|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SBU Captioned Photo Dataset""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{NIPS2011_5dd9db5e, |
|
author = {Ordonez, Vicente and Kulkarni, Girish and Berg, Tamara}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
editor = {J. Shawe-Taylor and R. Zemel and P. Bartlett and F. Pereira and K.Q. Weinberger}, |
|
pages = {}, |
|
publisher = {Curran Associates, Inc.}, |
|
title = {Im2Text: Describing Images Using 1 Million Captioned Photographs}, |
|
url = {https://proceedings.neurips.cc/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf}, |
|
volume = {24}, |
|
year = {2011} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The SBU Captioned Photo Dataset is a collection of over 1 million images with associated text descriptions extracted from Flicker. |
|
""" |
|
|
|
_LICENSE = "unknown" |
|
|
|
_HOMEPAGE = "http://www.cs.virginia.edu/~vicente/sbucaptions" |
|
|
|
_URL = "http://www.cs.virginia.edu/~vicente/sbucaptions/sbu-captions-all.tar.gz" |
|
|
|
_FEATURES = datasets.Features( |
|
{"image_url": datasets.Value("string"), "user_id": datasets.Value("string"), "caption": datasets.Value("string")} |
|
) |
|
|
|
_MAP_SBU_FEATURES_TO_DATASETS_FEATURES = {"image_urls": "image_url", "user_ids": "user_id", "captions": "caption"} |
|
|
|
|
|
class SBUCaptionedPhotoDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SBU Captioned Photo dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
|
|
def __init__(self, version=None, *args, **kwargs): |
|
super().__init__( |
|
version=version or self.VERSION, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
|
|
class SBUCaptionedPhotoDataset(datasets.GeneratorBasedBuilder): |
|
"""SBU Captioned Photo dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=_FEATURES, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
archive = dl_manager.download(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, files): |
|
annotations = None |
|
for path, f in files: |
|
if path.endswith("sbu-captions-all.json"): |
|
annotations = json.loads(f.read().decode("utf-8")) |
|
break |
|
|
|
|
|
assert annotations is not None |
|
nb_samples = len(annotations[next(iter(annotations.keys()))]) |
|
assert all(len(values) == nb_samples for values in annotations.values()) |
|
keys = tuple(annotations.keys()) |
|
|
|
for idx in range(nb_samples): |
|
yield idx, {_MAP_SBU_FEATURES_TO_DATASETS_FEATURES[key]: annotations[key][idx] for key in keys} |
|
|