zhimeng commited on
Commit
476d176
·
verified ·
1 Parent(s): 9e325d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md CHANGED
@@ -35,4 +35,91 @@ configs:
35
  path: data/train-*
36
  - split: test
37
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
38
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  path: data/train-*
36
  - split: test
37
  path: data/test-*
38
+ license: mit
39
+ task_categories:
40
+ - object-detection
41
+ - image-feature-extraction
42
+ - image-to-text
43
+ language:
44
+ - en
45
+ pretty_name: HICO-DET Dataset
46
+ size_categories:
47
+ - 10K<n<100K
48
  ---
49
+
50
+ # Dataset Card for HICO-DET Dataset
51
+
52
+ ## Dataset Summary
53
+
54
+ HICO-DET is a dataset for detecting human-object interactions (HOI) in images. It contains 47,776 images (38,118 in train set and 9,658 in test set), 600 HOI categories constructed by 80 object categories and 117 verb classes. HICO-DET provides more than 150k annotated human-object pairs. V-COCO provides 10,346 images (2,533 for training, 2,867 for validating and 4,946 for testing) and 16,199 person instances. Each person has annotations for 29 action categories and there are no interaction labels including objects.
55
+
56
+ - 47,776 images (38,118 in train set, 9,658 in test set)
57
+ - 600 HOI categories
58
+ - 80 object categories
59
+ - 117 verb classes
60
+ - Over 150,000 annotated human-object pairs
61
+
62
+ Originally hosted at http://www-personal.umich.edu/~ywchao/hico/, the dataset is no longer available at its official website. This Hugging Face version is a converted and restructured copy of the original dataset, which can still be found on [Google Drive](https://drive.google.com/file/d/1A1AOgIucGOkprASRBMxAPNTrXlmadYXE/view?usp=sharing) in MATLAB format.
63
+
64
+
65
+ ## Dataset Structure
66
+
67
+ The dataset is structured as follows:
68
+ ```
69
+ DatasetDict({
70
+ train: Dataset({
71
+ features: ['image', 'size', 'objects', 'positive_captions', 'negative_captions', 'ambiguous_captions', 'positive_objects', 'negative_objects', 'ambiguous_objects'],
72
+ num_rows: 38118
73
+ })
74
+ test: Dataset({
75
+ features: ['image', 'size', 'objects', 'positive_captions', 'negative_captions', 'ambiguous_captions', 'positive_objects', 'negative_objects', 'ambiguous_objects'],
76
+ num_rows: 9658
77
+ })
78
+ })
79
+ ```
80
+ Here is the description of each column:
81
+ - `image`: the image
82
+ - `size`: the size of the image
83
+ - `objects`: the object categories in the image
84
+ - `positive_captions`: the positive captions for the image, e.g., ('cake', 'carry') which means the image is a picture of a person carrying a cake. One image can have multiple positive captions.
85
+ - `negative_captions`: the negative captions for the image. One image can have multiple negative captions.
86
+ - `ambiguous_captions`: the ambiguous captions for the image. One image can have multiple ambiguous captions.
87
+ - `positive_objects`: the positive objects for the image. Positive objects are the index of (object, verb) pairs in `list_action.csv`.
88
+ - `negative_objects`: the negative objects for the image. Negative objects are the index of (object, verb) pairs in `list_action.csv`.
89
+ - `ambiguous_objects`: the ambiguous objects for the image. Ambiguous objects are the index of (object, verb) pairs in `list_action.csv`.
90
+
91
+ list_action.csv is a csv file that contains the list of (object, verb) pairs and some other useful information, which can be found [here]().
92
+
93
+
94
+ ## Usage
95
+
96
+ The most simple usage is to load the dataset with hugging face datasets.
97
+
98
+ ```python
99
+ from datasets import load_dataset
100
+
101
+ dataset = load_dataset("zhimeng/hico_det")
102
+ print(dataset)
103
+ ```
104
+
105
+ ## File Structure
106
+
107
+ I also provide the original data structure as the following:
108
+
109
+ ```
110
+ data/
111
+ list_action.csv # 600 HOI categories
112
+ images/
113
+ train/
114
+ metadata.json # 38,118 images
115
+ img_00001.jpg
116
+ img_00002.jpg
117
+ ...
118
+ test/
119
+ metadata.json # 9,658 images
120
+ img_00001.jpg
121
+ img_00002.jpg
122
+ ...
123
+ ```
124
+
125
+