ylacombe commited on
Commit
6a250e8
·
1 Parent(s): 7607d15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +228 -3
README.md CHANGED
@@ -23,10 +23,10 @@ dataset_info:
23
  num_bytes: 11127461686.356
24
  num_examples: 18719
25
  - name: dev
26
- num_bytes: 356048249.0
27
  num_examples: 853
28
  - name: test
29
- num_bytes: 367796887.0
30
  num_examples: 814
31
  download_size: 8114633186
32
  dataset_size: 11851306822.356
@@ -39,7 +39,232 @@ configs:
39
  path: polish/dev-*
40
  - split: test
41
  path: polish/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ---
43
  # Dataset Card for "cml-tts"
44
 
45
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  num_bytes: 11127461686.356
24
  num_examples: 18719
25
  - name: dev
26
+ num_bytes: 356048249
27
  num_examples: 853
28
  - name: test
29
+ num_bytes: 367796887
30
  num_examples: 814
31
  download_size: 8114633186
32
  dataset_size: 11851306822.356
 
39
  path: polish/dev-*
40
  - split: test
41
  path: polish/test-*
42
+ license: cc-by-4.0
43
+ task_categories:
44
+ - text-to-speech
45
+ - text-to-audio
46
+ language:
47
+ - nl
48
+ - fr
49
+ - de
50
+ - it
51
+ - pl
52
+ - pt
53
+ - es
54
+ pretty_name: CML-TTS
55
+ size_categories:
56
+ - 1M<n<10M
57
  ---
58
  # Dataset Card for "cml-tts"
59
 
60
+ ## Table of Contents
61
+ - [Dataset Description](#dataset-description)
62
+ - [Dataset Summary](#dataset-summary)
63
+ - [Supported Tasks](#supported-tasks)
64
+ - [Languages](#languages)
65
+ - [How to use](#how-to-use)
66
+ - [Dataset Structure](#dataset-structure)
67
+ - [Data Instances](#data-instances)
68
+ - [Data Fields](#data-fields)
69
+ - [Data Splits](#data-splits)
70
+ - [Data Statistics](#data-statistics)
71
+ - [Dataset Creation](#dataset-creation)
72
+ - [Curation Rationale](#curation-rationale)
73
+ - [Source Data](#source-data)
74
+ - [Annotations](#annotations)
75
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
76
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
77
+ - [Social Impact of Dataset](#social-impact-of-dataset)
78
+ - [Discussion of Biases](#discussion-of-biases)
79
+ - [Other Known Limitations](#other-known-limitations)
80
+ - [Additional Information](#additional-information)
81
+ - [Dataset Curators](#dataset-curators)
82
+ - [Licensing Information](#licensing-information)
83
+ - [Citation Information](#citation-information)
84
+ - [Contributions](#contributions)
85
+
86
+ ## Dataset Description
87
+
88
+ - **Homepage:** [MultiLingual LibriSpeech ASR corpus](https://www.openslr.org/146/)
89
+ - **Repository:** [CML-TTS-Dataset](https://github.com/freds0/CML-TTS-Dataset)
90
+ - **Paper:** [CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages](https://arxiv.org/abs/2306.10097)
91
+
92
+ ### Dataset Summary
93
+
94
+ CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG).
95
+ CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.
96
+
97
+ The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/146) to make it easier to stream.
98
+
99
+
100
+ ### Supported Tasks
101
+
102
+ - `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS).
103
+
104
+ ### Languages
105
+
106
+ The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.
107
+
108
+ ### How to use
109
+
110
+ The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
111
+
112
+ For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):
113
+ ```python
114
+ from datasets import load_dataset
115
+
116
+ mls = load_dataset("ylacombe/cml-tts", "german", split="train")
117
+ ```
118
+
119
+ Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
120
+ ```python
121
+ from datasets import load_dataset
122
+
123
+ mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True)
124
+
125
+ print(next(iter(mls)))
126
+ ```
127
+
128
+ #### *Bonus*
129
+ You can create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
130
+
131
+ **Local:**
132
+
133
+ ```python
134
+ from datasets import load_dataset
135
+ from torch.utils.data.sampler import BatchSampler, RandomSampler
136
+
137
+ mls = load_dataset("ylacombe/cml-tts", "german", split="train")
138
+ batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
139
+ dataloader = DataLoader(mls, batch_sampler=batch_sampler)
140
+ ```
141
+
142
+ **Streaming:**
143
+
144
+ ```python
145
+ from datasets import load_dataset
146
+ from torch.utils.data import DataLoader
147
+
148
+ mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True)
149
+ dataloader = DataLoader(mls, batch_size=32)
150
+ ```
151
+
152
+ To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
153
+
154
+ ## Dataset Structure
155
+
156
+ ### Data Instances
157
+
158
+ A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
159
+
160
+ ```
161
+ {'audio': {'path': '6892_8912_000729.wav', 'array': array([-1.52587891e-...7344e-05]), 'sampling_rate': 24000}, 'wav_filesize': 601964, 'text': 'Proszę pana, tu pano... zdziwiony', 'transcript_wav2vec': 'proszę pana tu panow... zdziwiony', 'levenshtein': 0.96045197740113, 'duration': 13.648979591836737, 'num_words': 29, 'speaker_id': 6892}
162
+ ```
163
+
164
+ ### Data Fields
165
+
166
+ - audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
167
+
168
+ - text: the transcription of the audio file.
169
+
170
+ - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.
171
+
172
+ - transcript_wav2vec: the transcription of the audio file using the wav2vec model. Has been used to curate the dataset.
173
+
174
+ - wav_filesize: The size of the audio waveform file. Has been used to curate the dataset.
175
+
176
+ - levenshtein: The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) between the wav2vec transcription and the original transcription. Has been used to curate the dataset.
177
+
178
+ - duration: The duration of the audio in seconds.
179
+
180
+ - num_words: The number of words of the transcription.
181
+
182
+ ### Data Splits
183
+
184
+ TODO
185
+
186
+ ### Data Statistics
187
+
188
+ | Language | Duration (Train) | Duration (Test) | Duration (Dev) | Speakers (Train) | Speakers (Test) | Speakers (Dev) |
189
+ |------------|-------------------|------------------|----------------|------------------|-----------------|----------------|
190
+ | | M | F | M | F | M | F | M | F | M | F | M | F |
191
+ | Dutch | 482.82 | 162.17 | 2.46 | 1.29 | 2.24 | 1.67 | 8 | 27 | 3 | 3 | 2 | 4 |
192
+ | French | 260.08 | 24.04 | 2.48 | 3.55 | 3.31 | 2.72 | 25 | 20 | 8 | 9 | 10 | 8 |
193
+ | German | 1128.96 | 436.64 | 3.75 | 5.27 | 4.31 | 5.03 | 78 | 90 | 13 | 17 | 13 | 15 |
194
+ | Italian | 73.78 | 57.51 | 1.47 | 0.85 | 0.40 | 1.52 | 23 | 38 | 5 | 5 | 4 | 6 |
195
+ | Polish | 30.61 | 8.32 | 0.70 | 0.90 | 0.56 | 0.80 | 4 | 4 | 2 | 2 | 2 | 2 |
196
+ | Portuguese | 23.14 | 44.81 | 0.28 | 0.24 | 0.68 | 0.20 | 20 | 10 | 5 | 4 | 6 | 3 |
197
+ | Spanish | 279.15 | 164.08 | 2.77 | 2.06 | 3.40 | 2.34 | 35 | 42 | 10 | 8 | 11 | 9 |
198
+ | Total | 3,176.13| | 28.11 | | 29.19 | | 424 | | 94 | | 95 | |
199
+
200
+
201
+ ## Dataset Creation
202
+
203
+ ### Curation Rationale
204
+
205
+ [Needs More Information]
206
+
207
+ ### Source Data
208
+
209
+ #### Initial Data Collection and Normalization
210
+
211
+ [Needs More Information]
212
+
213
+ #### Who are the source language producers?
214
+
215
+ [Needs More Information]
216
+
217
+ ### Annotations
218
+
219
+ #### Annotation process
220
+
221
+ [Needs More Information]
222
+
223
+ #### Who are the annotators?
224
+
225
+ [Needs More Information]
226
+
227
+ ### Personal and Sensitive Information
228
+
229
+ The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
230
+
231
+ ## Considerations for Using the Data
232
+
233
+ ### Social Impact of Dataset
234
+
235
+ [More Information Needed]
236
+
237
+ ### Discussion of Biases
238
+
239
+ [More Information Needed]
240
+
241
+ ### Other Known Limitations
242
+
243
+ [Needs More Information]
244
+
245
+ ## Additional Information
246
+
247
+ ### Dataset Curators
248
+
249
+ [Needs More Information]
250
+
251
+ ### Licensing Information
252
+
253
+ Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))
254
+
255
+ ### Citation Information
256
+
257
+ ```
258
+ @misc{oliveira2023cmltts,
259
+ title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages},
260
+ author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho},
261
+ year={2023},
262
+ eprint={2306.10097},
263
+ archivePrefix={arXiv},
264
+ primaryClass={eess.AS}
265
+ }
266
+ ```
267
+
268
+ ### Contributions
269
+
270
+ Thanks to [@ylacombe](https://github.com/ylacombe) for adding this dataset.