davanstrien HF staff commited on
Commit
cb798e4
·
1 Parent(s): 9db0dc2

End of training

Browse files
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ license: mit
5
+ library_name: span-marker
6
+ tags:
7
+ - span-marker
8
+ - token-classification
9
+ - ner
10
+ - named-entity-recognition
11
+ - generated_from_span_marker_trainer
12
+ datasets:
13
+ - wikiann
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ widget:
19
+ - text: Weitere Zulassungen folgten für Victoria und New South Wales 1975 und 1982
20
+ am High Court of Australia.
21
+ - text: Ihr Name geht auf die Bethlehemskapelle in Prag zurück, die für die Böhmischen
22
+ Brüder eine wichtige Rolle spielt.
23
+ - text: Sein Bundesliga-Debüt gab der Angreifer am 23.
24
+ - text: Er qualifizierte sich für die Teilnahme an den Olympischen Spielen 2008 in
25
+ Peking und erreichte dort über 200 m die Viertelfinalrunde.
26
+ - text: Damit trat sie die Nachfolge des Sozialdemokraten Jens Stoltenberg an.
27
+ pipeline_tag: token-classification
28
+ base_model: numind/generic-entity_recognition_NER-multilingual-v1
29
+ model-index:
30
+ - name: SpanMarker with numind/generic-entity_recognition_NER-multilingual-v1 on wikiann
31
+ results:
32
+ - task:
33
+ type: token-classification
34
+ name: Named Entity Recognition
35
+ dataset:
36
+ name: Unknown
37
+ type: wikiann
38
+ split: eval
39
+ metrics:
40
+ - type: f1
41
+ value: 0.9069700043471961
42
+ name: F1
43
+ - type: precision
44
+ value: 0.9069700043471961
45
+ name: Precision
46
+ - type: recall
47
+ value: 0.9069700043471961
48
+ name: Recall
49
+ ---
50
+
51
+ # SpanMarker with numind/generic-entity_recognition_NER-multilingual-v1 on wikiann
52
+
53
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition_NER-multilingual-v1](https://huggingface.co/numind/generic-entity_recognition_NER-multilingual-v1) as the underlying encoder.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** SpanMarker
59
+ - **Encoder:** [numind/generic-entity_recognition_NER-multilingual-v1](https://huggingface.co/numind/generic-entity_recognition_NER-multilingual-v1)
60
+ - **Maximum Sequence Length:** 256 tokens
61
+ - **Maximum Entity Length:** 9 words
62
+ - **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann)
63
+ - **Language:** de
64
+ - **License:** mit
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
69
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
70
+
71
+ ### Model Labels
72
+ | Label | Examples |
73
+ |:------|:--------------------------------------------------------------------|
74
+ | LOC | "Savoyer Voralpen", "Bagan", "Zechin" |
75
+ | ORG | "NHL Entry Draft", "SKA Sankt Petersburg", "Minnesota Wild" |
76
+ | PER | "Antonina Wladimirowna Kriwoschapka", "Lou Salomé", "Jaan Kirsipuu" |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Precision | Recall | F1 |
82
+ |:--------|:----------|:-------|:-------|
83
+ | **all** | 0.9070 | 0.9070 | 0.9070 |
84
+ | LOC | 0.9036 | 0.9298 | 0.9165 |
85
+ | ORG | 0.8638 | 0.8446 | 0.8541 |
86
+ | PER | 0.9507 | 0.9405 | 0.9455 |
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ ```python
93
+ from span_marker import SpanMarkerModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
97
+ # Run inference
98
+ entities = model.predict("Sein Bundesliga-Debüt gab der Angreifer am 23.")
99
+ ```
100
+
101
+ ### Downstream Use
102
+ You can finetune this model on your own dataset.
103
+
104
+ <details><summary>Click to expand</summary>
105
+
106
+ ```python
107
+ from span_marker import SpanMarkerModel, Trainer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
111
+
112
+ # Specify a Dataset with "tokens" and "ner_tag" columns
113
+ dataset = load_dataset("conll2003") # For example CoNLL2003
114
+
115
+ # Initialize a Trainer using the pretrained model & dataset
116
+ trainer = Trainer(
117
+ model=model,
118
+ train_dataset=dataset["train"],
119
+ eval_dataset=dataset["validation"],
120
+ )
121
+ trainer.train()
122
+ trainer.save_model("span_marker_model_id-finetuned")
123
+ ```
124
+ </details>
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Set Metrics
147
+ | Training set | Min | Median | Max |
148
+ |:----------------------|:----|:-------|:----|
149
+ | Sentence length | 1 | 9.7693 | 85 |
150
+ | Entities per sentence | 1 | 1.3821 | 20 |
151
+
152
+ ### Training Hyperparameters
153
+ - learning_rate: 5e-05
154
+ - train_batch_size: 64
155
+ - eval_batch_size: 128
156
+ - seed: 42
157
+ - gradient_accumulation_steps: 2
158
+ - total_train_batch_size: 128
159
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
160
+ - lr_scheduler_type: linear
161
+ - lr_scheduler_warmup_ratio: 0.1
162
+ - num_epochs: 10
163
+ - mixed_precision_training: Native AMP
164
+
165
+ ### Training Results
166
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
167
+ |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
168
+ | 1.2658 | 200 | 0.0172 | 0.8842 | 0.8534 | 0.8686 | 0.9586 |
169
+ | 2.5316 | 400 | 0.0145 | 0.8977 | 0.8889 | 0.8933 | 0.9670 |
170
+ | 3.7975 | 600 | 0.0161 | 0.8962 | 0.9006 | 0.8984 | 0.9688 |
171
+ | 5.0633 | 800 | 0.0180 | 0.8982 | 0.8996 | 0.8989 | 0.9689 |
172
+ | 6.3291 | 1000 | 0.0201 | 0.9014 | 0.9008 | 0.9011 | 0.9694 |
173
+ | 7.5949 | 1200 | 0.0201 | 0.9010 | 0.9057 | 0.9033 | 0.9702 |
174
+ | 8.8608 | 1400 | 0.0217 | 0.9062 | 0.9036 | 0.9049 | 0.9702 |
175
+
176
+ ### Framework Versions
177
+ - Python: 3.10.12
178
+ - SpanMarker: 1.5.0
179
+ - Transformers: 4.35.2
180
+ - PyTorch: 2.1.0+cu118
181
+ - Datasets: 2.15.0
182
+ - Tokenizers: 0.15.0
183
+
184
+ ## Citation
185
+
186
+ ### BibTeX
187
+ ```
188
+ @software{Aarsen_SpanMarker,
189
+ author = {Aarsen, Tom},
190
+ license = {Apache-2.0},
191
+ title = {{SpanMarker for Named Entity Recognition}},
192
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
193
+ }
194
+ ```
195
+
196
+ <!--
197
+ ## Glossary
198
+
199
+ *Clearly define terms in order to be accessible across audiences.*
200
+ -->
201
+
202
+ <!--
203
+ ## Model Card Authors
204
+
205
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Contact
210
+
211
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
212
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 119548,
3
+ "<start>": 119547
4
+ }
config.json ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "numind/generic-entity_recognition_NER-multilingual-v1",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "BertModel"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": null,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "directionality": "bidi",
20
+ "diversity_penalty": 0.0,
21
+ "do_sample": false,
22
+ "early_stopping": false,
23
+ "encoder_no_repeat_ngram_size": 0,
24
+ "eos_token_id": null,
25
+ "exponential_decay_length_penalty": null,
26
+ "finetuning_task": null,
27
+ "forced_bos_token_id": null,
28
+ "forced_eos_token_id": null,
29
+ "hidden_act": "gelu",
30
+ "hidden_dropout_prob": 0.1,
31
+ "hidden_size": 768,
32
+ "id2label": {
33
+ "0": "O",
34
+ "1": "B-PER",
35
+ "2": "I-PER",
36
+ "3": "B-ORG",
37
+ "4": "I-ORG",
38
+ "5": "B-LOC",
39
+ "6": "I-LOC"
40
+ },
41
+ "initializer_range": 0.02,
42
+ "intermediate_size": 3072,
43
+ "is_decoder": false,
44
+ "is_encoder_decoder": false,
45
+ "label2id": {
46
+ "B-LOC": 5,
47
+ "B-ORG": 3,
48
+ "B-PER": 1,
49
+ "I-LOC": 6,
50
+ "I-ORG": 4,
51
+ "I-PER": 2,
52
+ "O": 0
53
+ },
54
+ "layer_norm_eps": 1e-12,
55
+ "length_penalty": 1.0,
56
+ "max_length": 20,
57
+ "max_position_embeddings": 512,
58
+ "min_length": 0,
59
+ "model_type": "bert",
60
+ "no_repeat_ngram_size": 0,
61
+ "num_attention_heads": 12,
62
+ "num_beam_groups": 1,
63
+ "num_beams": 1,
64
+ "num_hidden_layers": 12,
65
+ "num_return_sequences": 1,
66
+ "output_attentions": false,
67
+ "output_hidden_states": false,
68
+ "output_scores": false,
69
+ "pad_token_id": 0,
70
+ "pooler_fc_size": 768,
71
+ "pooler_num_attention_heads": 12,
72
+ "pooler_num_fc_layers": 3,
73
+ "pooler_size_per_head": 128,
74
+ "pooler_type": "first_token_transform",
75
+ "position_embedding_type": "absolute",
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "sep_token_id": null,
84
+ "suppress_tokens": null,
85
+ "task_specific_params": null,
86
+ "temperature": 1.0,
87
+ "tf_legacy_loss": false,
88
+ "tie_encoder_decoder": false,
89
+ "tie_word_embeddings": true,
90
+ "tokenizer_class": null,
91
+ "top_k": 50,
92
+ "top_p": 1.0,
93
+ "torch_dtype": "float32",
94
+ "torchscript": false,
95
+ "transformers_version": "4.35.2",
96
+ "type_vocab_size": 2,
97
+ "typical_p": 1.0,
98
+ "use_bfloat16": false,
99
+ "use_cache": true,
100
+ "vocab_size": 119552
101
+ },
102
+ "entity_max_length": 9,
103
+ "id2label": {
104
+ "0": "O",
105
+ "1": "LOC",
106
+ "2": "ORG",
107
+ "3": "PER"
108
+ },
109
+ "id2reduced_id": {
110
+ "0": 0,
111
+ "1": 3,
112
+ "2": 3,
113
+ "3": 2,
114
+ "4": 2,
115
+ "5": 1,
116
+ "6": 1
117
+ },
118
+ "label2id": {
119
+ "LOC": 1,
120
+ "O": 0,
121
+ "ORG": 2,
122
+ "PER": 3
123
+ },
124
+ "marker_max_length": 128,
125
+ "max_next_context": null,
126
+ "max_prev_context": null,
127
+ "model_max_length": 256,
128
+ "model_max_length_default": 512,
129
+ "model_type": "span-marker",
130
+ "span_marker_version": "1.5.0",
131
+ "torch_dtype": "float32",
132
+ "trained_with_document_context": false,
133
+ "transformers_version": "4.35.2",
134
+ "vocab_size": 119552
135
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe129d9c27b95f0d86f5a98c89de09dca9032c59de1ed84fd9a8923ea5b7d0bf
3
+ size 711477840
runs/Nov20_11-10-34_abb3dc80e44b/events.out.tfevents.1700478677.abb3dc80e44b.191.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc75ac3b3332008d8b6e4834d04800187c11d443d20ea5500cb93299c3b7e83a
3
+ size 8094
runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700478790.abb3dc80e44b.191.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52755e6c79ef3cf64b29c52f6c5dd010dcbde8328396abc45c5236bbc58c6560
3
+ size 15713
runs/Nov20_11-13-05_abb3dc80e44b/events.out.tfevents.1700480406.abb3dc80e44b.191.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6afbf6ada6738f733ed731797c2a47a03c76a5ac4458881573bb3c120c1b1f37
3
+ size 592
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "101": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "102": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "103": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "119547": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "119548": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "clean_up_tokenization_spaces": true,
62
+ "cls_token": "[CLS]",
63
+ "do_lower_case": false,
64
+ "entity_max_length": 9,
65
+ "mask_token": "[MASK]",
66
+ "model_max_length": 256,
67
+ "pad_token": "[PAD]",
68
+ "sep_token": "[SEP]",
69
+ "strip_accents": null,
70
+ "tokenize_chinese_chars": true,
71
+ "tokenizer_class": "BertTokenizer",
72
+ "unk_token": "[UNK]"
73
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cfa0fa0c4beed7cc0cc797c75878d2fef033f9a734259a4c228988be28eb5f5
3
+ size 4664
vocab.txt ADDED
The diff for this file is too large to render. See raw diff