davidrd123 commited on
Commit
faab9d1
·
verified ·
1 Parent(s): 0e699c0

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +242 -0
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of a James Tissot painting, a woman in a black dress with white ruffled underlayers sits in a red chair, her posture relaxed. A black cat rests beside her, and a vase of white flowers sits on a nearby table. The room features a mirror and framed artwork.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of a James Tissot painting, two women in light blue ruffled dresses stand in a luxurious room with large windows overlooking tropical plants. One pours tea at a small table while another sits nearby. The room contains ornate furniture, an intricate carpet, and a samovar.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of a James Tissot painting, a woman wearing a checkered dress sits at a breakfast table with a carafe and fruit, reading a letter. A man holds up a newspaper while ships are visible through large windows behind them.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of a James Tissot painting, a young woman practices piano in a conservatory, sunlight streaming through art nouveau windows onto her emerald green dress. Potted orchids line the walls, and sheet music scattered across the floor catches the late afternoon light.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of a James Tissot painting, two sisters prepare for a masquerade ball, one adjusting the other''s venetian mask while standing before a gilt mirror. Their elaborate dresses in complementary shades of burgundy and navy reflect in the candlelit room.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of a James Tissot painting, a lady artist works at her easel in a sunny studio, her paint-stained apron contrasting with her formal Victorian dress. Through the window, hot air balloons float above a cityscape of chimneys and spires.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of a James Tissot painting, a woman astronomer in a midnight blue Victorian dress with silver buttons studies the night sky through a brass telescope on an observatory balcony. Her detailed skirt catches moonlight as she leans forward, while star charts and astronomical instruments rest on a marble-topped table nearby. Through the domed ceiling''s opening, the Pleiades cluster shimmers above.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of a James Tissot painting, an elegant Japanese geisha in a coral and gold kimono serves tea to a Victorian lady wearing a lavender bustle dress in a fusion parlor. Wisteria cascades through the open shoji screens, while European oil paintings hang above Japanese tatami mats. A peacock fan rests on a lacquered table beside an English silver tea service.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ ---
62
+
63
+ # JamesTissot-Flux-LoKr
64
+
65
+ This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
66
+
67
+
68
+ No validation prompt was used during training.
69
+
70
+ None
71
+
72
+
73
+
74
+ ## Validation settings
75
+ - CFG: `3.0`
76
+ - CFG Rescale: `0.0`
77
+ - Steps: `20`
78
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
79
+ - Seed: `42`
80
+ - Resolution: `968x1280`
81
+ - Skip-layer guidance:
82
+
83
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
84
+
85
+ You can find some example images in the following gallery:
86
+
87
+
88
+ <Gallery />
89
+
90
+ The text encoder **was not** trained.
91
+ You may reuse the base model text encoder for inference.
92
+
93
+
94
+ ## Training settings
95
+
96
+ - Training epochs: 0
97
+ - Training steps: 250
98
+ - Learning rate: 0.0004
99
+ - Learning rate schedule: polynomial
100
+ - Warmup steps: 200
101
+ - Max grad norm: 0.1
102
+ - Effective batch size: 3
103
+ - Micro-batch size: 3
104
+ - Gradient accumulation steps: 1
105
+ - Number of GPUs: 1
106
+ - Gradient checkpointing: True
107
+ - Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=10.0', 'flux_beta_schedule_beta=1.0', 'flow_matching_loss=compatible'])
108
+ - Optimizer: adamw_bf16
109
+ - Trainable parameter precision: Pure BF16
110
+ - Caption dropout probability: 10.0%
111
+
112
+
113
+ ### LyCORIS Config:
114
+ ```json
115
+ {
116
+ "algo": "lokr",
117
+ "multiplier": 1.0,
118
+ "linear_dim": 10000,
119
+ "linear_alpha": 1,
120
+ "factor": 16,
121
+ "apply_preset": {
122
+ "target_module": [
123
+ "Attention",
124
+ "FeedForward"
125
+ ],
126
+ "module_algo_map": {
127
+ "Attention": {
128
+ "factor": 16
129
+ },
130
+ "FeedForward": {
131
+ "factor": 8
132
+ }
133
+ }
134
+ }
135
+ }
136
+ ```
137
+
138
+ ## Datasets
139
+
140
+ ### ab-512
141
+ - Repeats: 11
142
+ - Total number of images: 29
143
+ - Total number of aspect buckets: 7
144
+ - Resolution: 0.262144 megapixels
145
+ - Cropped: False
146
+ - Crop style: None
147
+ - Crop aspect: None
148
+ - Used for regularisation data: No
149
+ ### ab-768
150
+ - Repeats: 11
151
+ - Total number of images: 29
152
+ - Total number of aspect buckets: 9
153
+ - Resolution: 0.589824 megapixels
154
+ - Cropped: False
155
+ - Crop style: None
156
+ - Crop aspect: None
157
+ - Used for regularisation data: No
158
+ ### ab-1024
159
+ - Repeats: 5
160
+ - Total number of images: 29
161
+ - Total number of aspect buckets: 11
162
+ - Resolution: 1.048576 megapixels
163
+ - Cropped: False
164
+ - Crop style: None
165
+ - Crop aspect: None
166
+ - Used for regularisation data: No
167
+ ### ab-crops-512
168
+ - Repeats: 7
169
+ - Total number of images: 29
170
+ - Total number of aspect buckets: 1
171
+ - Resolution: 0.262144 megapixels
172
+ - Cropped: True
173
+ - Crop style: random
174
+ - Crop aspect: square
175
+ - Used for regularisation data: No
176
+ ### ab-1024-crop
177
+ - Repeats: 7
178
+ - Total number of images: 29
179
+ - Total number of aspect buckets: 1
180
+ - Resolution: 1.048576 megapixels
181
+ - Cropped: True
182
+ - Crop style: random
183
+ - Crop aspect: square
184
+ - Used for regularisation data: No
185
+
186
+
187
+ ## Inference
188
+
189
+
190
+ ```python
191
+ import torch
192
+ from diffusers import DiffusionPipeline
193
+ from lycoris import create_lycoris_from_weights
194
+
195
+
196
+ def download_adapter(repo_id: str):
197
+ import os
198
+ from huggingface_hub import hf_hub_download
199
+ adapter_filename = "pytorch_lora_weights.safetensors"
200
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
201
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
202
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
203
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
204
+ os.makedirs(path_to_adapter, exist_ok=True)
205
+ hf_hub_download(
206
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
207
+ )
208
+
209
+ return path_to_adapter_file
210
+
211
+ model_id = 'black-forest-labs/FLUX.1-dev'
212
+ adapter_repo_id = 'davidrd123/JamesTissot-Flux-LoKr'
213
+ adapter_filename = 'pytorch_lora_weights.safetensors'
214
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
215
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
216
+ lora_scale = 1.0
217
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
218
+ wrapper.merge_to()
219
+
220
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
221
+
222
+
223
+ ## Optional: quantise the model to save on vram.
224
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
225
+ from optimum.quanto import quantize, freeze, qint8
226
+ quantize(pipeline.transformer, weights=qint8)
227
+ freeze(pipeline.transformer)
228
+
229
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
230
+ image = pipeline(
231
+ prompt=prompt,
232
+ num_inference_steps=20,
233
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
234
+ width=968,
235
+ height=1280,
236
+ guidance_scale=3.0,
237
+ ).images[0]
238
+ image.save("output.png", format="PNG")
239
+ ```
240
+
241
+
242
+