File size: 6,300 Bytes
f0bc02b
 
0694a9d
 
 
 
 
 
 
 
 
f0bc02b
 
0694a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
library_name: transformers
license: apache-2.0
base_model: davidilag/wav2vec2-xls-r-1b-scandinavian-E5-100h-30-epochs-20250124
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-1b-E5-faroese-100h-30-epochs_20250124
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-1b-E5-faroese-100h-30-epochs_20250124

This model is a fine-tuned version of [davidilag/wav2vec2-xls-r-1b-scandinavian-E5-100h-30-epochs-20250124](https://huggingface.co/davidilag/wav2vec2-xls-r-1b-scandinavian-E5-100h-30-epochs-20250124) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1020
- Wer: 18.7866
- Cer: 4.0428

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     | Cer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:|
| 0.6462        | 0.4877  | 1000  | 0.4463          | 49.8480 | 14.3603 |
| 0.4739        | 0.9754  | 2000  | 0.2744          | 35.1720 | 9.4284  |
| 0.3953        | 1.4628  | 3000  | 0.2147          | 31.1671 | 8.0981  |
| 0.3758        | 1.9505  | 4000  | 0.2073          | 31.1847 | 7.9119  |
| 0.3123        | 2.4379  | 5000  | 0.2123          | 29.9423 | 7.7486  |
| 0.3032        | 2.9256  | 6000  | 0.1951          | 29.8277 | 7.5569  |
| 0.2866        | 3.4131  | 7000  | 0.1822          | 28.2372 | 7.1364  |
| 0.2601        | 3.9008  | 8000  | 0.1833          | 27.0432 | 6.8018  |
| 0.2259        | 4.3882  | 9000  | 0.1809          | 26.6996 | 6.7458  |
| 0.2474        | 4.8759  | 10000 | 0.1606          | 26.1312 | 6.4500  |
| 0.2131        | 5.3633  | 11000 | 0.1674          | 26.1929 | 6.5005  |
| 0.214         | 5.8510  | 12000 | 0.1550          | 24.8888 | 6.0910  |
| 0.181         | 6.3385  | 13000 | 0.1583          | 24.7918 | 6.1367  |
| 0.1703        | 6.8261  | 14000 | 0.1457          | 24.9592 | 6.0444  |
| 0.1816        | 7.3136  | 15000 | 0.1578          | 24.6024 | 5.9979  |
| 0.1594        | 7.8013  | 16000 | 0.1482          | 24.3997 | 5.8661  |
| 0.1373        | 8.2887  | 17000 | 0.1485          | 24.0428 | 5.7170  |
| 0.1497        | 8.7764  | 18000 | 0.1383          | 23.8049 | 5.7265  |
| 0.1119        | 9.2638  | 19000 | 0.1379          | 23.0956 | 5.5213  |
| 0.1218        | 9.7515  | 20000 | 0.1504          | 23.6815 | 5.7186  |
| 0.1177        | 10.2390 | 21000 | 0.1395          | 23.4392 | 5.6199  |
| 0.1128        | 10.7267 | 22000 | 0.1383          | 23.3643 | 5.5813  |
| 0.1198        | 11.2141 | 23000 | 0.1360          | 22.7783 | 5.3438  |
| 0.1105        | 11.7018 | 24000 | 0.1375          | 22.5977 | 5.2996  |
| 0.1035        | 12.1892 | 25000 | 0.1252          | 22.4391 | 5.2736  |
| 0.092         | 12.6769 | 26000 | 0.1323          | 22.2629 | 5.2397  |
| 0.0783        | 13.1644 | 27000 | 0.1286          | 22.2717 | 5.1442  |
| 0.0835        | 13.6520 | 28000 | 0.1298          | 21.6284 | 4.9619  |
| 0.0702        | 14.1395 | 29000 | 0.1192          | 21.5447 | 4.9091  |
| 0.0807        | 14.6272 | 30000 | 0.1177          | 21.3773 | 4.9493  |
| 0.0714        | 15.1146 | 31000 | 0.1254          | 21.3112 | 4.8972  |
| 0.0734        | 15.6023 | 32000 | 0.1216          | 21.2980 | 4.8554  |
| 0.0621        | 16.0897 | 33000 | 0.1191          | 20.8618 | 4.7118  |
| 0.0601        | 16.5774 | 34000 | 0.1134          | 20.7913 | 4.6747  |
| 0.0631        | 17.0649 | 35000 | 0.1148          | 20.6327 | 4.6384  |
| 0.0655        | 17.5525 | 36000 | 0.1106          | 20.4697 | 4.5769  |
| 0.0492        | 18.0400 | 37000 | 0.1172          | 20.4520 | 4.5880  |
| 0.0485        | 18.5277 | 38000 | 0.1180          | 20.3066 | 4.6022  |
| 0.0455        | 19.0151 | 39000 | 0.1102          | 20.0511 | 4.4349  |
| 0.0422        | 19.5028 | 40000 | 0.1143          | 20.0511 | 4.4467  |
| 0.0412        | 19.9905 | 41000 | 0.1109          | 19.8749 | 4.3978  |
| 0.0469        | 20.4779 | 42000 | 0.1110          | 20.0203 | 4.4428  |
| 0.0388        | 20.9656 | 43000 | 0.1084          | 19.7163 | 4.3410  |
| 0.0357        | 21.4531 | 44000 | 0.1081          | 19.5356 | 4.3016  |
| 0.043         | 21.9407 | 45000 | 0.1043          | 19.2404 | 4.2211  |
| 0.027         | 22.4282 | 46000 | 0.1074          | 19.2801 | 4.2250  |
| 0.0344        | 22.9159 | 47000 | 0.1091          | 19.3374 | 4.2124  |
| 0.0306        | 23.4033 | 48000 | 0.1083          | 19.2096 | 4.1982  |
| 0.033         | 23.8910 | 49000 | 0.1037          | 19.1259 | 4.1611  |
| 0.0309        | 24.3784 | 50000 | 0.1071          | 19.1743 | 4.1840  |
| 0.0246        | 24.8661 | 51000 | 0.0986          | 19.1127 | 4.1438  |
| 0.0299        | 25.3536 | 52000 | 0.1045          | 18.9673 | 4.1098  |
| 0.0296        | 25.8413 | 53000 | 0.1013          | 18.9717 | 4.0901  |
| 0.0272        | 26.3287 | 54000 | 0.1023          | 18.7822 | 4.0404  |
| 0.0225        | 26.8164 | 55000 | 0.1032          | 18.7690 | 4.0380  |
| 0.0206        | 27.3038 | 56000 | 0.1020          | 18.7734 | 4.0436  |
| 0.0273        | 27.7915 | 57000 | 0.1020          | 18.8131 | 4.0483  |
| 0.0267        | 28.2790 | 58000 | 0.1015          | 18.8131 | 4.0499  |
| 0.0268        | 28.7666 | 59000 | 0.1020          | 18.7866 | 4.0428  |
| 0.0307        | 29.2541 | 60000 | 0.1020          | 18.7822 | 4.0436  |
| 0.033         | 29.7418 | 61000 | 0.1020          | 18.7866 | 4.0428  |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0