File size: 2,535 Bytes
bb8475c cf4e850 bb8475c add1774 bb8475c add1774 bb8475c add1774 bb8475c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
import pandas as pd
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
CITATION
"""
_DESCRIPTION = """\
DESCRIPTION
"""
_HOMEPAGE = "HOMEPAGE"
_LICENSE = ""
_DATA_URL = r"https://huggingface.co/datasets/yourui/hpo_anno/resolve/main/data/"
task_list = [
"GeneReviews",
"GSC+",
"ID-68",
"val"
]
class HPOAnnoConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class HPOAnno(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
HPOAnnoConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"id":datasets.Value("string"),
"corpus": datasets.Value("string"),
"ann": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
task_name = self.config.name
local_file = dl_manager.download_and_extract(os.path.join(_DATA_URL, f"{task_name}.json"))
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": local_file}),
]
def _generate_examples(self, filepath):
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
obj = json.load(f)
for item in obj:
id_ = item["id"]
yield id_, {
"id": id_,
"corpus": item["corpus"],
"ann": item["ann"]
}
|