Commit
·
cb798e4
1
Parent(s):
9db0dc2
End of training
Browse files- README.md +212 -0
- added_tokens.json +4 -0
- config.json +135 -0
- model.safetensors +3 -0
- runs/Nov20_11-10-34_abb3dc80e44b/events.out.tfevents.1700478677.abb3dc80e44b.191.0 +3 -0
- runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700478790.abb3dc80e44b.191.1 +3 -0
- runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700480406.abb3dc80e44b.191.2 +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
license: mit
|
5 |
+
library_name: span-marker
|
6 |
+
tags:
|
7 |
+
- span-marker
|
8 |
+
- token-classification
|
9 |
+
- ner
|
10 |
+
- named-entity-recognition
|
11 |
+
- generated_from_span_marker_trainer
|
12 |
+
datasets:
|
13 |
+
- wikiann
|
14 |
+
metrics:
|
15 |
+
- precision
|
16 |
+
- recall
|
17 |
+
- f1
|
18 |
+
widget:
|
19 |
+
- text: Weitere Zulassungen folgten für Victoria und New South Wales 1975 und 1982
|
20 |
+
am High Court of Australia.
|
21 |
+
- text: Ihr Name geht auf die Bethlehemskapelle in Prag zurück, die für die Böhmischen
|
22 |
+
Brüder eine wichtige Rolle spielt.
|
23 |
+
- text: Sein Bundesliga-Debüt gab der Angreifer am 23.
|
24 |
+
- text: Er qualifizierte sich für die Teilnahme an den Olympischen Spielen 2008 in
|
25 |
+
Peking und erreichte dort über 200 m die Viertelfinalrunde.
|
26 |
+
- text: Damit trat sie die Nachfolge des Sozialdemokraten Jens Stoltenberg an.
|
27 |
+
pipeline_tag: token-classification
|
28 |
+
base_model: numind/generic-entity_recognition_NER-multilingual-v1
|
29 |
+
model-index:
|
30 |
+
- name: SpanMarker with numind/generic-entity_recognition_NER-multilingual-v1 on wikiann
|
31 |
+
results:
|
32 |
+
- task:
|
33 |
+
type: token-classification
|
34 |
+
name: Named Entity Recognition
|
35 |
+
dataset:
|
36 |
+
name: Unknown
|
37 |
+
type: wikiann
|
38 |
+
split: eval
|
39 |
+
metrics:
|
40 |
+
- type: f1
|
41 |
+
value: 0.9069700043471961
|
42 |
+
name: F1
|
43 |
+
- type: precision
|
44 |
+
value: 0.9069700043471961
|
45 |
+
name: Precision
|
46 |
+
- type: recall
|
47 |
+
value: 0.9069700043471961
|
48 |
+
name: Recall
|
49 |
+
---
|
50 |
+
|
51 |
+
# SpanMarker with numind/generic-entity_recognition_NER-multilingual-v1 on wikiann
|
52 |
+
|
53 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition_NER-multilingual-v1](https://huggingface.co/numind/generic-entity_recognition_NER-multilingual-v1) as the underlying encoder.
|
54 |
+
|
55 |
+
## Model Details
|
56 |
+
|
57 |
+
### Model Description
|
58 |
+
- **Model Type:** SpanMarker
|
59 |
+
- **Encoder:** [numind/generic-entity_recognition_NER-multilingual-v1](https://huggingface.co/numind/generic-entity_recognition_NER-multilingual-v1)
|
60 |
+
- **Maximum Sequence Length:** 256 tokens
|
61 |
+
- **Maximum Entity Length:** 9 words
|
62 |
+
- **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann)
|
63 |
+
- **Language:** de
|
64 |
+
- **License:** mit
|
65 |
+
|
66 |
+
### Model Sources
|
67 |
+
|
68 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
69 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
70 |
+
|
71 |
+
### Model Labels
|
72 |
+
| Label | Examples |
|
73 |
+
|:------|:--------------------------------------------------------------------|
|
74 |
+
| LOC | "Savoyer Voralpen", "Bagan", "Zechin" |
|
75 |
+
| ORG | "NHL Entry Draft", "SKA Sankt Petersburg", "Minnesota Wild" |
|
76 |
+
| PER | "Antonina Wladimirowna Kriwoschapka", "Lou Salomé", "Jaan Kirsipuu" |
|
77 |
+
|
78 |
+
## Evaluation
|
79 |
+
|
80 |
+
### Metrics
|
81 |
+
| Label | Precision | Recall | F1 |
|
82 |
+
|:--------|:----------|:-------|:-------|
|
83 |
+
| **all** | 0.9070 | 0.9070 | 0.9070 |
|
84 |
+
| LOC | 0.9036 | 0.9298 | 0.9165 |
|
85 |
+
| ORG | 0.8638 | 0.8446 | 0.8541 |
|
86 |
+
| PER | 0.9507 | 0.9405 | 0.9455 |
|
87 |
+
|
88 |
+
## Uses
|
89 |
+
|
90 |
+
### Direct Use for Inference
|
91 |
+
|
92 |
+
```python
|
93 |
+
from span_marker import SpanMarkerModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
97 |
+
# Run inference
|
98 |
+
entities = model.predict("Sein Bundesliga-Debüt gab der Angreifer am 23.")
|
99 |
+
```
|
100 |
+
|
101 |
+
### Downstream Use
|
102 |
+
You can finetune this model on your own dataset.
|
103 |
+
|
104 |
+
<details><summary>Click to expand</summary>
|
105 |
+
|
106 |
+
```python
|
107 |
+
from span_marker import SpanMarkerModel, Trainer
|
108 |
+
|
109 |
+
# Download from the 🤗 Hub
|
110 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
111 |
+
|
112 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
113 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
114 |
+
|
115 |
+
# Initialize a Trainer using the pretrained model & dataset
|
116 |
+
trainer = Trainer(
|
117 |
+
model=model,
|
118 |
+
train_dataset=dataset["train"],
|
119 |
+
eval_dataset=dataset["validation"],
|
120 |
+
)
|
121 |
+
trainer.train()
|
122 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
123 |
+
```
|
124 |
+
</details>
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Out-of-Scope Use
|
128 |
+
|
129 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
## Bias, Risks and Limitations
|
134 |
+
|
135 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Recommendations
|
140 |
+
|
141 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
## Training Details
|
145 |
+
|
146 |
+
### Training Set Metrics
|
147 |
+
| Training set | Min | Median | Max |
|
148 |
+
|:----------------------|:----|:-------|:----|
|
149 |
+
| Sentence length | 1 | 9.7693 | 85 |
|
150 |
+
| Entities per sentence | 1 | 1.3821 | 20 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- learning_rate: 5e-05
|
154 |
+
- train_batch_size: 64
|
155 |
+
- eval_batch_size: 128
|
156 |
+
- seed: 42
|
157 |
+
- gradient_accumulation_steps: 2
|
158 |
+
- total_train_batch_size: 128
|
159 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
160 |
+
- lr_scheduler_type: linear
|
161 |
+
- lr_scheduler_warmup_ratio: 0.1
|
162 |
+
- num_epochs: 10
|
163 |
+
- mixed_precision_training: Native AMP
|
164 |
+
|
165 |
+
### Training Results
|
166 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
167 |
+
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
168 |
+
| 1.2658 | 200 | 0.0172 | 0.8842 | 0.8534 | 0.8686 | 0.9586 |
|
169 |
+
| 2.5316 | 400 | 0.0145 | 0.8977 | 0.8889 | 0.8933 | 0.9670 |
|
170 |
+
| 3.7975 | 600 | 0.0161 | 0.8962 | 0.9006 | 0.8984 | 0.9688 |
|
171 |
+
| 5.0633 | 800 | 0.0180 | 0.8982 | 0.8996 | 0.8989 | 0.9689 |
|
172 |
+
| 6.3291 | 1000 | 0.0201 | 0.9014 | 0.9008 | 0.9011 | 0.9694 |
|
173 |
+
| 7.5949 | 1200 | 0.0201 | 0.9010 | 0.9057 | 0.9033 | 0.9702 |
|
174 |
+
| 8.8608 | 1400 | 0.0217 | 0.9062 | 0.9036 | 0.9049 | 0.9702 |
|
175 |
+
|
176 |
+
### Framework Versions
|
177 |
+
- Python: 3.10.12
|
178 |
+
- SpanMarker: 1.5.0
|
179 |
+
- Transformers: 4.35.2
|
180 |
+
- PyTorch: 2.1.0+cu118
|
181 |
+
- Datasets: 2.15.0
|
182 |
+
- Tokenizers: 0.15.0
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
### BibTeX
|
187 |
+
```
|
188 |
+
@software{Aarsen_SpanMarker,
|
189 |
+
author = {Aarsen, Tom},
|
190 |
+
license = {Apache-2.0},
|
191 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
192 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
193 |
+
}
|
194 |
+
```
|
195 |
+
|
196 |
+
<!--
|
197 |
+
## Glossary
|
198 |
+
|
199 |
+
*Clearly define terms in order to be accessible across audiences.*
|
200 |
+
-->
|
201 |
+
|
202 |
+
<!--
|
203 |
+
## Model Card Authors
|
204 |
+
|
205 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
206 |
+
-->
|
207 |
+
|
208 |
+
<!--
|
209 |
+
## Model Card Contact
|
210 |
+
|
211 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
212 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 119548,
|
3 |
+
"<start>": 119547
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "numind/generic-entity_recognition_NER-multilingual-v1",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"BertModel"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": null,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"directionality": "bidi",
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": null,
|
25 |
+
"exponential_decay_length_penalty": null,
|
26 |
+
"finetuning_task": null,
|
27 |
+
"forced_bos_token_id": null,
|
28 |
+
"forced_eos_token_id": null,
|
29 |
+
"hidden_act": "gelu",
|
30 |
+
"hidden_dropout_prob": 0.1,
|
31 |
+
"hidden_size": 768,
|
32 |
+
"id2label": {
|
33 |
+
"0": "O",
|
34 |
+
"1": "B-PER",
|
35 |
+
"2": "I-PER",
|
36 |
+
"3": "B-ORG",
|
37 |
+
"4": "I-ORG",
|
38 |
+
"5": "B-LOC",
|
39 |
+
"6": "I-LOC"
|
40 |
+
},
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"intermediate_size": 3072,
|
43 |
+
"is_decoder": false,
|
44 |
+
"is_encoder_decoder": false,
|
45 |
+
"label2id": {
|
46 |
+
"B-LOC": 5,
|
47 |
+
"B-ORG": 3,
|
48 |
+
"B-PER": 1,
|
49 |
+
"I-LOC": 6,
|
50 |
+
"I-ORG": 4,
|
51 |
+
"I-PER": 2,
|
52 |
+
"O": 0
|
53 |
+
},
|
54 |
+
"layer_norm_eps": 1e-12,
|
55 |
+
"length_penalty": 1.0,
|
56 |
+
"max_length": 20,
|
57 |
+
"max_position_embeddings": 512,
|
58 |
+
"min_length": 0,
|
59 |
+
"model_type": "bert",
|
60 |
+
"no_repeat_ngram_size": 0,
|
61 |
+
"num_attention_heads": 12,
|
62 |
+
"num_beam_groups": 1,
|
63 |
+
"num_beams": 1,
|
64 |
+
"num_hidden_layers": 12,
|
65 |
+
"num_return_sequences": 1,
|
66 |
+
"output_attentions": false,
|
67 |
+
"output_hidden_states": false,
|
68 |
+
"output_scores": false,
|
69 |
+
"pad_token_id": 0,
|
70 |
+
"pooler_fc_size": 768,
|
71 |
+
"pooler_num_attention_heads": 12,
|
72 |
+
"pooler_num_fc_layers": 3,
|
73 |
+
"pooler_size_per_head": 128,
|
74 |
+
"pooler_type": "first_token_transform",
|
75 |
+
"position_embedding_type": "absolute",
|
76 |
+
"prefix": null,
|
77 |
+
"problem_type": null,
|
78 |
+
"pruned_heads": {},
|
79 |
+
"remove_invalid_values": false,
|
80 |
+
"repetition_penalty": 1.0,
|
81 |
+
"return_dict": true,
|
82 |
+
"return_dict_in_generate": false,
|
83 |
+
"sep_token_id": null,
|
84 |
+
"suppress_tokens": null,
|
85 |
+
"task_specific_params": null,
|
86 |
+
"temperature": 1.0,
|
87 |
+
"tf_legacy_loss": false,
|
88 |
+
"tie_encoder_decoder": false,
|
89 |
+
"tie_word_embeddings": true,
|
90 |
+
"tokenizer_class": null,
|
91 |
+
"top_k": 50,
|
92 |
+
"top_p": 1.0,
|
93 |
+
"torch_dtype": "float32",
|
94 |
+
"torchscript": false,
|
95 |
+
"transformers_version": "4.35.2",
|
96 |
+
"type_vocab_size": 2,
|
97 |
+
"typical_p": 1.0,
|
98 |
+
"use_bfloat16": false,
|
99 |
+
"use_cache": true,
|
100 |
+
"vocab_size": 119552
|
101 |
+
},
|
102 |
+
"entity_max_length": 9,
|
103 |
+
"id2label": {
|
104 |
+
"0": "O",
|
105 |
+
"1": "LOC",
|
106 |
+
"2": "ORG",
|
107 |
+
"3": "PER"
|
108 |
+
},
|
109 |
+
"id2reduced_id": {
|
110 |
+
"0": 0,
|
111 |
+
"1": 3,
|
112 |
+
"2": 3,
|
113 |
+
"3": 2,
|
114 |
+
"4": 2,
|
115 |
+
"5": 1,
|
116 |
+
"6": 1
|
117 |
+
},
|
118 |
+
"label2id": {
|
119 |
+
"LOC": 1,
|
120 |
+
"O": 0,
|
121 |
+
"ORG": 2,
|
122 |
+
"PER": 3
|
123 |
+
},
|
124 |
+
"marker_max_length": 128,
|
125 |
+
"max_next_context": null,
|
126 |
+
"max_prev_context": null,
|
127 |
+
"model_max_length": 256,
|
128 |
+
"model_max_length_default": 512,
|
129 |
+
"model_type": "span-marker",
|
130 |
+
"span_marker_version": "1.5.0",
|
131 |
+
"torch_dtype": "float32",
|
132 |
+
"trained_with_document_context": false,
|
133 |
+
"transformers_version": "4.35.2",
|
134 |
+
"vocab_size": 119552
|
135 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe129d9c27b95f0d86f5a98c89de09dca9032c59de1ed84fd9a8923ea5b7d0bf
|
3 |
+
size 711477840
|
runs/Nov20_11-10-34_abb3dc80e44b/events.out.tfevents.1700478677.abb3dc80e44b.191.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc75ac3b3332008d8b6e4834d04800187c11d443d20ea5500cb93299c3b7e83a
|
3 |
+
size 8094
|
runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700478790.abb3dc80e44b.191.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52755e6c79ef3cf64b29c52f6c5dd010dcbde8328396abc45c5236bbc58c6560
|
3 |
+
size 15713
|
runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700480406.abb3dc80e44b.191.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6afbf6ada6738f733ed731797c2a47a03c76a5ac4458881573bb3c120c1b1f37
|
3 |
+
size 592
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"100": {
|
13 |
+
"content": "[UNK]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"101": {
|
21 |
+
"content": "[CLS]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"102": {
|
29 |
+
"content": "[SEP]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"103": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"119547": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"119548": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"clean_up_tokenization_spaces": true,
|
62 |
+
"cls_token": "[CLS]",
|
63 |
+
"do_lower_case": false,
|
64 |
+
"entity_max_length": 9,
|
65 |
+
"mask_token": "[MASK]",
|
66 |
+
"model_max_length": 256,
|
67 |
+
"pad_token": "[PAD]",
|
68 |
+
"sep_token": "[SEP]",
|
69 |
+
"strip_accents": null,
|
70 |
+
"tokenize_chinese_chars": true,
|
71 |
+
"tokenizer_class": "BertTokenizer",
|
72 |
+
"unk_token": "[UNK]"
|
73 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cfa0fa0c4beed7cc0cc797c75878d2fef033f9a734259a4c228988be28eb5f5
|
3 |
+
size 4664
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|