File size: 3,158 Bytes
0b060a7
a3d6e71
 
 
 
 
 
 
 
 
 
 
0b060a7
942330b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---

language:
- en
license:
- cc-by-4.0
size_categories:
- 10K<n<100k
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
---


# Dataset Repository

This repository includes several datasets: **Houston Crime Dataset**, **Tourism in Australia**, **Prison in Australia**, and **M5**. These datasets consist of time series data representing various metrics across different categories and groups.

## Dataset Structure

Each dataset is divided into training and prediction sets, with features such as groups, indices, and time series data. Below is a general overview of the dataset structure:

### Training Data
The training data contains time series data with the following structure:
- **x_values**: List of time steps.

- **groups_idx**: Indices representing different group categories (e.g., Crime, Beat, Street, ZIP for Houston Crime).
- **groups_n**: Number of unique values in each group category.

- **groups_names**: Names corresponding to group indices.
- **n**: Number of time series.
- **s**: Length of each time series.
- **n_series_idx**: Indices of the time series.
- **n_series**: Indices for each series.

- **g_number**: Number of group categories.
- **data**: Matrix of time series data.

### Prediction Data
The prediction data has a similar structure to the training data and is used for forecasting purposes. 

**Note:** It contains the complete data, including training and predict.

### Additional Metadata
- **seasonality**: Seasonality of the data.
- **h**: Forecast horizon.
- **dates**: Timestamps corresponding to the time steps.

## Example Usage

Below is an example of how to load and use the datasets using the `datasets` library:

```python

import pickle



def load_pickle(file_path):

    with open(file_path, 'rb') as file:

        data = pickle.load(file)

    return data



# Paths to your datasets

m5_path = 'path/to/m5.pkl'

police_path = 'path/to/police.pkl'

prison_path = 'path/to/prison.pkl'

tourism_path = 'path/to/tourism.pkl'



m5_data = load_pickle(m5_path)

police_data = load_pickle(police_path)

prison_data = load_pickle(prison_path)

tourism_data = load_pickle(tourism_path)



# Example: Accessing specific data from the datasets

print("M5 Data:", m5_data)

print("Police Data:", police_data)

print("Prison Data:", prison_data)

print("Tourism Data:", tourism_data)



# Access the training data

train_data = prison_data["train"]



# Access the prediction data

predict_data = prison_data["predict"]



# Example: Extracting x_values and data

x_values = train_data["x_values"]

data = train_data["data"]



print(f"x_values: {x_values}")

print(f"data shape: {data.shape}")

```

### Steps to Follow:

1. **Clone the Repository:**
   ```sh

   git clone https://huggingface.co/datasets/zaai-ai/hierarchical_datasets.git

   cd hierarchical_datasets

   ```
2. **Update the File Paths:**
   - Ensure the paths to the .pkl files are correct in your Python script.

3. **Load the Datasets:**
   - Use the `pickle` library in Python to load the `.pkl` files.