Datasets:
File size: 7,066 Bytes
fff2f45 b5c4821 fff2f45 b5c4821 fff2f45 b5c4821 fff2f45 b5c4821 fff2f45 b5c4821 92c9df2 d87406d 92c9df2 d87406d 92c9df2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
dataset_info:
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: objects
struct:
- name: bbox
sequence:
sequence: float32
- name: categories
sequence:
class_label:
names:
'0': person
'1': bicycle
'2': car
'3': motorcycle
'4': airplane
'5': bus
'6': train
'7': truck
'8': boat
'9': traffic light
'10': fire hydrant
'11': stop sign
'12': parking meter
'13': bench
'14': bird
'15': cat
'16': dog
'17': horse
'18': sheep
'19': cow
'20': elephant
'21': bear
'22': zebra
'23': giraffe
'24': backpack
'25': umbrella
'26': handbag
'27': tie
'28': suitcase
'29': frisbee
'30': skis
'31': snowboard
'32': sports ball
'33': kite
'34': baseball bat
'35': baseball glove
'36': skateboard
'37': surfboard
'38': tennis racket
'39': bottle
'40': wine glass
'41': cup
'42': fork
'43': knife
'44': spoon
'45': bowl
'46': banana
'47': apple
'48': sandwich
'49': orange
'50': broccoli
'51': carrot
'52': hot dog
'53': pizza
'54': donut
'55': cake
'56': chair
'57': couch
'58': potted plant
'59': bed
'60': dining table
'61': toilet
'62': tv
'63': laptop
'64': mouse
'65': remote
'66': keyboard
'67': cell phone
'68': microwave
'69': oven
'70': toaster
'71': sink
'72': refrigerator
'73': book
'74': clock
'75': vase
'76': scissors
'77': teddy bear
'78': hair drier
'79': toothbrush
- name: area
sequence: float32
- name: iscrowd
sequence: bool
- name: issues
list:
- name: confidence
dtype: float64
- name: description
dtype: 'null'
- name: issue_type
dtype: string
splits:
- name: train
num_bytes: 13410501369
num_examples: 82081
- name: validation
num_bytes: 6593725253
num_examples: 40137
- name: test
num_bytes: 6653522091
num_examples: 40775
download_size: 26604054770
dataset_size: 26657748713
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
task_categories:
- object-detection
---
[![Visualize Dataset on Visual Layer](https://img.shields.io/badge/Visualize%20on-%20Visual%20Layer-purple?style=for-the-badge&logo=numpy)](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1)
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/jQPvVpNJBB6M_9Mcun5eb.mp4"></video>
# COCO-2014-VL-Enriched
An enriched version of the COCO 2014 dataset with label issues! The label issues helps to curate a cleaner and leaner dataset.
## Description
The dataset consists of 6 columns:
+ `image_id`: The original image filename from the COCO dataset.
+ `image`: Image data in the form of PIL Image.
+ `label_bbox`: Bounding box annotations from the COCO dataset. Consists of bounding box coordinates, confidence scores, and labels for the bounding box generated using object detection models.
+ `issues`: Quality issues found such as duplicate, mislabeled, dark, blurry, bright, and outlier images.
## Usage
This dataset can be used with the Hugging Face Datasets library.:
```python
import datasets
ds = datasets.load_dataset("visual-layer/coco-2014-vl-enriched")
```
More in this [notebook](usage.ipynb).
## Interactive Visualization
Visual Layer provides a platform to interactively visualize a dataset and highlight quality issues such as duplicates, mislabels, outliers, etc.
Check it out [here](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1). No sign-up required.
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/jQPvVpNJBB6M_9Mcun5eb.mp4"></video>
<div style="text-align: center;">
<a href="https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1">
<img src="https://img.shields.io/badge/Visualize%20on-%20Visual%20Layer-purple?style=for-the-badge&logo=numpy" alt="Visualize Dataset on Visual Layer">
</a>
</div>
## License & Disclaimer
We provide no warranty on the dataset, and the user takes full responsibility for the usage of the dataset. By using the dataset, you agree to the terms of the ImageNet-1K dataset license.
## About Visual Layer
<div style="text-align: center; margin-top:50px;">
<a href="https://visual-layer.com/" style="padding:10px; display: inline-block;">
<img alt="site" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/web.png" width="50"></a>
<a href="https://medium.com/visual-layer" style="padding:10px; display: inline-block;">
<img alt="blog" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/forum.png" width="50"></a>
<a href="https://github.com/visual-layer/fastdup" style="padding:10px; display: inline-block;">
<img alt="github" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/github.png" width="50"></a>
<a href="https://discord.com/invite/Dqw458EG/" style="padding:10px; display: inline-block;">
<img alt="slack" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/discord.png" width="50"></a>
<a href="https://www.linkedin.com/company/visual-layer/" style="padding:10px; display: inline-block;">
<img alt="linkedin" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/linkedin.png" width="50"></a>
<a href="https://www.youtube.com/@visual-layer" style="padding:10px; display: inline-block;">
<img alt="youtube" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/youtube.png" width="50"></a>
<a href="https://twitter.com/visual_layer" style="padding:10px; display: inline-block;">
<img alt="twitter" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/x.png" width="50"></a>
</div>
<div style="text-align: center;">
<img style="width:200px; display: block; margin: 0 auto;" alt="logo" src="https://d2iycffepdu1yp.cloudfront.net/design-assets/VL_horizontal_logo.png">
<div style="margin-top:20px;">Copyright © 2024 Visual Layer. All rights reserved.</div>
</div> |