data.chat_history}", }, stream=False, ) with self.assertRaises(InvalidRunStatusError): self.pf.stream(run) # wait for completion if __name__ == "__main__": unittest.main()
promptflow/examples/flows/chat/chat-with-pdf/tests/azure_chat_with_pdf_test.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/tests/azure_chat_with_pdf_test.py", "repo_id": "promptflow", "token_count": 1653 }
8
from promptflow import tool import json def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" weather_info = { "location": location, "temperature": "72", "unit": unit, "forecast": ["sunny", "windy"], } return weather_info def get_n_day_weather_forecast(location, format, num_days): """Get next num_days weather in a given location""" weather_info = { "location": location, "temperature": "60", "format": format, "forecast": ["rainy"], "num_days": num_days, } return weather_info @tool def run_function(response_message: dict) -> str: if "function_call" in response_message: function_name = response_message["function_call"]["name"] function_args = json.loads(response_message["function_call"]["arguments"]) print(function_args) result = globals()[function_name](**function_args) else: print("No function call") if isinstance(response_message, dict): result = response_message["content"] else: result = response_message return result
promptflow/examples/flows/chat/use_functions_with_chat_models/run_function.py/0
{ "file_path": "promptflow/examples/flows/chat/use_functions_with_chat_models/run_function.py", "repo_id": "promptflow", "token_count": 474 }
9
from promptflow import tool def string_to_number(raw_string: str) -> float: ''' Try to parse the prediction string and groundtruth string to float number. Support parse int, float, fraction and recognize non-numeric string with wrong format. Wrong format cases: 'the answer is \box{2/3}', '0, 5, or any number greater than 11', '4/7//9' ''' float_number = 0.0 try: float_number = float(raw_string) except Exception: if '/' in raw_string: split_list = raw_string.split('/') if len(split_list) == 2: numerator, denominator = split_list try: float_number = float(numerator) / float(denominator) except Exception: return None else: return None else: return None return float_number @tool def line_process(groundtruth: str, prediction: str) -> int: pred_float = string_to_number(prediction) '''Early stop''' if (pred_float is None): return -1 gt_float = string_to_number(groundtruth) if (gt_float is None): return -1 ''' both pred_float and gt_float are valid''' if round(pred_float, 10) == round(gt_float, 10): return 1 else: return -1 if __name__ == "__main__": processed_result = line_process("3/5", "6/10") print("The processed result is", processed_result) processed_result = line_process("1/2", "0.5") print("The processed result is", processed_result) processed_result = line_process("3", "5") print("The processed result is", processed_result) processed_result = line_process("2/3", "the answer is \box{2/3}") print("The processed result is", processed_result)
promptflow/examples/flows/evaluation/eval-chat-math/line_process.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-chat-math/line_process.py", "repo_id": "promptflow", "token_count": 740 }
10
# Groundedness Evaluation This is a flow leverage llm to eval groundedness: whether answer is stating facts that are all present in the given context. Tools used in this flow: - `python` tool - built-in `llm` tool ### 0. Setup connection Prepare your Azure Open AI resource follow this [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) and get your `api_key` if you don't have one. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> ``` ### 1. Test flow/node ```bash # test with default input value in flow.dag.yaml pf flow test --flow . ``` ### 2. create flow run with multi line data ```bash pf run create --flow . --data ./data.jsonl --column-mapping question='${data.question}' answer='${data.answer}' context='${data.context}' --stream ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI.
promptflow/examples/flows/evaluation/eval-groundedness/README.md/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-groundedness/README.md", "repo_id": "promptflow", "token_count": 369 }
11
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json environment: python_requirements_txt: requirements.txt inputs: document_path: type: string default: ./document1.txt language: type: string default: en outputs: extractive_summary: type: string reference: ${Extractive_Summarization.output} abstractive_summary: type: string reference: ${Abstractive_Summarization.output} sentiment: type: string reference: ${Sentiment_Analysis.output} recognized_entities: type: string reference: ${Entity_Recognition.output} nodes: - name: Read_File type: python source: type: code path: read_file.py inputs: file_path: ${inputs.document_path} - name: Translator type: python source: type: package tool: language_tools.tools.translator.get_translation inputs: connection: azure_ai_translator_connection text: ${Read_File.output} to: - en parse_response: true - name: Parse_Translation type: python source: type: code path: parse_translation.py inputs: translation_results: ${Translator.output} language: en - name: PII_Entity_Recognition type: python source: type: package tool: language_tools.tools.pii_entity_recognition.get_pii_entity_recognition inputs: connection: azure_ai_language_connection language: ${inputs.language} text: ${Parse_Translation.output} parse_response: true categories: - Address - Age - Date - Email - IPAddress - PhoneNumber - URL - name: Abstractive_Summarization type: python source: type: package tool: language_tools.tools.abstractive_summarization.get_abstractive_summarization inputs: connection: azure_ai_language_connection language: ${inputs.language} text: ${PII_Entity_Recognition.output} parse_response: true query: quarterly results summary_length: medium - name: Sentiment_Analysis type: python source: type: package tool: language_tools.tools.sentiment_analysis.get_sentiment_analysis inputs: connection: azure_ai_language_connection language: ${inputs.language} text: ${Abstractive_Summarization.output} parse_response: true - name: Entity_Recognition type: python source: type: package tool: language_tools.tools.entity_recognition.get_entity_recognition inputs: connection: azure_ai_language_connection language: ${inputs.language} text: ${PII_Entity_Recognition.output} parse_response: true - name: Extractive_Summarization type: python source: type: package tool: language_tools.tools.extractive_summarization.get_extractive_summarization inputs: connection: azure_ai_language_connection language: ${inputs.language} text: ${PII_Entity_Recognition.output} query: Cloud AI parse_response: true
promptflow/examples/flows/integrations/azure-ai-language/analyze_documents/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/integrations/azure-ai-language/analyze_documents/flow.dag.yaml", "repo_id": "promptflow", "token_count": 1037 }
12
from promptflow import tool @tool def functions_format() -> list: functions = [ { "name": "search", "description": """The action will search this entity name on Wikipedia and returns the first {count} sentences if it exists. If not, it will return some related entities to search next.""", "parameters": { "type": "object", "properties": { "entity": { "type": "string", "description": "Entity name which is used for Wikipedia search.", }, "count": { "type": "integer", "default": 10, "description": "Returned sentences count if entity name exists Wikipedia.", }, }, "required": ["entity"], }, }, { "name": "python", "description": """A Python shell. Use this to execute python commands. Input should be a valid python command and you should print result with `print(...)` to see the output.""", "parameters": { "type": "object", "properties": { "command": { "type": "string", "description": "The command you want to execute in python", } }, "required": ["command"] }, }, { "name": "finish", "description": """use this to signal that you have finished all your goals and remember show your results""", "parameters": { "type": "object", "properties": { "response": { "type": "string", "description": "final response to let people know you have finished your goals and remember " "show your results", }, }, "required": ["response"], }, }, ] return functions
promptflow/examples/flows/standard/autonomous-agent/functions.py/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/functions.py", "repo_id": "promptflow", "token_count": 1183 }
13
from promptflow import tool @tool def product_recommendation(query: str) -> str: print(f"Your query is {query}.\nRecommending products...") return "I recommend promptflow to you, which can solve your problem very well."
promptflow/examples/flows/standard/conditional-flow-for-switch/product_recommendation.py/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-switch/product_recommendation.py", "repo_id": "promptflow", "token_count": 67 }
14
import io from promptflow import tool from promptflow.contracts.multimedia import Image from PIL import Image as PIL_Image @tool def passthrough(input_image: Image) -> Image: image_stream = io.BytesIO(input_image) pil_image = PIL_Image.open(image_stream) flipped_image = pil_image.transpose(PIL_Image.FLIP_LEFT_RIGHT) buffer = io.BytesIO() flipped_image.save(buffer, format="PNG") return Image(buffer.getvalue(), mime_type="image/png")
promptflow/examples/flows/standard/describe-image/flip_image.py/0
{ "file_path": "promptflow/examples/flows/standard/describe-image/flip_image.py", "repo_id": "promptflow", "token_count": 165 }
15
# Generate Python docstring This example can help you automatically generate Python code's docstring and return the modified code. Tools used in this flow: - `load_code` tool, it can load code from a file path. - Load content from a local file. - Loading content from a remote URL, currently loading HTML content, not just code. - `divide_code` tool, it can divide code into code blocks. - To avoid files that are too long and exceed the token limit, it is necessary to split the file. - Avoid using the same function (such as __init__(self)) to generate docstrings in the same one file, which may cause confusion when adding docstrings to the corresponding functions in the future. - `generate_docstring` tool, it can generate docstring for a code block, and merge docstring into origin code. ## What you will learn In this flow, you will learn - How to compose an auto generate docstring flow. - How to use different LLM APIs to request LLM, including synchronous/asynchronous APIs, chat/completion APIs. - How to use asynchronous multiple coroutine approach to request LLM API. - How to construct a prompt. ## Prerequisites ### Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ### Create connection for LLM to use ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> ``` Note: The [azure_openai.yml](../../../connections/azure_openai.yml) file is located in connections folder. We are using connection named `open_ai_connection`in [flow.dag.yaml](flow.dag.yaml). ## Execute with Promptflow ### Execute with SDK `python main.py --source <your_file_path>` **Note**: the file path should be a python file path, default is `./azure_open_ai.py`. A webpage will be generated, displaying diff: ![result](result.png) ### Execute with CLI ```bash # run flow with default file path in flow.dag.yaml pf flow test --flow . # run flow with file path pf flow test --flow . --inputs source="./azure_open_ai.py" ``` ```bash # run flow with batch data pf run create --flow . --data ./data.jsonl --name auto_generate_docstring --column-mapping source='${data.source}' ``` Output the code after add the docstring. You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI.
promptflow/examples/flows/standard/gen-docstring/README.md/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/README.md", "repo_id": "promptflow", "token_count": 730 }
16
from typing import Union from promptflow import tool from typing import Dict, List from promptflow.connections import AzureOpenAIConnection, OpenAIConnection, CognitiveSearchConnection def generate_index_json( index_type: str, index: str = "", index_connection: CognitiveSearchConnection = "", index_name: str = "", content_field: str = "", embedding_field: str = "", metadata_field: str = "", semantic_configuration: str = "", embedding_connection: Union[AzureOpenAIConnection, OpenAIConnection] = "", embedding_deployment: str = "" ) -> str: """This is a dummy function to generate a index json based on the inputs. """ import json inputs = "" if index_type == "Azure Cognitive Search": # 1. Call to create a new index # 2. Call to get the index yaml and return as a json inputs = { "index_type": index_type, "index": "retrieved_index", "index_connection": index_connection, "index_name": index_name, "content_field": content_field, "embedding_field": embedding_field, "metadata_field": metadata_field, "semantic_configuration": semantic_configuration, "embedding_connection": embedding_connection, "embedding_deployment": embedding_deployment } elif index_type == "Workspace MLIndex": # Call to get the index yaml and return as a json inputs = { "index_type": index_type, "index": index, "index_connection": "retrieved_index_connection", "index_name": "retrieved_index_name", "content_field": "retrieved_content_field", "embedding_field": "retrieved_embedding_field", "metadata_field": "retrieved_metadata_field", "semantic_configuration": "retrieved_semantic_configuration", "embedding_connection": "retrieved_embedding_connection", "embedding_deployment": "retrieved_embedding_deployment" } result = json.dumps(inputs) return result def reverse_generate_index_json(index_json: str) -> Dict: """This is a dummy function to generate origin inputs from index_json. """ import json # Calculate the UI inputs based on the index_json result = json.loads(index_json) return result def list_index_types(subscription_id, resource_group_name, workspace_name) -> List[str]: return [ {"value": "Azure Cognitive Search"}, {"value": "PineCone"}, {"value": "FAISS"}, {"value": "Workspace MLIndex"}, {"value": "MLIndex from path"} ] def list_indexes( subscription_id, resource_group_name, workspace_name ) -> List[Dict[str, Union[str, int, float, list, Dict]]]: import random words = ["apple", "banana", "cherry", "date", "elderberry", "fig", "grape", "honeydew", "kiwi", "lemon"] result = [] for i in range(10): random_word = f"{random.choice(words)}{i}" cur_item = { "value": random_word, "display_value": f"index_{random_word}", "hyperlink": f'https://www.bing.com/search?q={random_word}', "description": f"this is {i} item", } result.append(cur_item) return result def list_fields(subscription_id, resource_group_name, workspace_name) -> List[str]: return [ {"value": "id"}, {"value": "content"}, {"value": "catelog"}, {"value": "sourcepage"}, {"value": "sourcefile"}, {"value": "title"}, {"value": "content_hash"}, {"value": "meta_json_string"}, {"value": "content_vector_open_ai"} ] def list_semantic_configuration(subscription_id, resource_group_name, workspace_name) -> List[str]: return [{"value": "azureml-default"}] def list_embedding_deployment(embedding_connection: str) -> List[str]: return [{"value": "text-embedding-ada-002"}, {"value": "ada-1k-tpm"}] @tool def my_tool(index_json: str, queries: str, top_k: int) -> str: return f"Hello {index_json}"
promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_generated_by_input.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_generated_by_input.py", "repo_id": "promptflow", "token_count": 1712 }
17
import pytest import unittest from my_tool_package.tools.tool_with_custom_strong_type_connection import MyCustomConnection, my_tool @pytest.fixture def my_custom_connection() -> MyCustomConnection: my_custom_connection = MyCustomConnection( { "api_key" : "my-api-key", "api_base" : "my-api-base" } ) return my_custom_connection class TestMyToolWithCustomStrongTypeConnection: def test_my_tool(self, my_custom_connection): result = my_tool(my_custom_connection, input_text="Microsoft") assert result == "Hello Microsoft" # Run the unit tests if __name__ == "__main__": unittest.main()
promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_custom_strong_type_connection.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_custom_strong_type_connection.py", "repo_id": "promptflow", "token_count": 257 }
18
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Microsoft outputs: my_output: type: string reference: ${my_script_tool.output} nodes: - name: my_script_tool type: python source: type: code path: my_script_tool.py inputs: connection: normal_custom_connection input_text: ${inputs.text}
promptflow/examples/tools/use-cases/custom-strong-type-connection-script-tool-showcase/flow.dag.yaml/0
{ "file_path": "promptflow/examples/tools/use-cases/custom-strong-type-connection-script-tool-showcase/flow.dag.yaml", "repo_id": "promptflow", "token_count": 157 }
19
# Deploy flow as applications This folder contains examples of how to build & deploy flow as applications like Web Application packaged in Docker format.
promptflow/examples/tutorials/flow-deploy/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/README.md", "repo_id": "promptflow", "token_count": 28 }
20
--- resources: examples/connections/azure_openai.yml, examples/flows/standard/web-classification --- # Deploy flow using Kubernetes This example demos how to deploy flow as a Kubernetes app. We will use [web-classification](../../../flows/standard/web-classification/README.md) as example in this tutorial. Please ensure that you have installed all the required dependencies. You can refer to the "Prerequisites" section in the README of the [web-classification](../../../flows/standard/web-classification/README.md#Prerequisites) for a comprehensive list of prerequisites and installation instructions. ## Build a flow as docker format Note that all dependent connections must be created before building as docker. ```bash # create connection if not created before pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as docker format app: ```bash pf flow build --source ../../../flows/standard/web-classification --output dist --format docker ``` ## Deploy with Kubernetes ### Build Docker image Like other Dockerfile, you need to build the image first. You can tag the image with any name you want. In this example, we use `web-classification-serve`. Then run the command below: ```shell cd dist docker build . -t web-classification-serve ``` ### Create Kubernetes deployment yaml. The Kubernetes deployment yaml file acts as a guide for managing your docker container in a Kubernetes pod. It clearly specifies important information like the container image, port configurations, environment variables, and various settings. Below, you'll find a simple deployment template that you can easily customize to meet your needs. **Note**: You need encode the secret using base64 firstly and input the <encoded_secret> as 'open-ai-connection-api-key' in the deployment configuration. For example, you can run below commands in linux: ```shell encoded_secret=$(echo -n <your_api_key> | base64) ``` ```yaml --- kind: Namespace apiVersion: v1 metadata: name: web-classification --- apiVersion: v1 kind: Secret metadata: name: open-ai-connection-api-key namespace: web-classification type: Opaque data: open-ai-connection-api-key: <encoded_secret> --- apiVersion: v1 kind: Service metadata: name: web-classification-service namespace: web-classification spec: type: NodePort ports: - name: http port: 8080 targetPort: 8080 nodePort: 30123 selector: app: web-classification-serve-app --- apiVersion: apps/v1 kind: Deployment metadata: name: web-classification-serve-app namespace: web-classification spec: selector: matchLabels: app: web-classification-serve-app template: metadata: labels: app: web-classification-serve-app spec: containers: - name: web-classification-serve-container image: web-classification-serve imagePullPolicy: Never ports: - containerPort: 8080 env: - name: OPEN_AI_CONNECTION_API_KEY valueFrom: secretKeyRef: name: open-ai-connection-api-key key: open-ai-connection-api-key ``` ### Apply the deployment. Before you can deploy your application, ensure that you have set up a Kubernetes cluster and installed [kubectl](https://kubernetes.io/docs/reference/kubectl/) if it's not already installed. In this documentation, we will use [Minikube](https://minikube.sigs.k8s.io/docs/) as an example. To start the cluster, execute the following command: ```shell minikube start ``` Once your Kubernetes cluster is up and running, you can proceed to deploy your application by using the following command: ```shell kubectl apply -f deployment.yaml ``` This command will create the necessary pods to run your application within the cluster. **Note**: You need replace <pod_name> below with your specific pod_name. You can retrieve it by running `kubectl get pods -n web-classification`. ### Retrieve flow service logs of the container The kubectl logs command is used to retrieve the logs of a container running within a pod, which can be useful for debugging, monitoring, and troubleshooting applications deployed in a Kubernetes cluster. ```shell kubectl -n web-classification logs <pod-name> ``` #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in containers. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` You'll need to set up the environment variables in the container to make the connections work. ### Test the endpoint - Option1: Once you've started the service, you can establish a connection between a local port and a port on the pod. This allows you to conveniently test the endpoint from your local terminal. To achieve this, execute the following command: ```shell kubectl port-forward <pod_name> 8080:8080 -n web-classification ``` With the port forwarding in place, you can use the curl command to initiate the endpoint test: ```shell curl http://localhost:8080/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` - Option2: `minikube service web-classification-service --url -n web-classification` runs as a process, creating a tunnel to the cluster. The command exposes the service directly to any program running on the host operating system. The command above will retrieve the URL of a service running within a Minikube Kubernetes cluster (e.g. http://<ip>:<assigned_port>), which you can click to interact with the flow service in your web browser. Alternatively, you can use the following command to test the endpoint: **Note**: Minikube will use its own external port instead of nodePort to listen to the service. So please substitute <assigned_port> with the port obtained above. ```shell curl http://localhost:<assigned_port>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ```
promptflow/examples/tutorials/flow-deploy/kubernetes/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/kubernetes/README.md", "repo_id": "promptflow", "token_count": 1912 }
21
name: release-env channels: - defaults - conda-forge dependencies: - pip - pip: - setuptools - twine==4.0.0 - portalocker~=1.2 - setuptools_rust - pytest - pytest-xdist - pytest-sugar - pytest-timeout - azure-keyvault - azure-identity
promptflow/scripts/building/release-env.yml/0
{ "file_path": "promptflow/scripts/building/release-env.yml", "repo_id": "promptflow", "token_count": 134 }
22
promptflow.connections package ============================== .. autoclass:: promptflow.connections.AzureContentSafetyConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.AzureOpenAIConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.CognitiveSearchConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.CustomConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.FormRecognizerConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.OpenAIConnection :members: :undoc-members: :show-inheritance: :noindex: .. autoclass:: promptflow.connections.SerpConnection :members: :undoc-members: :show-inheritance: :noindex:
promptflow/scripts/docs/promptflow.connections.rst/0
{ "file_path": "promptflow/scripts/docs/promptflow.connections.rst", "repo_id": "promptflow", "token_count": 360 }
23
# -*- mode: python ; coding: utf-8 -*- from PyInstaller.utils.hooks import collect_data_files from PyInstaller.utils.hooks import copy_metadata datas = [('../resources/CLI_LICENSE.rtf', '.'), ('../../../../src/promptflow/NOTICE.txt', '.'), ('../../../../src/promptflow/promptflow/_sdk/data/executable/', './promptflow/_sdk/data/executable/'), ('../../../../src/promptflow-tools/promptflow/tools/', './promptflow/tools/'), ('./pf.bat', '.'), ('./pfs.bat', '.'), ('./pfazure.bat', '.'), ('./pfsvc.bat', '.')] datas += collect_data_files('streamlit') datas += copy_metadata('streamlit') datas += collect_data_files('streamlit_quill') datas += collect_data_files('promptflow') hidden_imports = ['streamlit.runtime.scriptrunner.magic_funcs', 'win32timezone', 'promptflow'] block_cipher = None pfcli_a = Analysis( ['pfcli.py'], pathex=[], binaries=[], datas=datas, hiddenimports=hidden_imports, hookspath=[], hooksconfig={}, runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False, ) pfcli_pyz = PYZ(pfcli_a.pure, pfcli_a.zipped_data, cipher=block_cipher) pfcli_exe = EXE( pfcli_pyz, pfcli_a.scripts, [], exclude_binaries=True, name='pfcli', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, console=True, disable_windowed_traceback=False, argv_emulation=False, target_arch=None, codesign_identity=None, entitlements_file=None, contents_directory='.', icon='../resources/logo32.ico', version="./version_info.txt", ) coll = COLLECT( pfcli_exe, pfcli_a.binaries, pfcli_a.zipfiles, pfcli_a.datas, strip=False, upx=True, upx_exclude=[], name='promptflow', )
promptflow/scripts/installer/windows/scripts/promptflow.spec/0
{ "file_path": "promptflow/scripts/installer/windows/scripts/promptflow.spec", "repo_id": "promptflow", "token_count": 788 }
24
class Telemetry(object): pass
promptflow/scripts/readme/ghactions_driver/telemetry_obj.py/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/telemetry_obj.py", "repo_id": "promptflow", "token_count": 12 }
25
{% extends "workflow_skeleton.yml.jinja2" %} {% block steps %} runs-on: ubuntu-latest steps: - name: Checkout repository uses: actions/checkout@v4 - name: Generate config.json for canary workspace (scheduled runs only) if: github.event_name == 'schedule' run: echo '${{ '{{' }} secrets.TEST_WORKSPACE_CONFIG_JSON_CANARY }}' > ${{ '{{' }} github.workspace }}/examples/config.json - name: Generate config.json for production workspace if: github.event_name != 'schedule' run: echo '${{ '{{' }} secrets.EXAMPLE_WORKSPACE_CONFIG_JSON_PROD }}' > ${{ '{{' }} github.workspace }}/examples/config.json - name: Azure Login uses: azure/login@v1 with: creds: ${{ '{{' }} secrets.AZURE_CREDENTIALS }} - name: Setup Python 3.9 environment uses: actions/setup-python@v4 with: python-version: "3.9" - name: Prepare requirements run: | python -m pip install --upgrade pip pip install -r ${{ '{{' }} github.workspace }}/examples/requirements.txt pip install -r ${{ '{{' }} github.workspace }}/examples/dev_requirements.txt - name: Create Aoai Connection run: pf connection create -f ${{ '{{' }} github.workspace }}/examples/connections/azure_openai.yml --set api_key="${{ '{{' }} secrets.AOAI_API_KEY_TEST }}" api_base="${{ '{{' }} secrets.AOAI_API_ENDPOINT_TEST }}" - name: Test Notebook working-directory: {{ gh_working_dir }} run: | papermill -k python {{ name }}.ipynb {{ name }}.output.ipynb - name: Upload artifact if: ${{ '{{' }} always() }} uses: actions/upload-artifact@v3 with: name: artifact path: {{ gh_working_dir }} {% endblock steps %}
promptflow/scripts/readme/ghactions_driver/workflow_templates/workflow_config_json.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_templates/workflow_config_json.yml.jinja2", "repo_id": "promptflow", "token_count": 647 }
26
import argparse import ast import importlib import json import os import sys from ruamel.yaml import YAML sys.path.append("src/promptflow-tools") sys.path.append(os.getcwd()) from utils.generate_tool_meta_utils import generate_custom_llm_tools_in_module_as_dict, generate_python_tools_in_module_as_dict # noqa: E402, E501 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate meta for a tool.") parser.add_argument("--module", "-m", help="Module to generate tools.", type=str, required=True) parser.add_argument("--output", "-o", help="Path to the output tool json file.", required=True) parser.add_argument( "--tool-type", "-t", help="Provide tool type: 'python' or 'custom_llm'. By default, 'python' will be set as the tool type.", type=str, choices=["python", "custom_llm"], default="python", ) parser.add_argument( "--name", "-n", help="Provide a custom name for the tool. By default, the function name will be used as the tool name.", type=str, ) parser.add_argument("--description", "-d", help="Provide a brief description of the tool.", type=str) parser.add_argument( "--icon", "-i", type=str, help="your tool's icon image path, if you need to show different icons in dark and light mode, \n" "please use `icon-light` and `icon-dark` parameters. \n" "If these icon parameters are not provided, the system will use the default icon.", required=False) parser.add_argument( "--icon-light", type=str, help="your tool's icon image path for light mode, \n" "if you need to show the same icon in dark and light mode, please use `icon` parameter. \n" "If these icon parameters are not provided, the system will use the default icon.", required=False) parser.add_argument( "--icon-dark", type=str, help="your tool's icon image path for dark mode, \n" "if you need to show the same icon in dark and light mode, please use `icon` parameter. \n" "If these icon parameters are not provided, the system will use the default icon.", required=False) parser.add_argument( "--category", "-c", type=str, help="your tool's category, if not provided, the tool will be displayed under the root folder.", required=False) parser.add_argument( "--tags", type=ast.literal_eval, help="your tool's tags. It should be a dictionary-like string, e.g.: --tags \"{'tag1':'v1','tag2':'v2'}\".", required=False) args = parser.parse_args() m = importlib.import_module(args.module) icon = "" if args.icon: if args.icon_light or args.icon_dark: raise ValueError("You cannot provide both `icon` and `icon-light` or `icon-dark`.") from convert_image_to_data_url import check_image_type_and_generate_data_url # noqa: E402 icon = check_image_type_and_generate_data_url(args.icon) elif args.icon_light or args.icon_dark: if args.icon_light: from convert_image_to_data_url import check_image_type_and_generate_data_url # noqa: E402 if isinstance(icon, dict): icon["light"] = check_image_type_and_generate_data_url(args.icon_light) else: icon = {"light": check_image_type_and_generate_data_url(args.icon_light)} if args.icon_dark: from convert_image_to_data_url import check_image_type_and_generate_data_url # noqa: E402 if isinstance(icon, dict): icon["dark"] = check_image_type_and_generate_data_url(args.icon_dark) else: icon = {"dark": check_image_type_and_generate_data_url(args.icon_dark)} if args.tool_type == "custom_llm": tools_dict = generate_custom_llm_tools_in_module_as_dict( m, name=args.name, description=args.description, icon=icon, category=args.category, tags=args.tags) else: tools_dict = generate_python_tools_in_module_as_dict( m, name=args.name, description=args.description, icon=icon, category=args.category, tags=args.tags) # The generated dict cannot be dumped as yaml directly since yaml cannot handle string enum. tools_dict = json.loads(json.dumps(tools_dict)) yaml = YAML() yaml.preserve_quotes = True yaml.indent(mapping=2, sequence=4, offset=2) with open(args.output, "w") as f: yaml.dump(tools_dict, f) print(f"Tools meta generated to '{args.output}'.")
promptflow/scripts/tool/generate_package_tool_meta.py/0
{ "file_path": "promptflow/scripts/tool/generate_package_tool_meta.py", "repo_id": "promptflow", "token_count": 2007 }
27
import json import os import shutil import subprocess from datetime import datetime from pathlib import Path import requests scripts_dir = os.path.join(os.getcwd(), "scripts") index_url = "https://azuremlsdktestpypi.azureedge.net/test-promptflow/promptflow-tools" ado_promptflow_repo_url_format = "https://{0}@dev.azure.com/msdata/Vienna/_git/PromptFlow" def replace_lines_from_file_under_hint(file_path, hint: str, lines_to_replace: list): lines_count = len(lines_to_replace) with open(file_path, "r") as f: lines = f.readlines() has_hint = False for i in range(len(lines)): if lines[i].strip() == hint: has_hint = True lines[i + 1 : i + 1 + lines_count] = lines_to_replace if not has_hint: lines.append(hint + "\n") lines += lines_to_replace with open(file_path, "w") as f: f.writelines(lines) def create_remote_branch_in_ADO_with_new_tool_pkg_version( ado_pat: str, tool_pkg_version: str, blob_prefix="test-promptflow" ) -> str: # Clone the Azure DevOps repo parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) tmp_dir = os.path.join(parent_dir, "temp") if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) subprocess.run(["git", "config", "--global", "user.email", "[email protected]"]) subprocess.run(["git", "config", "--global", "user.name", "github-promptflow"]) # Change directory to the 'tmp' directory os.chdir(tmp_dir) repo_dir = os.path.join(tmp_dir, "PromptFlow") repo_url = ado_promptflow_repo_url_format.format(ado_pat) subprocess.run(["git", "clone", repo_url, repo_dir]) # Change directory to the repo directory os.chdir(repo_dir) # Pull the devs/test branch subprocess.run(["git", "reset", "."]) subprocess.run(["git", "checkout", "."]) subprocess.run(["git", "clean", "-f", "."]) subprocess.run(["git", "checkout", "main"]) subprocess.run(["git", "fetch"]) subprocess.run(["git", "pull"]) # Make changes # 1. add test endpoint 'promptflow-gallery-tool-test.yaml' # 2. update tool package version source_file = Path(scripts_dir) / "tool/utils/configs/promptflow-gallery-tool-test.yaml" destination_folder = "deploy/model" shutil.copy(source_file, destination_folder) new_lines = [ f"--extra-index-url https://azuremlsdktestpypi.azureedge.net/{blob_prefix}\n", f"promptflow_tools=={tool_pkg_version}\n", ] replace_lines_from_file_under_hint( file_path="docker_build/linux/extra_requirements.txt", hint="# Prompt-flow tool package", lines_to_replace=new_lines, ) # Create a new remote branch new_branch_name = f"devs/test_tool_pkg_{tool_pkg_version}_{datetime.now().strftime('%Y%m%d%H%M%S')}" subprocess.run(["git", "branch", "-D", "origin", new_branch_name]) subprocess.run(["git", "checkout", "-b", new_branch_name]) subprocess.run(["git", "add", "."]) subprocess.run(["git", "commit", "-m", f"Update tool package version to {tool_pkg_version}"]) subprocess.run(["git", "push", "-u", repo_url, new_branch_name]) return new_branch_name def deploy_test_endpoint(branch_name: str, ado_pat: str): # PromptFlow-deploy-endpoint pipeline in ADO: https://msdata.visualstudio.com/Vienna/_build?definitionId=24767&_a=summary # noqa: E501 url = "https://dev.azure.com/msdata/Vienna/_apis/pipelines/24767/runs?api-version=7.0-preview.1" request_body_file = Path(scripts_dir) / "tool/utils/configs/deploy-endpoint-request-body.json" with open(request_body_file, "r") as f: body = json.load(f) body["resources"]["repositories"]["self"]["refName"] = f"refs/heads/{branch_name}" print(f"request body: {body}") response = requests.post(url, json=body, auth=("dummy_user_name", ado_pat)) print(response.status_code) print(response.content)
promptflow/scripts/tool/utils/repo_utils.py/0
{ "file_path": "promptflow/scripts/tool/utils/repo_utils.py", "repo_id": "promptflow", "token_count": 1625 }
28