wmatejuk commited on
Commit
dc040e4
·
1 Parent(s): c7a9d16
Files changed (1) hide show
  1. SlicedMidiDataset.py +181 -0
SlicedMidiDataset.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import List
3
+
4
+ import datasets
5
+ import numpy as np
6
+ import fortepyan as ff
7
+ from tqdm import tqdm
8
+ from datasets import (
9
+ Split,
10
+ Dataset,
11
+ DatasetInfo,
12
+ BuilderConfig,
13
+ GeneratorBasedBuilder,
14
+ load_dataset,
15
+ concatenate_datasets,
16
+ )
17
+
18
+ _DESC = """
19
+ Dataset of midi pieces sliced to records of fixed number of notes.
20
+ """
21
+
22
+
23
+ class TokenizedMidiDatasetConfig(BuilderConfig):
24
+ def __init__(
25
+ self,
26
+ base_dataset_name: str = "roszcz/maestro-v1-sustain",
27
+ extra_datasets: list[str] = [],
28
+ sequence_length: int = 64,
29
+ sequence_step: int = 42,
30
+ **kwargs,
31
+ ):
32
+ super().__init__()
33
+ # Version history:
34
+ # 0.0.1: Initial version.
35
+ super().__init__(version=datasets.Version("0.0.2"), **kwargs)
36
+
37
+ self.base_dataset_name: str = base_dataset_name
38
+ self.extra_datasets: list[str] = extra_datasets
39
+ self.sequence_length: int = sequence_length
40
+ self.sequence_step: int = sequence_step
41
+
42
+
43
+ class TokenizedMidiDataset(GeneratorBasedBuilder):
44
+ def _info(self) -> DatasetInfo:
45
+ return datasets.DatasetInfo(description=_DESC)
46
+
47
+ BUILDER_CONFIG_CLASS = TokenizedMidiDatasetConfig
48
+ BUILDER_CONFIGS = [
49
+ TokenizedMidiDatasetConfig(
50
+ base_dataset_name="roszcz/maestro-sustain-v2",
51
+ extra_datasets=["roszcz/giant-midi-sustain-v2"],
52
+ sequence_length=32,
53
+ sequence_step=16,
54
+ name="giant-short",
55
+ ),
56
+ TokenizedMidiDatasetConfig(
57
+ base_dataset_name="roszcz/maestro-sustain-v2",
58
+ extra_datasets=[],
59
+ sequence_length=32,
60
+ sequence_step=16,
61
+ name="basic-short",
62
+ ),
63
+ TokenizedMidiDatasetConfig(
64
+ base_dataset_name="roszcz/maestro-sustain-v2",
65
+ extra_datasets=["roszcz/giant-midi-sustain-v2"],
66
+ sequence_length=64,
67
+ sequence_step=16,
68
+ name="giant-mid",
69
+ ),
70
+ TokenizedMidiDatasetConfig(
71
+ base_dataset_name="roszcz/maestro-sustain-v2",
72
+ extra_datasets=[],
73
+ sequence_length=64,
74
+ sequence_step=16,
75
+ name="basic-mid",
76
+ ),
77
+ TokenizedMidiDatasetConfig(
78
+ base_dataset_name="roszcz/maestro-sustain-v2",
79
+ extra_datasets=["roszcz/giant-midi-sustain-v2"],
80
+ sequence_length=128,
81
+ sequence_step=16,
82
+ name="giant-long",
83
+ ),
84
+ TokenizedMidiDatasetConfig(
85
+ base_dataset_name="roszcz/maestro-sustain-v2",
86
+ extra_datasets=[],
87
+ sequence_length=128,
88
+ sequence_step=16,
89
+ name="basic-long",
90
+ ),
91
+ ]
92
+ DEFAULT_CONFIG_NAME = "basic-mid"
93
+
94
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
95
+ base = load_dataset(self.config.base_dataset_name)
96
+
97
+ other_datasets = [load_dataset(path, split="train") for path in self.config.extra_datasets]
98
+ other_datasets.append(base["train"])
99
+
100
+ dataset = concatenate_datasets(other_datasets)
101
+
102
+ # This will enable multiprocessing in load_dataset()
103
+ n_shards = 12
104
+ train_shards = [dataset.shard(n_shards, it) for it in range(n_shards)]
105
+
106
+ return [
107
+ datasets.SplitGenerator(name=Split.TRAIN, gen_kwargs={"dataset_shards": train_shards}),
108
+ datasets.SplitGenerator(name=Split.TEST, gen_kwargs={"dataset_shards": [base["test"]]}),
109
+ datasets.SplitGenerator(name=Split.VALIDATION, gen_kwargs={"dataset_shards": [base["validation"]]}),
110
+ ]
111
+
112
+ def piece_to_records(self, piece: ff.MidiPiece) -> list[dict]:
113
+ # better practice than setting a global random state
114
+ rs = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(4)))
115
+
116
+ n_samples = 1 + (piece.size - self.config.sequence_length) // self.config.sequence_step
117
+ # uniform distribution, piece should be covered almost entirely
118
+ piece_idxs = range(piece.size - self.config.sequence_length)
119
+ start_points = rs.choice(piece_idxs, size=n_samples, replace=False)
120
+
121
+ chopped_sequences = []
122
+ for start in start_points:
123
+ start = int(start)
124
+ finish = start + self.config.sequence_length
125
+ part = piece[start:finish]
126
+
127
+ sequence = {
128
+ "notes": {
129
+ "pitch": part.df.pitch.astype("int16").values.T,
130
+ "start": part.df.start.values,
131
+ "end": part.df.end.values,
132
+ "duration": part.df.duration.values,
133
+ "velocity": part.df.velocity.values,
134
+ },
135
+ "source": json.dumps(part.source),
136
+ }
137
+ chopped_sequences.append(sequence)
138
+
139
+ return chopped_sequences
140
+
141
+ def filter_pauses(self, piece: ff.MidiPiece) -> list[ff.MidiPiece]:
142
+ next_start = piece.df.start.shift(-1)
143
+ silent_distance = next_start - piece.df.end
144
+
145
+ # Seconds
146
+ distance_threshold = 4
147
+
148
+ ids = silent_distance > distance_threshold
149
+
150
+ break_idxs = np.where(ids)[0]
151
+
152
+ pieces = []
153
+
154
+ start = 0
155
+ for break_idx in break_idxs:
156
+ finish = break_idx.item() + 1
157
+ piece_part = piece[start:finish]
158
+
159
+ if piece_part.size <= self.config.sequence_length:
160
+ continue
161
+
162
+ pieces.append(piece_part)
163
+ start = finish
164
+
165
+ return pieces
166
+
167
+ def _generate_examples(self, dataset_shards: list[Dataset]):
168
+ # ~10min for giant midi
169
+ for dataset in dataset_shards:
170
+ for it, record in tqdm(enumerate(dataset), total=len(dataset)):
171
+ piece = ff.MidiPiece.from_huggingface(dict(record))
172
+
173
+ pieces = self.filter_pauses(piece)
174
+ chopped_sequences = sum([self.piece_to_records(piece) for piece in pieces], [])
175
+
176
+ for jt, sequence in enumerate(chopped_sequences):
177
+ # NOTE I don't really understand how this works :(
178
+ # When using jt as the key I started getting
179
+ # duplicate key errors when doing load_dataset(num_proc=8)
180
+ key = f"{it}_{jt}"
181
+ yield key, sequence