Ashot Vardanian
Merge branch 'main' of https://huggingface.co/datasets/unum-cloud/unsplash-search
21a709d
#!/usr/bin/env python3 | |
from os import listdir, path, PathLike, remove | |
from os.path import isfile, join, exists | |
import pandas as pd | |
import numpy as np | |
from PIL import Image | |
from PIL import ImageFile | |
from tqdm import tqdm | |
from uform import get_model | |
from usearch.index import Index, MetricKind | |
from usearch.io import save_matrix, load_matrix | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
def is_image(path: PathLike) -> bool: | |
if not isfile(path): | |
return False | |
try: | |
Image.open(path) | |
return True | |
except Exception: | |
return False | |
def trim_extension(filename: str) -> str: | |
return filename.rsplit('.', 1)[0] | |
names = sorted(f for f in listdir('images') if is_image(join('images', f))) | |
names = [trim_extension(f) for f in names] | |
table = pd.read_table('images.tsv') if path.exists( | |
'images.tsv') else pd.read_table('images.csv') | |
table = table[table['photo_id'].isin(names)] | |
table = table.sort_values('photo_id') | |
table.reset_index() | |
table.to_csv('images.csv', index=False) | |
names = list(set(table['photo_id']).intersection(names)) | |
names_to_delete = [f for f in listdir( | |
'images') if trim_extension(f) not in names] | |
if len(names_to_delete) > 0: | |
print(f'Plans to delete: {len(names_to_delete)} images without metadata') | |
for name in names_to_delete: | |
remove(join('images', name)) | |
if not exists('images.fbin'): | |
model = get_model('unum-cloud/uform-vl-english') | |
vectors = [] | |
for name in tqdm(list(table["photo_id"]), desc='Vectorizing images'): | |
image = Image.open(join('images', name + '.jpg')) | |
image_data = model.preprocess_image(image) | |
image_embedding = model.encode_image(image_data).detach().numpy() | |
vectors.append(image_embedding) | |
image_mat = np.vstack(vectors) | |
save_matrix(image_mat, 'images.fbin') | |
if not exists('images.usearch'): | |
image_mat = load_matrix('images.fbin') | |
count = image_mat.shape[0] | |
ndim = image_mat.shape[1] | |
index = Index(ndim=ndim, metric=MetricKind.Cos) | |
for idx in tqdm(range(count), desc='Indexing vectors'): | |
index.add(idx, image_mat[idx, :].flatten()) | |
index.save('images.usearch') | |